Documentation Verification Report

HomEquiv

📁 Source: Mathlib/Algebra/Homology/Embedding/HomEquiv.lean

Statistics

MetricCount
DefinitionsHasLift, homEquiv, homRestrict, f, liftExtend, f, liftExtendfArrowIso
7
Theoremsepi_liftExtend_f_iff, homEquiv_apply_coe, homEquiv_symm_apply, comm, comm_assoc, f_eq, homRestrict_comp_extendMap, homRestrict_comp_extendMap_assoc, homRestrict_f, homRestrict_hasLift, homRestrict_liftExtend, homRestrict_precomp, homRestrict_precomp_assoc, isIso_liftExtend_f_iff, comm, comm_assoc, f_eq, liftExtend_f, liftExtend_homRestrict, mono_liftExtend_f_iff
20
Total27

ComplexShape.Embedding

Definitions

NameCategoryTheorems
HasLift 📖MathDef
4 mathmath: homEquiv_symm_apply, homEquiv_apply_coe, homRestrict_hasLift, HomologicalComplex.restrictionToTruncGE'_hasLift
homEquiv 📖CompOp
2 mathmath: homEquiv_symm_apply, homEquiv_apply_coe
homRestrict 📖CompOp
9 mathmath: homRestrict_precomp, homRestrict_comp_extendMap_assoc, homEquiv_apply_coe, homRestrict_liftExtend, homRestrict_hasLift, homRestrict_precomp_assoc, homRestrict_f, liftExtend_homRestrict, homRestrict_comp_extendMap
liftExtend 📖CompOp
7 mathmath: isIso_liftExtend_f_iff, epi_liftExtend_f_iff, mono_liftExtend_f_iff, homEquiv_symm_apply, homRestrict_liftExtend, liftExtend_f, liftExtend_homRestrict
liftExtendfArrowIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
epi_liftExtend_f_iff 📖mathematicalHasLift
f
CategoryTheory.Epi
HomologicalComplex.X
HomologicalComplex.extend
HomologicalComplex.Hom.f
liftExtend
HomologicalComplex.restriction
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.epimorphisms
homEquiv_apply_coe 📖mathematicalQuiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.restriction
HasLift
DFunLike.coe
Equiv
HomologicalComplex.extend
EquivLike.toFunLike
Equiv.instEquivLike
homEquiv
homRestrict
homEquiv_symm_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.restriction
HasLift
HomologicalComplex.extend
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
homEquiv
liftExtend
homRestrict_comp_extendMap 📖mathematicalhomRestrict
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.extend
HomologicalComplex.extendMap
HomologicalComplex.restriction
HomologicalComplex.hom_ext
homRestrict_f
HomologicalComplex.extendMap_f
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
homRestrict_comp_extendMap_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.restriction
homRestrict
HomologicalComplex.extend
HomologicalComplex.extendMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homRestrict_comp_extendMap
homRestrict_f 📖mathematicalfHomologicalComplex.Hom.f
HomologicalComplex.restriction
homRestrict
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Iso.hom
HomologicalComplex.restrictionXIso
HomologicalComplex.extend
HomologicalComplex.extendXIso
homRestrict.f_eq
homRestrict_hasLift 📖mathematicalHasLift
homRestrict
CategoryTheory.Limits.IsZero.eq_of_src
HomologicalComplex.isZero_extend_X
BoundaryGE.notMem
homRestrict.f_eq
HomologicalComplex.restrictionXIso.eq_1
CategoryTheory.eqToIso_refl
CategoryTheory.Iso.refl_hom
CategoryTheory.Category.id_comp
HomologicalComplex.Hom.comm_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
homRestrict_liftExtend 📖mathematicalHasLifthomRestrict
liftExtend
HomologicalComplex.hom_ext
homRestrict_f
liftExtend_f
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
homRestrict_precomp 📖mathematicalhomRestrict
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.extend
HomologicalComplex.restriction
HomologicalComplex.restrictionMap
HomologicalComplex.hom_ext
homRestrict_f
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
homRestrict_precomp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.restriction
homRestrict
HomologicalComplex.extend
HomologicalComplex.restrictionMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homRestrict_precomp
isIso_liftExtend_f_iff 📖mathematicalHasLift
f
CategoryTheory.IsIso
HomologicalComplex.X
HomologicalComplex.extend
HomologicalComplex.Hom.f
liftExtend
HomologicalComplex.restriction
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms
liftExtend_f 📖mathematicalHasLift
f
HomologicalComplex.Hom.f
HomologicalComplex.extend
liftExtend
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
CategoryTheory.Iso.inv
HomologicalComplex.restrictionXIso
HomologicalComplex.extendXIso
liftExtend.f_eq
liftExtend_homRestrict 📖mathematicalliftExtend
homRestrict
homRestrict_hasLift
HomologicalComplex.hom_ext
homRestrict_hasLift
liftExtend_f
homRestrict_f
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.IsZero.eq_of_tgt
HomologicalComplex.isZero_extend_X
mono_liftExtend_f_iff 📖mathematicalHasLift
f
CategoryTheory.Mono
HomologicalComplex.X
HomologicalComplex.extend
HomologicalComplex.Hom.f
liftExtend
HomologicalComplex.restriction
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.monomorphisms

ComplexShape.Embedding.homRestrict

Definitions

NameCategoryTheorems
f 📖CompOp
3 mathmath: comm_assoc, comm, f_eq

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
f
HomologicalComplex.d
ComplexShape.Embedding.f
CategoryTheory.Category.assoc
HomologicalComplex.Hom.comm_assoc
HomologicalComplex.extend_d_eq
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
f
HomologicalComplex.d
ComplexShape.Embedding.f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
f_eq 📖mathematicalComplexShape.Embedding.ff
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
CategoryTheory.Iso.hom
HomologicalComplex.restrictionXIso
HomologicalComplex.extend
HomologicalComplex.Hom.f
HomologicalComplex.extendXIso
CategoryTheory.Category.id_comp

ComplexShape.Embedding.liftExtend

Definitions

NameCategoryTheorems
f 📖CompOp
3 mathmath: comm_assoc, comm, f_eq

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalComplexShape.Embedding.HasLiftCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.extend
f
HomologicalComplex.d
f_eq
HomologicalComplex.extend_d_eq
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
HomologicalComplex.Hom.comm_assoc
CategoryTheory.Limits.IsZero.eq_of_tgt
HomologicalComplex.isZero_extend_X
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.Limits.comp_zero
Mathlib.Tactic.Reassoc.eq_whisker'
ComplexShape.Embedding.boundaryGE
CategoryTheory.Limits.zero_comp
HomologicalComplex.shape
comm_assoc 📖mathematicalComplexShape.Embedding.HasLiftCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.extend
f
HomologicalComplex.d
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
f_eq 📖mathematicalComplexShape.Embedding.ff
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
HomologicalComplex.extend
CategoryTheory.Iso.inv
HomologicalComplex.restrictionXIso
HomologicalComplex.Hom.f
HomologicalComplex.extendXIso
ComplexShape.Embedding.injective_f

---

← Back to Index