Documentation Verification Report

TruncGE

📁 Source: Mathlib/Algebra/Homology/Embedding/TruncGE.lean

Statistics

MetricCount
DefinitionsrestrictionToTruncGE'NatTrans, truncGE'Functor, truncGEFunctor, πTruncGENatTrans, restrictionToTruncGE', f, truncGE, truncGE', X, XIso, XIsoOpcycles, d, truncGE'Map, truncGE'XIso, truncGE'XIsoOpcycles, truncGEMap, truncGEXIso, truncGEXIsoOpcycles, πTruncGE
19
TheoremsrestrictionToTruncGE'NatTrans_app, truncGE'Functor_map, truncGE'Functor_obj, truncGEFunctor_map, truncGEFunctor_obj, πTruncGENatTrans_app, instEpiFRestrictionToTruncGE', instEpiFπTruncGE, instEpiπTruncGE, instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported, instIsIsoπTruncGEOfIsStrictlySupported, instIsStrictlySupportedTruncGE, instIsStrictlySupportedTruncGE_1, isIso_restrictionToTruncGE', isIso_πTruncGE_iff, comm, comm_assoc, f_eq_iso_hom_iso_inv, f_eq_iso_hom_pOpcycles_iso_inv, restrictionToTruncGE'_f_eq_iso_hom_iso_inv, restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, restrictionToTruncGE'_hasLift, restrictionToTruncGE'_naturality, restrictionToTruncGE'_naturality_assoc, d_comp_d, d_comp_d_assoc, truncGE'Map_comp, truncGE'Map_comp_assoc, truncGE'Map_f_eq, truncGE'Map_f_eq_opcyclesMap, truncGE'Map_id, truncGE'_d_eq, truncGE'_d_eq_fromOpcycles, truncGEMap_comp, truncGEMap_comp_assoc, truncGEMap_id, πTruncGE_naturality, πTruncGE_naturality_assoc
38
Total57

ComplexShape.Embedding

Definitions

NameCategoryTheorems
restrictionToTruncGE'NatTrans 📖CompOp
1 mathmath: restrictionToTruncGE'NatTrans_app
truncGE'Functor 📖CompOp
3 mathmath: truncGE'Functor_obj, truncGE'Functor_map, restrictionToTruncGE'NatTrans_app
truncGEFunctor 📖CompOp
3 mathmath: πTruncGENatTrans_app, truncGEFunctor_map, truncGEFunctor_obj
πTruncGENatTrans 📖CompOp
1 mathmath: πTruncGENatTrans_app

Theorems

NameKindAssumesProvesValidatesDepends On
restrictionToTruncGE'NatTrans_app 📖mathematical—CategoryTheory.NatTrans.app
HomologicalComplex
HomologicalComplex.instCategory
restrictionFunctor
IsTruncGE.toIsRelIff
truncGE'Functor
restrictionToTruncGE'NatTrans
HomologicalComplex.restrictionToTruncGE'
—IsTruncGE.toIsRelIff
truncGE'Functor_map 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
HomologicalComplex.instCategory
truncGE'Functor
HomologicalComplex.truncGE'Map
——
truncGE'Functor_obj 📖mathematical—CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
truncGE'Functor
HomologicalComplex.truncGE'
——
truncGEFunctor_map 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
HomologicalComplex.instCategory
truncGEFunctor
HomologicalComplex.truncGEMap
——
truncGEFunctor_obj 📖mathematical—CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
truncGEFunctor
HomologicalComplex.truncGE
——
πTruncGENatTrans_app 📖mathematical—CategoryTheory.NatTrans.app
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.id
truncGEFunctor
πTruncGENatTrans
HomologicalComplex.πTruncGE
——

