Documentation Verification Report

RestrictionHomology

📁 Source: Mathlib/Algebra/Homology/Embedding/RestrictionHomology.lean

Statistics

MetricCount
Definitionssc'Iso, restrictionCyclesIso, restrictionHomologyIso, restrictionOpcyclesIso
4
Theoremshomologyπ_restrictionHomologyIso_hom, homologyπ_restrictionHomologyIso_hom_assoc, homologyπ_restrictionHomologyIso_inv, homologyπ_restrictionHomologyIso_inv_assoc, pOpcycles_restrictionOpcyclesIso_hom, pOpcycles_restrictionOpcyclesIso_hom_assoc, pOpcycles_restrictionOpcyclesIso_inv, pOpcycles_restrictionOpcyclesIso_inv_assoc, hasHomology, sc'Iso_hom_τ₁, sc'Iso_hom_τ₂, sc'Iso_hom_τ₃, sc'Iso_inv_τ₁, sc'Iso_inv_τ₂, sc'Iso_inv_τ₃, restrictionCyclesIso_hom_iCycles, restrictionCyclesIso_hom_iCycles_assoc, restrictionCyclesIso_inv_iCycles, restrictionCyclesIso_inv_iCycles_assoc, restrictionHomologyIso_hom_homologyι, restrictionHomologyIso_hom_homologyι_assoc, restrictionHomologyIso_inv_homologyι, restrictionHomologyIso_inv_homologyι_assoc
23
Total27

HomologicalComplex

Definitions

NameCategoryTheorems
restrictionCyclesIso 📖CompOp
8 mathmath: homologyπ_restrictionHomologyIso_inv_assoc, restrictionCyclesIso_hom_iCycles, homologyπ_restrictionHomologyIso_inv, homologyπ_restrictionHomologyIso_hom, restrictionCyclesIso_inv_iCycles_assoc, restrictionCyclesIso_hom_iCycles_assoc, restrictionCyclesIso_inv_iCycles, homologyπ_restrictionHomologyIso_hom_assoc
restrictionHomologyIso 📖CompOp
8 mathmath: homologyπ_restrictionHomologyIso_inv_assoc, homologyπ_restrictionHomologyIso_inv, restrictionHomologyIso_inv_homologyι_assoc, homologyπ_restrictionHomologyIso_hom, restrictionHomologyIso_hom_homologyι, restrictionHomologyIso_hom_homologyι_assoc, restrictionHomologyIso_inv_homologyι, homologyπ_restrictionHomologyIso_hom_assoc
restrictionOpcyclesIso 📖CompOp
8 mathmath: pOpcycles_restrictionOpcyclesIso_hom_assoc, pOpcycles_restrictionOpcyclesIso_inv, restrictionHomologyIso_inv_homologyι_assoc, restrictionHomologyIso_hom_homologyι, restrictionHomologyIso_hom_homologyι_assoc, restrictionHomologyIso_inv_homologyι, pOpcycles_restrictionOpcyclesIso_inv_assoc, pOpcycles_restrictionOpcyclesIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
homologyπ_restrictionHomologyIso_hom 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
restriction
homology
homologyπ
CategoryTheory.Iso.hom
restrictionHomologyIso
restrictionCyclesIso
CategoryTheory.ShortComplex.homologyMap_comp
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.cancel_mono
CategoryTheory.ShortComplex.instMonoHomologyι
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.π_homologyMap_ι
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
restrictionCyclesIso_hom_iCycles_assoc
CategoryTheory.ShortComplex.homology_π_ι
homologyπ_restrictionHomologyIso_hom_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
restriction
homology
homologyπ
CategoryTheory.Iso.hom
restrictionHomologyIso
restrictionCyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_restrictionHomologyIso_hom
homologyπ_restrictionHomologyIso_inv 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
restriction
homologyπ
CategoryTheory.Iso.inv
restrictionHomologyIso
restrictionCyclesIso
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
homologyπ_restrictionHomologyIso_hom
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc
homologyπ_restrictionHomologyIso_inv_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
homologyπ
restriction
CategoryTheory.Iso.inv
restrictionHomologyIso
restrictionCyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_restrictionHomologyIso_inv
pOpcycles_restrictionOpcyclesIso_hom 📖mathematicalComplexShape.prev
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
restriction
opcycles
pOpcycles
CategoryTheory.Iso.hom
restrictionOpcyclesIso
restrictionXIso
p_descOpcycles
pOpcycles_restrictionOpcyclesIso_hom_assoc 📖mathematicalComplexShape.prev
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
restriction
opcycles
pOpcycles
CategoryTheory.Iso.hom
restrictionOpcyclesIso
restrictionXIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_restrictionOpcyclesIso_hom
pOpcycles_restrictionOpcyclesIso_inv 📖mathematicalComplexShape.prev
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
restriction
pOpcycles
CategoryTheory.Iso.inv
restrictionOpcyclesIso
restrictionXIso
p_descOpcycles
pOpcycles_restrictionOpcyclesIso_inv_assoc 📖mathematicalComplexShape.prev
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
restriction
CategoryTheory.Iso.inv
restrictionOpcyclesIso
restrictionXIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_restrictionOpcyclesIso_inv
restrictionCyclesIso_hom_iCycles 📖mathematicalComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
restriction
X
CategoryTheory.Iso.hom
restrictionCyclesIso
iCycles
restrictionXIso
liftCycles_i
restrictionCyclesIso_hom_iCycles_assoc 📖mathematicalComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
restriction
CategoryTheory.Iso.hom
restrictionCyclesIso
X
iCycles
restrictionXIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictionCyclesIso_hom_iCycles
restrictionCyclesIso_inv_iCycles 📖mathematicalComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
restriction
X
CategoryTheory.Iso.inv
restrictionCyclesIso
iCycles
restrictionXIso
liftCycles_i
restrictionCyclesIso_inv_iCycles_assoc 📖mathematicalComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
restriction
CategoryTheory.Iso.inv
restrictionCyclesIso
X
iCycles
restrictionXIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictionCyclesIso_inv_iCycles
restrictionHomologyIso_hom_homologyι 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
restriction
opcycles
CategoryTheory.Iso.hom
restrictionHomologyIso
homologyι
restrictionOpcyclesIso
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
restrictionHomologyIso_inv_homologyι_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
restrictionHomologyIso_hom_homologyι_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
restriction
CategoryTheory.Iso.hom
restrictionHomologyIso
opcycles
homologyι
restrictionOpcyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictionHomologyIso_hom_homologyι
restrictionHomologyIso_inv_homologyι 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
restriction
opcycles
CategoryTheory.Iso.inv
restrictionHomologyIso
homologyι
restrictionOpcyclesIso
CategoryTheory.ShortComplex.homologyMap_comp
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.cancel_epi
CategoryTheory.ShortComplex.instEpiHomologyπ
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.π_homologyMap_ι
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.ShortComplex.homology_π_ι_assoc
pOpcycles_restrictionOpcyclesIso_inv
restrictionHomologyIso_inv_homologyι_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
restriction
CategoryTheory.Iso.inv
restrictionHomologyIso
opcycles
homologyι
restrictionOpcyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictionHomologyIso_inv_homologyι

