Documentation Verification Report

IsSupported

📁 Source: Mathlib/Algebra/Homology/Embedding/IsSupported.lean

Statistics

MetricCount
DefinitionsIsSupported, IsStrictlySupported, IsStrictlySupportedOutside, IsSupported, IsSupportedOutside
5
TheoremsisZero, isSupportedOutside, isZero, exactAt, exactAt, exactAt_of_isSupported, instIsStrictlySupportedOfNat, instIsStrictlySupportedOppositeOpOp, instIsSupportedOfIsStrictlySupported, isStrictlySupportedOutside_op_iff, isStrictlySupported_of_iso, isStrictlySupported_op_iff, isSupportedOutside_op_iff, isSupported_iff, isSupported_iff_of_quasiIso, isSupported_of_iso, isSupported_op_iff, isZero_X_of_isStrictlySupported, isZero_iff_isStrictlySupported_and_isStrictlySupportedOutside, map_isStrictlySupported
20
Total25

FreeCommRing

Definitions

NameCategoryTheorems
IsSupported 📖MathDef
6 mathmath: isSupported_int, isSupported_of, exists_finset_support, isSupported_zero, exists_finite_support, isSupported_one

HomologicalComplex

Definitions

NameCategoryTheorems
IsStrictlySupported 📖CompData
17 mathmath: instIsStrictlySupportedOfNat, instIsStrictlySupportedTruncGE_1, map_isStrictlySupported, ComplexShape.Embedding.AreComplementary.isStrictlySupportedOutside₁_iff, ComplexShape.Embedding.AreComplementary.isStrictlySupportedOutside₂_iff, instIsStrictlySupportedStupidTrunc_1, isIso_ιTruncLE_iff, isStrictlySupported_op_iff, isIso_πTruncGE_iff, instIsStrictlySupportedTruncLE_1, instIsStrictlySupportedTruncGE, instIsStrictlySupportedExtend, isStrictlySupported_of_iso, isZero_iff_isStrictlySupported_and_isStrictlySupportedOutside, instIsStrictlySupportedStupidTrunc, instIsStrictlySupportedTruncLE, instIsStrictlySupportedOppositeOpOp
IsStrictlySupportedOutside 📖CompData
5 mathmath: isStrictlySupportedOutside_op_iff, isZero_stupidTrunc_iff, ComplexShape.Embedding.AreComplementary.isStrictlySupportedOutside₁_iff, ComplexShape.Embedding.AreComplementary.isStrictlySupportedOutside₂_iff, isZero_iff_isStrictlySupported_and_isStrictlySupportedOutside
IsSupported 📖CompData
9 mathmath: quasiIso_πTruncGE_iff_isSupported, isSupported_of_iso, isSupported_iff_of_quasiIso, instIsSupportedOfIsStrictlySupported, quasiIso_ιTruncLE_iff_isSupported, ComplexShape.Embedding.AreComplementary.isSupportedOutside₁_iff, isSupported_op_iff, ComplexShape.Embedding.AreComplementary.isSupportedOutside₂_iff, isSupported_iff
IsSupportedOutside 📖CompData
7 mathmath: IsStrictlySupportedOutside.isSupportedOutside, isSupportedOutside_op_iff, acyclic_truncGE_iff_isSupportedOutside, ComplexShape.Embedding.AreComplementary.isSupportedOutside₁_iff, acyclic_truncLE_iff_isSupportedOutside, ComplexShape.Embedding.AreComplementary.isSupportedOutside₂_iff, shortComplexTruncLE_X₃_isSupportedOutside