HomologicalComplex

Definitions

NameCategoryTheorems
restrictionToTruncGE' 📖CompOp
10 mathmath: restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported, truncGE'.quasiIsoAt_restrictionToTruncGE', restrictionToTruncGE'_naturality_assoc, restrictionToTruncGE'_naturality, ComplexShape.Embedding.restrictionToTruncGE'NatTrans_app, isIso_restrictionToTruncGE', restrictionToTruncGE'_f_eq_iso_hom_iso_inv, instEpiFRestrictionToTruncGE', restrictionToTruncGE'_hasLift
truncGE 📖CompOp
23 mathmath: πTruncGE_naturality_assoc, truncGE.rightHomologyMapData_φQ, instIsStrictlySupportedTruncGE_1, instEpiFπTruncGE, truncGEMap_comp_assoc, quasiIso_πTruncGE_iff_isSupported, truncGE.instHasHomology, instIsIsoπTruncGEOfIsStrictlySupported, g_shortComplexTruncLEX₃ToTruncGE, quasiIsoAt_πTruncGE, isIso_πTruncGE_iff, πTruncGE_naturality, instIsStrictlySupportedTruncGE, truncGE.rightHomologyMapData_φH, acyclic_truncGE_iff_isSupportedOutside, quasiIso_truncGEMap_iff, instQuasiIsoShortComplexTruncLEX₃ToTruncGE, instEpiπTruncGE, truncGEMap_comp, g_shortComplexTruncLEX₃ToTruncGE_assoc, truncGEMap_id, instQuasiIsoAtπTruncGEF, ComplexShape.Embedding.truncGEFunctor_obj
truncGE' 📖CompOp
28 mathmath: restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, truncGE.rightHomologyMapData_φQ, truncGE'.truncGE'_hasHomology, ComplexShape.Embedding.truncGE'Functor_obj, truncGE'Map_comp, instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported, restrictionToTruncGE'.comm_assoc, restrictionToTruncGE'.comm, truncGE'.hasHomology_sc'_of_not_mem_boundary, truncGE'_d_eq, truncGE'.homologyData_right_g', truncGE'_d_eq_fromOpcycles, truncGE'Map_f_eq_opcyclesMap, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, truncGE.rightHomologyMapData_φH, truncGE'.quasiIsoAt_restrictionToTruncGE', restrictionToTruncGE'_naturality_assoc, truncGE'Map_comp_assoc, truncGE'Map_id, truncGE'.hasHomology_of_not_mem_boundary, restrictionToTruncGE'_naturality, isIso_restrictionToTruncGE', restrictionToTruncGE'.f_eq_iso_hom_iso_inv, truncGE'.homologyι_truncGE'XIsoOpcycles_inv_d, truncGE'Map_f_eq, restrictionToTruncGE'_f_eq_iso_hom_iso_inv, instEpiFRestrictionToTruncGE', restrictionToTruncGE'_hasLift
truncGE'Map 📖CompOp
8 mathmath: truncGE'Map_comp, truncGE'Map_f_eq_opcyclesMap, restrictionToTruncGE'_naturality_assoc, truncGE'Map_comp_assoc, truncGE'Map_id, ComplexShape.Embedding.truncGE'Functor_map, restrictionToTruncGE'_naturality, truncGE'Map_f_eq
truncGE'XIso 📖CompOp
5 mathmath: truncGE'_d_eq, truncGE'_d_eq_fromOpcycles, restrictionToTruncGE'.f_eq_iso_hom_iso_inv, truncGE'Map_f_eq, restrictionToTruncGE'_f_eq_iso_hom_iso_inv
truncGE'XIsoOpcycles 📖CompOp
6 mathmath: restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, truncGE.rightHomologyMapData_φQ, truncGE'_d_eq_fromOpcycles, truncGE'Map_f_eq_opcyclesMap, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, truncGE'.homologyι_truncGE'XIsoOpcycles_inv_d
truncGEMap 📖CompOp
7 mathmath: πTruncGE_naturality_assoc, truncGEMap_comp_assoc, πTruncGE_naturality, quasiIso_truncGEMap_iff, truncGEMap_comp, ComplexShape.Embedding.truncGEFunctor_map, truncGEMap_id
truncGEXIso 📖CompOp—
truncGEXIsoOpcycles 📖CompOp—
πTruncGE 📖CompOp
14 mathmath: πTruncGE_naturality_assoc, truncGE.rightHomologyMapData_φQ, instEpiFπTruncGE, quasiIso_πTruncGE_iff_isSupported, instIsIsoπTruncGEOfIsStrictlySupported, g_shortComplexTruncLEX₃ToTruncGE, quasiIsoAt_πTruncGE, isIso_πTruncGE_iff, πTruncGE_naturality, ComplexShape.Embedding.πTruncGENatTrans_app, truncGE.rightHomologyMapData_φH, instEpiπTruncGE, g_shortComplexTruncLEX₃ToTruncGE_assoc, instQuasiIsoAtπTruncGEF