HomologicalComplex.restriction

Definitions

NameCategoryTheorems
sc'Iso 📖CompOp
6 mathmath: sc'Iso_inv_τ₃, sc'Iso_inv_τ₁, sc'Iso_hom_τ₂, sc'Iso_inv_τ₂, sc'Iso_hom_τ₃, sc'Iso_hom_τ₁

Theorems

NameKindAssumesProvesValidatesDepends On
hasHomology 📖mathematicalComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.f
HomologicalComplex.HasHomology
HomologicalComplex.restriction
CategoryTheory.ShortComplex.hasHomology_of_iso
sc'Iso_hom_τ₁ 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₁
HomologicalComplex.sc'
HomologicalComplex.restriction
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc'Iso
HomologicalComplex.X
HomologicalComplex.restrictionXIso
sc'Iso_hom_τ₂ 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₂
HomologicalComplex.sc'
HomologicalComplex.restriction
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc'Iso
HomologicalComplex.X
HomologicalComplex.restrictionXIso
sc'Iso_hom_τ₃ 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₃
HomologicalComplex.sc'
HomologicalComplex.restriction
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc'Iso
HomologicalComplex.X
HomologicalComplex.restrictionXIso
sc'Iso_inv_τ₁ 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₁
HomologicalComplex.sc'
HomologicalComplex.restriction
CategoryTheory.Iso.inv
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc'Iso
HomologicalComplex.X
HomologicalComplex.restrictionXIso
sc'Iso_inv_τ₂ 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₂
HomologicalComplex.sc'
HomologicalComplex.restriction
CategoryTheory.Iso.inv
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc'Iso
HomologicalComplex.X
HomologicalComplex.restrictionXIso
sc'Iso_inv_τ₃ 📖mathematicalComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₃
HomologicalComplex.sc'
HomologicalComplex.restriction
CategoryTheory.Iso.inv
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc'Iso
HomologicalComplex.X
HomologicalComplex.restrictionXIso

---

← Back to Index