Theorems

NameKindAssumesProvesValidatesDepends On
exactAt_of_isSupported 📖mathematicalExactAtIsSupported.exactAt
instIsStrictlySupportedOfNat 📖mathematicalIsStrictlySupported
HomologicalComplex
CategoryTheory.Limits.HasZeroObject.zero'
instCategory
instHasZeroObject
instHasZeroObject
CategoryTheory.Functor.map_isZero
instPreservesZeroMorphismsEval
CategoryTheory.Limits.isZero_zero
instIsStrictlySupportedOppositeOpOp 📖mathematicalIsStrictlySupported
ComplexShape.symm
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
ComplexShape.Embedding.op
isStrictlySupported_op_iff
instIsSupportedOfIsStrictlySupported 📖mathematicalIsSupportedexactAt_iff
CategoryTheory.ShortComplex.exact_of_isZero_X₂
isZero_X_of_isStrictlySupported
isStrictlySupportedOutside_op_iff 📖mathematicalIsStrictlySupportedOutside
ComplexShape.symm
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
ComplexShape.Embedding.op
CategoryTheory.Limits.IsZero.unop
IsStrictlySupportedOutside.isZero
CategoryTheory.Limits.IsZero.op
isStrictlySupported_of_iso 📖mathematicalIsStrictlySupportedCategoryTheory.Limits.IsZero.of_iso
isZero_X_of_isStrictlySupported
isStrictlySupported_op_iff 📖mathematicalIsStrictlySupported
ComplexShape.symm
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
ComplexShape.Embedding.op
CategoryTheory.Limits.IsZero.unop
isZero_X_of_isStrictlySupported
CategoryTheory.Limits.IsZero.op
isSupportedOutside_op_iff 📖mathematicalIsSupportedOutside
ComplexShape.symm
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
ComplexShape.Embedding.op
ExactAt.unop
IsSupportedOutside.exactAt
ExactAt.op
isSupported_iff 📖mathematicalIsSupported
ExactAt
isSupported_iff_of_quasiIso 📖mathematicalHasHomologyIsSupportedexactAt_iff_of_quasiIsoAt
QuasiIso.quasiIsoAt
isSupported_of_iso 📖mathematicalIsSupportedExactAt.of_iso
exactAt_of_isSupported
isSupported_op_iff 📖mathematicalIsSupported
ComplexShape.symm
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
ComplexShape.Embedding.op
ExactAt.unop
exactAt_of_isSupported
ExactAt.op
isZero_X_of_isStrictlySupported 📖mathematicalCategoryTheory.Limits.IsZero
X
IsStrictlySupported.isZero
isZero_iff_isStrictlySupported_and_isStrictlySupportedOutside 📖mathematicalCategoryTheory.Limits.IsZero
HomologicalComplex
instCategory
IsStrictlySupported
IsStrictlySupportedOutside
CategoryTheory.Functor.map_isZero
instPreservesZeroMorphismsEval
CategoryTheory.Limits.IsZero.iff_id_eq_zero
hom_ext
CategoryTheory.Limits.IsZero.eq_of_src
IsStrictlySupportedOutside.isZero
isZero_X_of_isStrictlySupported
map_isStrictlySupported 📖mathematicalIsStrictlySupported
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Limits.IsZero.iff_id_eq_zero
CategoryTheory.Functor.map_id
CategoryTheory.Limits.IsZero.eq_of_src
isZero_X_of_isStrictlySupported
CategoryTheory.Functor.map_zero

HomologicalComplex.IsStrictlySupported

Theorems

NameKindAssumesProvesValidatesDepends On
isZero 📖mathematicalCategoryTheory.Limits.IsZero
HomologicalComplex.X

HomologicalComplex.IsStrictlySupportedOutside

Theorems

NameKindAssumesProvesValidatesDepends On
isSupportedOutside 📖mathematicalHomologicalComplex.IsStrictlySupportedOutsideHomologicalComplex.IsSupportedOutsideCategoryTheory.ShortComplex.exact_of_isZero_X₂
isZero
isZero 📖mathematicalHomologicalComplex.IsStrictlySupportedOutsideCategoryTheory.Limits.IsZero
HomologicalComplex.X
ComplexShape.Embedding.f

HomologicalComplex.IsSupported

Theorems

NameKindAssumesProvesValidatesDepends On
exactAt 📖mathematicalHomologicalComplex.ExactAt

HomologicalComplex.IsSupportedOutside

Theorems

NameKindAssumesProvesValidatesDepends On
exactAt 📖mathematicalHomologicalComplex.IsSupportedOutsideHomologicalComplex.ExactAt
ComplexShape.Embedding.f

---

← Back to Index