Theorems

NameKindAssumesProvesValidatesDepends On
instEpiFRestrictionToTruncGE' 📖mathematicalHasHomologyCategoryTheory.Epi
X
restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
truncGE'
Hom.f
restrictionToTruncGE'
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv
CategoryTheory.epi_comp
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_hom
instEpiPOpcycles
CategoryTheory.Iso.isIso_inv
isIso_restrictionToTruncGE'
instEpiFπTruncGE 📖mathematicalHasHomologyCategoryTheory.Epi
X
truncGE
Hom.f
πTruncGE
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_hasLift
ComplexShape.Embedding.epi_liftExtend_f_iff
instEpiFRestrictionToTruncGE'
CategoryTheory.Limits.IsZero.epi
isZero_extend_X
instEpiπTruncGE 📖mathematicalHasHomologyCategoryTheory.Epi
HomologicalComplex
instCategory
truncGE
πTruncGE
—epi_of_epi_f
instEpiFπTruncGE
instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported 📖mathematicalHasHomologyCategoryTheory.IsIso
X
restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
truncGE'
Hom.f
restrictionToTruncGE'
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv
isIso_pOpcycles
CategoryTheory.Limits.IsZero.eq_of_src
isZero_X_of_isStrictlySupported
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
restrictionToTruncGE'_f_eq_iso_hom_iso_inv
instIsIsoπTruncGEOfIsStrictlySupported 📖mathematicalHasHomologyCategoryTheory.IsIso
HomologicalComplex
instCategory
truncGE
πTruncGE
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_hasLift
ComplexShape.Embedding.isIso_liftExtend_f_iff
instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported
CategoryTheory.Limits.IsZero.eq_of_src
isZero_X_of_isStrictlySupported
instIsStrictlySupportedTruncGE_1
Hom.isIso_of_components
instIsStrictlySupportedTruncGE 📖mathematicalHasHomologyIsStrictlySupported
truncGE
—instIsStrictlySupportedExtend
instIsStrictlySupportedTruncGE_1 📖mathematicalHasHomologyIsStrictlySupported
truncGE
—CategoryTheory.Limits.IsZero.iff_id_eq_zero
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
instEpiPOpcycles
CategoryTheory.Limits.IsZero.eq_of_src
isZero_X_of_isStrictlySupported
CategoryTheory.Limits.IsZero.of_iso
instIsStrictlySupportedTruncGE
isIso_restrictionToTruncGE' 📖mathematicalHasHomology
ComplexShape.Embedding.BoundaryGE
CategoryTheory.IsIso
X
restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
truncGE'
Hom.f
restrictionToTruncGE'
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_f_eq_iso_hom_iso_inv
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.isIso_inv
isIso_πTruncGE_iff 📖mathematicalHasHomologyCategoryTheory.IsIso
HomologicalComplex
instCategory
truncGE
πTruncGE
IsStrictlySupported
—isStrictlySupported_of_iso
instIsStrictlySupportedTruncGE
instIsIsoπTruncGEOfIsStrictlySupported
restrictionToTruncGE'_f_eq_iso_hom_iso_inv 📖mathematicalHasHomology
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryGE
Hom.f
restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
truncGE'
restrictionToTruncGE'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
restrictionXIso
CategoryTheory.Iso.inv
truncGE'XIso
—restrictionToTruncGE'.f_eq_iso_hom_iso_inv
restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv 📖mathematicalHasHomology
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryGE
Hom.f
restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
truncGE'
restrictionToTruncGE'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
restrictionXIso
opcycles
pOpcycles
CategoryTheory.Iso.inv
truncGE'XIsoOpcycles
—restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv
restrictionToTruncGE'_hasLift 📖mathematicalHasHomologyComplexShape.Embedding.HasLift
truncGE'
ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv
CategoryTheory.Category.id_comp
d_pOpcycles_assoc
CategoryTheory.Limits.zero_comp
restrictionToTruncGE'_naturality 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
truncGE'
restrictionToTruncGE'
truncGE'Map
restrictionMap
—hom_ext
ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv
CategoryTheory.Category.id_comp
truncGE'Map_f_eq_opcyclesMap
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
p_opcyclesMap_assoc
restrictionToTruncGE'_f_eq_iso_hom_iso_inv
truncGE'Map_f_eq
restrictionToTruncGE'_naturality_assoc 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
truncGE'
restrictionToTruncGE'
truncGE'Map
restrictionMap
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
restrictionToTruncGE'_naturality
truncGE'Map_comp 📖mathematicalHasHomologytruncGE'Map
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncGE'
—hom_ext
truncGE'Map_f_eq_opcyclesMap
opcyclesMap_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
truncGE'Map_f_eq
truncGE'Map_comp_assoc 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncGE'
truncGE'Map
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
truncGE'Map_comp
truncGE'Map_f_eq 📖mathematicalHasHomology
ComplexShape.Embedding.BoundaryGE
ComplexShape.Embedding.f
Hom.f
truncGE'
truncGE'Map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
truncGE'XIso
CategoryTheory.Iso.inv
——
truncGE'Map_f_eq_opcyclesMap 📖mathematicalHasHomology
ComplexShape.Embedding.BoundaryGE
ComplexShape.Embedding.f
Hom.f
truncGE'
truncGE'Map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
CategoryTheory.Iso.hom
truncGE'XIsoOpcycles
opcyclesMap
CategoryTheory.Iso.inv
——
truncGE'Map_id 📖mathematicalHasHomologytruncGE'Map
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncGE'
—hom_ext
truncGE'Map_f_eq_opcyclesMap
opcyclesMap_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
truncGE'Map_f_eq
truncGE'_d_eq 📖mathematicalHasHomology
ComplexShape.Rel
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryGE
d
truncGE'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
truncGE'XIso
CategoryTheory.Iso.inv
ComplexShape.Embedding.not_boundaryGE_next
ComplexShape.Embedding.IsTruncGE.toIsRelIff
—ComplexShape.Embedding.not_boundaryGE_next
ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.Iso.trans_refl
truncGE'_d_eq_fromOpcycles 📖mathematicalHasHomology
ComplexShape.Rel
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryGE
d
truncGE'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
CategoryTheory.Iso.hom
truncGE'XIsoOpcycles
fromOpcycles
CategoryTheory.Iso.inv
truncGE'XIso
ComplexShape.Embedding.not_boundaryGE_next
ComplexShape.Embedding.IsTruncGE.toIsRelIff
—ComplexShape.Embedding.not_boundaryGE_next
ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.Iso.trans_refl
truncGEMap_comp 📖mathematicalHasHomologytruncGEMap
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncGE
—truncGE'Map_comp
extendMap_comp
truncGEMap_comp_assoc 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncGE
truncGEMap
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
truncGEMap_comp
truncGEMap_id 📖mathematicalHasHomologytruncGEMap
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncGE
—truncGE'Map_id
extendMap_id
πTruncGE_naturality 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncGE
πTruncGE
truncGEMap
—Equiv.injective
ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_hasLift
ComplexShape.Embedding.homRestrict_comp_extendMap
ComplexShape.Embedding.homRestrict_liftExtend
ComplexShape.Embedding.homRestrict_precomp
restrictionToTruncGE'_naturality
πTruncGE_naturality_assoc 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncGE
πTruncGE
truncGEMap
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
πTruncGE_naturality

