Documentation Verification Report

ExtendHomotopy

πŸ“ Source: Mathlib/Algebra/Homology/Embedding/ExtendHomotopy.lean

Statistics

MetricCount
DefinitionsextendHomotopyFunctor, extendHomotopyFunctorFactors, extend, hom, homAux, extendEquiv, ofExtend
7
TheoremsinstFaithfulHomotopyCategoryExtendHomotopyFunctor, instFullHomotopyCategoryExtendHomotopyFunctor, homAux_eq, hom_eq, hom_eq_zero₁, hom_eq_zeroβ‚‚, extend_hom_eq, extend_ofExtend, ofExtend_extend, ofExtend_hom
10
Total17

ComplexShape.Embedding

Definitions

NameCategoryTheorems
extendHomotopyFunctor πŸ“–CompOp
2 mathmath: instFaithfulHomotopyCategoryExtendHomotopyFunctor, instFullHomotopyCategoryExtendHomotopyFunctor
extendHomotopyFunctorFactors πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instFaithfulHomotopyCategoryExtendHomotopyFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.Faithful
HomotopyCategory
instCategoryHomotopyCategory
extendHomotopyFunctor
β€”HomotopyCategory.quotient_obj_surjective
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
HomotopyCategory.eq_of_homotopy
instFullHomotopyCategoryExtendHomotopyFunctor πŸ“–mathematicalβ€”CategoryTheory.Functor.Full
HomotopyCategory
instCategoryHomotopyCategory
extendHomotopyFunctor
β€”HomotopyCategory.quotient_obj_surjective
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
instFullHomologicalComplexExtendFunctor

Homotopy

Definitions

NameCategoryTheorems
extend πŸ“–CompOp
3 mathmath: extend_hom_eq, extend_ofExtend, ofExtend_extend
extendEquiv πŸ“–CompOpβ€”
ofExtend πŸ“–CompOp
3 mathmath: extend_ofExtend, ofExtend_extend, ofExtend_hom

Theorems

NameKindAssumesProvesValidatesDepends On
extend_hom_eq πŸ“–mathematicalComplexShape.Embedding.fhom
HomologicalComplex.extend
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.extendMap
extend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Iso.hom
HomologicalComplex.extendXIso
CategoryTheory.Iso.inv
β€”extend.hom_eq
extend_ofExtend πŸ“–mathematicalβ€”extend
ofExtend
β€”ext
extend_hom_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Limits.IsZero.eq_of_tgt
HomologicalComplex.isZero_extend_X
CategoryTheory.Limits.IsZero.eq_of_src
ofExtend_extend πŸ“–mathematicalβ€”ofExtend
extend
β€”ext
extend_hom_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
ofExtend_hom πŸ“–mathematicalβ€”hom
ofExtend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.extend
ComplexShape.Embedding.f
CategoryTheory.Iso.inv
HomologicalComplex.extendXIso
HomologicalComplex.extendMap
CategoryTheory.Iso.hom
β€”β€”

Homotopy.extend

Definitions

NameCategoryTheorems
hom πŸ“–CompOp
3 mathmath: hom_eq_zero₁, hom_eq_zeroβ‚‚, hom_eq
homAux πŸ“–CompOp
1 mathmath: homAux_eq

Theorems

NameKindAssumesProvesValidatesDepends On
homAux_eq πŸ“–mathematicalβ€”homAux
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.extend.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.Iso.hom
HomologicalComplex.extend.XIso
CategoryTheory.Iso.inv
β€”CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
hom_eq πŸ“–mathematicalComplexShape.Embedding.fhom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.extend
CategoryTheory.Iso.hom
HomologicalComplex.extendXIso
CategoryTheory.Iso.inv
β€”homAux_eq
ComplexShape.Embedding.r_eq_some
hom_eq_zero₁ πŸ“–mathematicalβ€”hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.extend
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”CategoryTheory.Limits.IsZero.eq_of_src
HomologicalComplex.isZero_extend_X
hom_eq_zeroβ‚‚ πŸ“–mathematicalβ€”hom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.extend
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”CategoryTheory.Limits.IsZero.eq_of_tgt
HomologicalComplex.isZero_extend_X

---

← Back to Index