Documentation Verification Report

TruncGEHomology

📁 Source: Mathlib/Algebra/Homology/Embedding/TruncGEHomology.lean

Statistics

MetricCount
DefinitionshomologyData, isLimitKernelFork, rightHomologyMapData
3
Theoremsacyclic_truncGE_iff_isSupportedOutside, instQuasiIsoAtπTruncGEF, quasiIsoAt_πTruncGE, quasiIso_truncGEMap_iff, quasiIso_πTruncGE_iff_isSupported, hasHomology_of_not_mem_boundary, hasHomology_sc'_of_not_mem_boundary, homologyData_right_g', homologyι_truncGE'XIsoOpcycles_inv_d, quasiIsoAt_restrictionToTruncGE', truncGE'_hasHomology, instHasHomology, rightHomologyMapData_φH, rightHomologyMapData_φQ
14
Total17

HomologicalComplex

Theorems

NameKindAssumesProvesValidatesDepends On
acyclic_truncGE_iff_isSupportedOutside 📖mathematicalHasHomologyAcyclic
truncGE
IsSupportedOutside
exactAt_iff_of_quasiIsoAt
truncGE.instHasHomology
instQuasiIsoAtπTruncGEF
IsSupportedOutside.exactAt
exactAt_of_isSupported
instIsSupportedOfIsStrictlySupported
instIsStrictlySupportedTruncGE
instQuasiIsoAtπTruncGEF 📖mathematicalHasHomologyQuasiIsoAt
truncGE
πTruncGE
ComplexShape.Embedding.f
truncGE.instHasHomology
quasiIsoAt_πTruncGE
quasiIsoAt_πTruncGE 📖mathematicalHasHomology
ComplexShape.Embedding.f
QuasiIsoAt
truncGE
πTruncGE
truncGE.instHasHomology
truncGE.instHasHomology
quasiIsoAt_iff
CategoryTheory.ShortComplex.RightHomologyMapData.quasiIso_iff
CategoryTheory.IsIso.id
ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_hasLift
ComplexShape.Embedding.epi_liftExtend_f_iff
instEpiFRestrictionToTruncGE'
CategoryTheory.Limits.IsZero.epi
isZero_extend_X
ComplexShape.Embedding.isIso_liftExtend_f_iff
isIso_restrictionToTruncGE'
ComplexShape.Embedding.next_f
ComplexShape.Embedding.not_boundaryGE_next'
CategoryTheory.ShortComplex.quasiIso_of_epi_of_isIso_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
quasiIso_truncGEMap_iff 📖mathematicalHasHomologyQuasiIso
truncGE
truncGEMap
truncGE.instHasHomology
QuasiIsoAt
truncGE.instHasHomology
quasiIsoAt_iff_comp_left
instQuasiIsoAtπTruncGEF
πTruncGE_naturality
quasiIsoAt_iff_comp_right
quasiIso_iff
quasiIsoAt_iff_exactAt
exactAt_of_isSupported
instIsSupportedOfIsStrictlySupported
instIsStrictlySupportedTruncGE
quasiIso_πTruncGE_iff_isSupported 📖mathematicalHasHomologyQuasiIso
truncGE
πTruncGE
truncGE.instHasHomology
IsSupported
truncGE.instHasHomology
exactAt_iff_of_quasiIsoAt
QuasiIso.quasiIsoAt
exactAt_of_isSupported
instIsSupportedOfIsStrictlySupported
instIsStrictlySupportedTruncGE
quasiIso_iff
instQuasiIsoAtπTruncGEF
quasiIsoAt_iff_exactAt

HomologicalComplex.truncGE

Definitions

NameCategoryTheorems
rightHomologyMapData 📖CompOp
2 mathmath: rightHomologyMapData_φQ, rightHomologyMapData_φH