HomologicalComplex.restrictionToTruncGE'

Definitions

NameCategoryTheorems
f 📖CompOp
4 mathmath: comm_assoc, comm, f_eq_iso_hom_pOpcycles_iso_inv, f_eq_iso_hom_iso_inv

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalHomologicalComplex.HasHomologyCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
HomologicalComplex.truncGE'
f
HomologicalComplex.d
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
f_eq_iso_hom_pOpcycles_iso_inv
ComplexShape.Embedding.not_boundaryGE_next
f_eq_iso_hom_iso_inv
HomologicalComplex.truncGE'_d_eq_fromOpcycles
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
HomologicalComplex.p_fromOpcycles_assoc
HomologicalComplex.truncGE'_d_eq
HomologicalComplex.shape
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
comm_assoc 📖mathematicalHomologicalComplex.HasHomologyCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
HomologicalComplex.truncGE'
f
HomologicalComplex.d
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
f_eq_iso_hom_iso_inv 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryGE
f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
HomologicalComplex.truncGE'
CategoryTheory.Iso.hom
HomologicalComplex.restrictionXIso
CategoryTheory.Iso.inv
HomologicalComplex.truncGE'XIso
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.Category.id_comp
f_eq_iso_hom_pOpcycles_iso_inv 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryGE
f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
HomologicalComplex.truncGE'
CategoryTheory.Iso.hom
HomologicalComplex.restrictionXIso
HomologicalComplex.opcycles
HomologicalComplex.pOpcycles
CategoryTheory.Iso.inv
HomologicalComplex.truncGE'XIsoOpcycles
—ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.Category.id_comp

HomologicalComplex.truncGE'

Definitions

NameCategoryTheorems
X 📖CompOp
2 mathmath: d_comp_d, d_comp_d_assoc
XIso 📖CompOp—
XIsoOpcycles 📖CompOp—
d 📖CompOp
2 mathmath: d_comp_d, d_comp_d_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
d_comp_d 📖mathematicalHomologicalComplex.HasHomologyCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—ComplexShape.Embedding.not_boundaryGE_next
ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
HomologicalComplex.fromOpcycles_d_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
HomologicalComplex.d_comp_d_assoc
d_comp_d_assoc 📖mathematicalHomologicalComplex.HasHomologyCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_comp_d

---

← Back to Index