Documentation Verification Report

Restriction

📁 Source: Mathlib/Algebra/Homology/Embedding/Restriction.lean

Statistics

MetricCount
DefinitionsrestrictionFunctor, restriction, restrictionMap, restrictionXIso
4
TheoremsinstAdditiveHomologicalComplexRestrictionFunctor, instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor, restrictionFunctor_map, restrictionFunctor_obj, restrictionMap_comp, restrictionMap_comp_assoc, restrictionMap_f, restrictionMap_f', restrictionMap_f'_assoc, restrictionMap_id, restriction_X, restriction_d, restriction_d_eq, restriction_d_eq_assoc
14
Total18

ComplexShape.Embedding

Definitions

NameCategoryTheorems
restrictionFunctor 📖CompOp
6 mathmath: restrictionFunctor_map, instAdditiveHomologicalComplexRestrictionFunctor, restrictionToTruncGE'NatTrans_app, restrictionFunctor_obj, truncLE'ToRestrictionNatTrans_app, instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveHomologicalComplexRestrictionFunctor 📖mathematicalCategoryTheory.Functor.Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomologicalComplex.instPreadditive
restrictionFunctor
instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
restrictionFunctor
restrictionFunctor_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
HomologicalComplex.instCategory
restrictionFunctor
HomologicalComplex.restrictionMap
restrictionFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
restrictionFunctor
HomologicalComplex.restriction

