Documentation Verification Report

TruncLE

📁 Source: Mathlib/Algebra/Homology/Embedding/TruncLE.lean

Statistics

MetricCount
DefinitionstruncLE'Functor, truncLE'ToRestrictionNatTrans, truncLEFunctor, ιTruncLENatTrans, truncLE, truncLE', truncLE'Map, truncLE'ToRestriction, truncLE'XIso, truncLE'XIsoCycles, truncLEIso, truncLEMap, truncLEXIso, truncLEXIsoCycles, ιTruncLE
15
TheoremstruncLE'Functor_map, truncLE'Functor_obj, truncLE'ToRestrictionNatTrans_app, truncLEFunctor_map, truncLEFunctor_obj, ιTruncLENatTrans_app, instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported, instIsIsoιTruncLEOfIsStrictlySupported, instIsStrictlySupportedTruncLE, instIsStrictlySupportedTruncLE_1, instMonoFTruncLE'ToRestriction, instMonoFιTruncLE, instMonoιTruncLE, isIso_truncLE'ToRestriction, isIso_ιTruncLE_iff, truncLE'Map_comp, truncLE'Map_comp_assoc, truncLE'Map_f_eq, truncLE'Map_f_eq_cyclesMap, truncLE'Map_id, truncLE'ToRestriction_naturality, truncLE'ToRestriction_naturality_assoc, truncLE'_d_eq, truncLE'_d_eq_toCycles, truncLEMap_comp, truncLEMap_comp_assoc, truncLEMap_id, ιTruncLE_naturality, ιTruncLE_naturality_assoc
29
Total44

ComplexShape.Embedding

Definitions

NameCategoryTheorems
truncLE'Functor 📖CompOp
3 mathmath: truncLE'Functor_map, truncLE'Functor_obj, truncLE'ToRestrictionNatTrans_app
truncLE'ToRestrictionNatTrans 📖CompOp
1 mathmath: truncLE'ToRestrictionNatTrans_app
truncLEFunctor 📖CompOp
3 mathmath: truncLEFunctor_obj, ιTruncLENatTrans_app, truncLEFunctor_map
ιTruncLENatTrans 📖CompOp
1 mathmath: ιTruncLENatTrans_app

Theorems

NameKindAssumesProvesValidatesDepends On
truncLE'Functor_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
HomologicalComplex.instCategory
truncLE'Functor
HomologicalComplex.truncLE'Map
truncLE'Functor_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
truncLE'Functor
HomologicalComplex.truncLE'
truncLE'ToRestrictionNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
HomologicalComplex
HomologicalComplex.instCategory
truncLE'Functor
restrictionFunctor
IsTruncLE.toIsRelIff
truncLE'ToRestrictionNatTrans
HomologicalComplex.truncLE'ToRestriction
IsTruncLE.toIsRelIff
truncLEFunctor_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
HomologicalComplex.instCategory
truncLEFunctor
HomologicalComplex.truncLEMap
truncLEFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
truncLEFunctor
HomologicalComplex.truncLE
ιTruncLENatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
HomologicalComplex
HomologicalComplex.instCategory
truncLEFunctor
CategoryTheory.Functor.id
ιTruncLENatTrans
HomologicalComplex.ιTruncLE

HomologicalComplex

Definitions

NameCategoryTheorems
truncLE 📖CompOp
19 mathmath: ComplexShape.Embedding.truncLEFunctor_obj, truncLEMap_comp_assoc, ιTruncLE_naturality, instQuasiIsoAtιTruncLEF, instMonoFιTruncLE, ιTruncLE_naturality_assoc, truncLEMap_comp, isIso_ιTruncLE_iff, instHasHomologyTruncLE, instIsStrictlySupportedTruncLE_1, instMonoιTruncLE, quasiIso_ιTruncLE_iff_isSupported, truncLEMap_id, quasiIsoAt_ιTruncLE, instIsIsoιTruncLEOfIsStrictlySupported, instIsStrictlySupportedTruncLE, shortComplexTruncLE_X₁, acyclic_truncLE_iff_isSupportedOutside, quasiIso_truncLEMap_iff
truncLE' 📖CompOp
15 mathmath: truncLE'_d_eq_toCycles, instMonoFTruncLE'ToRestriction, truncLE'.quasiIsoAt_truncLE'ToRestriction, truncLE'Map_f_eq_cyclesMap, truncLE'Map_id, isIso_truncLE'ToRestriction, truncLE'.truncLE'_hasHomology, truncLE'_d_eq, truncLE'ToRestriction_naturality_assoc, ComplexShape.Embedding.truncLE'Functor_obj, instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported, truncLE'Map_comp, truncLE'Map_comp_assoc, truncLE'Map_f_eq, truncLE'ToRestriction_naturality
truncLE'Map 📖CompOp
8 mathmath: truncLE'Map_f_eq_cyclesMap, truncLE'Map_id, truncLE'ToRestriction_naturality_assoc, ComplexShape.Embedding.truncLE'Functor_map, truncLE'Map_comp, truncLE'Map_comp_assoc, truncLE'Map_f_eq, truncLE'ToRestriction_naturality
truncLE'ToRestriction 📖CompOp
7 mathmath: instMonoFTruncLE'ToRestriction, truncLE'.quasiIsoAt_truncLE'ToRestriction, isIso_truncLE'ToRestriction, truncLE'ToRestriction_naturality_assoc, instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported, ComplexShape.Embedding.truncLE'ToRestrictionNatTrans_app, truncLE'ToRestriction_naturality
truncLE'XIso 📖CompOp
3 mathmath: truncLE'_d_eq_toCycles, truncLE'_d_eq, truncLE'Map_f_eq
truncLE'XIsoCycles 📖CompOp
2 mathmath: truncLE'_d_eq_toCycles, truncLE'Map_f_eq_cyclesMap
truncLEIso 📖CompOp
truncLEMap 📖CompOp
7 mathmath: truncLEMap_comp_assoc, ιTruncLE_naturality, ιTruncLE_naturality_assoc, truncLEMap_comp, truncLEMap_id, ComplexShape.Embedding.truncLEFunctor_map, quasiIso_truncLEMap_iff
truncLEXIso 📖CompOp
truncLEXIsoCycles 📖CompOp
ιTruncLE 📖CompOp
11 mathmath: ιTruncLE_naturality, instQuasiIsoAtιTruncLEF, instMonoFιTruncLE, ιTruncLE_naturality_assoc, isIso_ιTruncLE_iff, shortComplexTruncLE_f, ComplexShape.Embedding.ιTruncLENatTrans_app, instMonoιTruncLE, quasiIso_ιTruncLE_iff_isSupported, quasiIsoAt_ιTruncLE, instIsIsoιTruncLEOfIsStrictlySupported