Theorems

NameKindAssumesProvesValidatesDepends On
instHasHomology 📖mathematicalHomologicalComplex.HasHomologyHomologicalComplex.truncGEHomologicalComplex.extend.instHasHomology
HomologicalComplex.truncGE'.truncGE'_hasHomology
rightHomologyMapData_φH 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.BoundaryGE
CategoryTheory.ShortComplex.RightHomologyMapData.φH
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
HomologicalComplex.shortComplexFunctor
HomologicalComplex.truncGE
CategoryTheory.Functor.map
HomologicalComplex.πTruncGE
CategoryTheory.ShortComplex.RightHomologyData.canonical
HomologicalComplex.sc
HomologicalComplex.extend.rightHomologyData
HomologicalComplex.truncGE'
CategoryTheory.ShortComplex.HomologyData.right
HomologicalComplex.sc'
HomologicalComplex.truncGE'.homologyData
rightHomologyMapData
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.H
rightHomologyMapData_φQ 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.Embedding.f
ComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.BoundaryGE
CategoryTheory.ShortComplex.RightHomologyMapData.φQ
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
HomologicalComplex.shortComplexFunctor
HomologicalComplex.truncGE
CategoryTheory.Functor.map
HomologicalComplex.πTruncGE
CategoryTheory.ShortComplex.RightHomologyData.canonical
HomologicalComplex.sc
HomologicalComplex.extend.rightHomologyData
HomologicalComplex.truncGE'
CategoryTheory.ShortComplex.HomologyData.right
HomologicalComplex.sc'
HomologicalComplex.truncGE'.homologyData
rightHomologyMapData
CategoryTheory.Iso.inv
HomologicalComplex.X
HomologicalComplex.opcycles
HomologicalComplex.truncGE'XIsoOpcycles

HomologicalComplex.truncGE'

Definitions

NameCategoryTheorems
homologyData 📖CompOp
3 mathmath: HomologicalComplex.truncGE.rightHomologyMapData_φQ, homologyData_right_g', HomologicalComplex.truncGE.rightHomologyMapData_φH
isLimitKernelFork 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasHomology_of_not_mem_boundary 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.Embedding.BoundaryGE
HomologicalComplex.truncGE'hasHomology_sc'_of_not_mem_boundary
hasHomology_sc'_of_not_mem_boundary 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.prev
ComplexShape.next
ComplexShape.Embedding.BoundaryGE
CategoryTheory.ShortComplex.HasHomology
HomologicalComplex.sc'
HomologicalComplex.truncGE'
ComplexShape.Embedding.IsTruncGE.toIsRelIff
HomologicalComplex.restriction.hasHomology
ComplexShape.Embedding.prev_f_of_not_boundaryGE
ComplexShape.Embedding.next_f
CategoryTheory.ShortComplex.hasHomology_of_iso
HomologicalComplex.instEpiFRestrictionToTruncGE'
HomologicalComplex.isIso_restrictionToTruncGE'
ComplexShape.Embedding.not_boundaryGE_next'
CategoryTheory.ShortComplex.hasHomology_of_epi_of_isIso_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
homologyData_right_g' 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.next
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryGE
CategoryTheory.ShortComplex.RightHomologyData.g'
HomologicalComplex.sc'
HomologicalComplex.truncGE'
CategoryTheory.ShortComplex.HomologyData.right
homologyData
HomologicalComplex.d
homologyι_truncGE'XIsoOpcycles_inv_d 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryGE
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
HomologicalComplex.X
HomologicalComplex.truncGE'
HomologicalComplex.opcycles
HomologicalComplex.homologyι
CategoryTheory.Iso.inv
HomologicalComplex.truncGE'XIsoOpcycles
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
ComplexShape.Embedding.not_boundaryGE_next
ComplexShape.Embedding.IsTruncGE.toIsRelIff
HomologicalComplex.truncGE'_d_eq_fromOpcycles
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
HomologicalComplex.homologyι_comp_fromOpcycles_assoc
CategoryTheory.Limits.zero_comp
HomologicalComplex.shape
CategoryTheory.Limits.comp_zero
quasiIsoAt_restrictionToTruncGE' 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.Embedding.BoundaryGE
QuasiIsoAt
HomologicalComplex.restriction
ComplexShape.Embedding.IsTruncGE.toIsRelIff
HomologicalComplex.truncGE'
HomologicalComplex.restrictionToTruncGE'
ComplexShape.Embedding.IsTruncGE.toIsRelIff
quasiIsoAt_iff
HomologicalComplex.instEpiFRestrictionToTruncGE'
HomologicalComplex.isIso_restrictionToTruncGE'
ComplexShape.Embedding.not_boundaryGE_next'
CategoryTheory.ShortComplex.quasiIso_of_epi_of_isIso_of_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
truncGE'_hasHomology 📖mathematicalHomologicalComplex.HasHomologyHomologicalComplex.truncGE'CategoryTheory.ShortComplex.HasHomology.mk'
hasHomology_of_not_mem_boundary

---

← Back to Index