HomologicalComplex

Definitions

NameCategoryTheorems
restriction 📖CompOp
71 mathmath: pOpcycles_restrictionOpcyclesIso_hom_assoc, restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, ComplexShape.Embedding.isIso_liftExtend_f_iff, homologyπ_restrictionHomologyIso_inv_assoc, restriction.hasHomology, restrictionMap_comp, restriction.sc'Iso_inv_τ₃, restrictionCyclesIso_hom_iCycles, restriction_d_eq, homologyπ_restrictionHomologyIso_inv, instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported, pOpcycles_restrictionOpcyclesIso_inv, restriction.sc'Iso_inv_τ₁, restriction_X, instMonoFTruncLE'ToRestriction, restrictionMap_f'_assoc, restrictionToTruncGE'.comm_assoc, restriction_d, restrictionToTruncGE'.comm, restrictionHomologyIso_inv_homologyι_assoc, truncLE'.quasiIsoAt_truncLE'ToRestriction, restrictionMap_id, restriction.sc'Iso_hom_τ₂, ComplexShape.Embedding.homRestrict_precomp, ComplexShape.Embedding.epi_liftExtend_f_iff, CochainComplex.ConnectData.restrictionLEIso_inv_f, homologyπ_restrictionHomologyIso_hom, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, restrictionHomologyIso_hom_homologyι, isIso_truncLE'ToRestriction, ComplexShape.Embedding.mono_liftExtend_f_iff, CochainComplex.ConnectData.restrictionLEIso_hom_f, restrictionHomologyIso_hom_homologyι_assoc, ComplexShape.Embedding.homEquiv_symm_apply, ComplexShape.Embedding.homRestrict.comm_assoc, ComplexShape.Embedding.homEquiv_apply_coe, truncLE'ToRestriction_naturality_assoc, restrictionMap_comp_assoc, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, ComplexShape.Embedding.liftExtend_f, ComplexShape.Embedding.homRestrict.comm, restrictionCyclesIso_inv_iCycles_assoc, ComplexShape.Embedding.liftExtend.f_eq, truncGE'.quasiIsoAt_restrictionToTruncGE', CochainComplex.ConnectData.restrictionGEIso_inv_f, restrictionHomologyIso_inv_homologyι, restrictionToTruncGE'_naturality_assoc, instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported, restrictionMap_f', ComplexShape.Embedding.homRestrict_precomp_assoc, restrictionToTruncGE'_naturality, restrictionMap_f, restrictionCyclesIso_hom_iCycles_assoc, restriction.sc'Iso_inv_τ₂, ComplexShape.Embedding.restrictionFunctor_obj, ComplexShape.Embedding.homRestrict_f, isIso_restrictionToTruncGE', ComplexShape.Embedding.homRestrict.f_eq, restrictionToTruncGE'.f_eq_iso_hom_iso_inv, truncLE'ToRestriction_naturality, restrictionToTruncGE'_f_eq_iso_hom_iso_inv, pOpcycles_restrictionOpcyclesIso_inv_assoc, restriction_d_eq_assoc, restriction.sc'Iso_hom_τ₃, ComplexShape.Embedding.homRestrict_comp_extendMap, restriction.sc'Iso_hom_τ₁, restrictionCyclesIso_inv_iCycles, homologyπ_restrictionHomologyIso_hom_assoc, pOpcycles_restrictionOpcyclesIso_hom, instEpiFRestrictionToTruncGE', CochainComplex.ConnectData.restrictionGEIso_hom_f
restrictionMap 📖CompOp
13 mathmath: restrictionMap_comp, ComplexShape.Embedding.restrictionFunctor_map, restrictionMap_f'_assoc, restrictionMap_id, ComplexShape.Embedding.homRestrict_precomp, truncLE'ToRestriction_naturality_assoc, restrictionMap_comp_assoc, restrictionToTruncGE'_naturality_assoc, restrictionMap_f', ComplexShape.Embedding.homRestrict_precomp_assoc, restrictionToTruncGE'_naturality, restrictionMap_f, truncLE'ToRestriction_naturality
restrictionXIso 📖CompOp
30 mathmath: pOpcycles_restrictionOpcyclesIso_hom_assoc, restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, restriction.sc'Iso_inv_τ₃, restrictionCyclesIso_hom_iCycles, restriction_d_eq, pOpcycles_restrictionOpcyclesIso_inv, restriction.sc'Iso_inv_τ₁, restrictionMap_f'_assoc, restriction.sc'Iso_hom_τ₂, CochainComplex.ConnectData.restrictionLEIso_inv_f, CochainComplex.ConnectData.restrictionLEIso_hom_f, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, ComplexShape.Embedding.liftExtend_f, restrictionCyclesIso_inv_iCycles_assoc, ComplexShape.Embedding.liftExtend.f_eq, CochainComplex.ConnectData.restrictionGEIso_inv_f, restrictionMap_f', restrictionCyclesIso_hom_iCycles_assoc, restriction.sc'Iso_inv_τ₂, ComplexShape.Embedding.homRestrict_f, ComplexShape.Embedding.homRestrict.f_eq, restrictionToTruncGE'.f_eq_iso_hom_iso_inv, restrictionToTruncGE'_f_eq_iso_hom_iso_inv, pOpcycles_restrictionOpcyclesIso_inv_assoc, restriction_d_eq_assoc, restriction.sc'Iso_hom_τ₃, restriction.sc'Iso_hom_τ₁, restrictionCyclesIso_inv_iCycles, pOpcycles_restrictionOpcyclesIso_hom, CochainComplex.ConnectData.restrictionGEIso_hom_f

Theorems

NameKindAssumesProvesValidatesDepends On
restrictionMap_comp 📖mathematicalrestrictionMap
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
restriction
restrictionMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
restriction
restrictionMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictionMap_comp
restrictionMap_f 📖mathematicalHom.f
restriction
restrictionMap
ComplexShape.Embedding.f
restrictionMap_f' 📖mathematicalComplexShape.Embedding.fHom.f
restriction
restrictionMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
restrictionXIso
CategoryTheory.Iso.inv
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
restrictionMap_f'_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
restriction
Hom.f
restrictionMap
CategoryTheory.Iso.hom
restrictionXIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictionMap_f'
restrictionMap_id 📖mathematicalrestrictionMap
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
restriction
restriction_X 📖mathematicalX
restriction
ComplexShape.Embedding.f
restriction_d 📖mathematicald
restriction
ComplexShape.Embedding.f
restriction_d_eq 📖mathematicalComplexShape.Embedding.fd
restriction
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
restrictionXIso
CategoryTheory.Iso.inv
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
restriction_d_eq_assoc 📖mathematicalComplexShape.Embedding.fCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
restriction
d
CategoryTheory.Iso.hom
restrictionXIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restriction_d_eq

---

← Back to Index