restriction 📖 | CompOp | 71 mathmath: pOpcycles_restrictionOpcyclesIso_hom_assoc, restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, ComplexShape.Embedding.isIso_liftExtend_f_iff, homologyπ_restrictionHomologyIso_inv_assoc, restriction.hasHomology, restrictionMap_comp, restriction.sc'Iso_inv_τ₃, restrictionCyclesIso_hom_iCycles, restriction_d_eq, homologyπ_restrictionHomologyIso_inv, instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported, pOpcycles_restrictionOpcyclesIso_inv, restriction.sc'Iso_inv_τ₁, restriction_X, instMonoFTruncLE'ToRestriction, restrictionMap_f'_assoc, restrictionToTruncGE'.comm_assoc, restriction_d, restrictionToTruncGE'.comm, restrictionHomologyIso_inv_homologyι_assoc, truncLE'.quasiIsoAt_truncLE'ToRestriction, restrictionMap_id, restriction.sc'Iso_hom_τ₂, ComplexShape.Embedding.homRestrict_precomp, ComplexShape.Embedding.epi_liftExtend_f_iff, CochainComplex.ConnectData.restrictionLEIso_inv_f, homologyπ_restrictionHomologyIso_hom, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, restrictionHomologyIso_hom_homologyι, isIso_truncLE'ToRestriction, ComplexShape.Embedding.mono_liftExtend_f_iff, CochainComplex.ConnectData.restrictionLEIso_hom_f, restrictionHomologyIso_hom_homologyι_assoc, ComplexShape.Embedding.homEquiv_symm_apply, ComplexShape.Embedding.homRestrict.comm_assoc, ComplexShape.Embedding.homEquiv_apply_coe, truncLE'ToRestriction_naturality_assoc, restrictionMap_comp_assoc, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, ComplexShape.Embedding.liftExtend_f, ComplexShape.Embedding.homRestrict.comm, restrictionCyclesIso_inv_iCycles_assoc, ComplexShape.Embedding.liftExtend.f_eq, truncGE'.quasiIsoAt_restrictionToTruncGE', CochainComplex.ConnectData.restrictionGEIso_inv_f, restrictionHomologyIso_inv_homologyι, restrictionToTruncGE'_naturality_assoc, instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported, restrictionMap_f', ComplexShape.Embedding.homRestrict_precomp_assoc, restrictionToTruncGE'_naturality, restrictionMap_f, restrictionCyclesIso_hom_iCycles_assoc, restriction.sc'Iso_inv_τ₂, ComplexShape.Embedding.restrictionFunctor_obj, ComplexShape.Embedding.homRestrict_f, isIso_restrictionToTruncGE', ComplexShape.Embedding.homRestrict.f_eq, restrictionToTruncGE'.f_eq_iso_hom_iso_inv, truncLE'ToRestriction_naturality, restrictionToTruncGE'_f_eq_iso_hom_iso_inv, pOpcycles_restrictionOpcyclesIso_inv_assoc, restriction_d_eq_assoc, restriction.sc'Iso_hom_τ₃, ComplexShape.Embedding.homRestrict_comp_extendMap, restriction.sc'Iso_hom_τ₁, restrictionCyclesIso_inv_iCycles, homologyπ_restrictionHomologyIso_hom_assoc, pOpcycles_restrictionOpcyclesIso_hom, instEpiFRestrictionToTruncGE', CochainComplex.ConnectData.restrictionGEIso_hom_f
|