Theorems

NameKindAssumesProvesValidatesDepends On
instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported 📖mathematicalHasHomologyCategoryTheory.IsIso
X
truncLE'
restriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
Hom.f
truncLE'ToRestriction
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.isIso_unop
instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported
instIsStrictlySupportedOppositeOpOp
instIsIsoιTruncLEOfIsStrictlySupported 📖mathematicalHasHomologyCategoryTheory.IsIso
HomologicalComplex
instCategory
truncLE
ιTruncLE
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
CategoryTheory.Functor.map_isIso
CategoryTheory.isIso_op
instIsIsoπTruncGEOfIsStrictlySupported
instIsStrictlySupportedOppositeOpOp
instIsStrictlySupportedTruncLE 📖mathematicalHasHomologyIsStrictlySupported
truncLE
isStrictlySupported_op_iff
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
instIsStrictlySupportedTruncGE
instIsStrictlySupportedTruncLE_1 📖mathematicalHasHomologyIsStrictlySupported
truncLE
isStrictlySupported_op_iff
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
instIsStrictlySupportedTruncGE_1
instIsStrictlySupportedOppositeOpOp
instMonoFTruncLE'ToRestriction 📖mathematicalHasHomologyCategoryTheory.Mono
X
truncLE'
restriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
Hom.f
truncLE'ToRestriction
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
ComplexShape.Embedding.IsTruncGE.toIsRelIff
CategoryTheory.unop_mono_of_epi
instEpiFRestrictionToTruncGE'
instMonoFιTruncLE 📖mathematicalHasHomologyCategoryTheory.Mono
X
truncLE
Hom.f
ιTruncLE
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
CategoryTheory.unop_mono_of_epi
instEpiFπTruncGE
instMonoιTruncLE 📖mathematicalHasHomologyCategoryTheory.Mono
HomologicalComplex
instCategory
truncLE
ιTruncLE
mono_of_mono_f
instMonoFιTruncLE
isIso_truncLE'ToRestriction 📖mathematicalHasHomology
ComplexShape.Embedding.BoundaryLE
CategoryTheory.IsIso
X
truncLE'
restriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
Hom.f
truncLE'ToRestriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
ComplexShape.Embedding.IsTruncGE.toIsRelIff
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
isIso_restrictionToTruncGE'
CategoryTheory.isIso_unop
isIso_ιTruncLE_iff 📖mathematicalHasHomologyCategoryTheory.IsIso
HomologicalComplex
instCategory
truncLE
ιTruncLE
IsStrictlySupported
isStrictlySupported_of_iso
instIsStrictlySupportedTruncLE
instIsIsoιTruncLEOfIsStrictlySupported
truncLE'Map_comp 📖mathematicalHasHomologytruncLE'Map
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE'
CategoryTheory.Functor.congr_map
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeObjSymmOpFunctorOp
truncGE'Map_comp
truncLE'Map_comp_assoc 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE'
truncLE'Map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
truncLE'Map_comp
truncLE'Map_f_eq 📖mathematicalHasHomology
ComplexShape.Embedding.BoundaryLE
ComplexShape.Embedding.f
Hom.f
truncLE'
truncLE'Map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
truncLE'XIso
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
truncGE'Map_f_eq
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeObjSymmOpFunctorOp
truncLE'Map_f_eq_cyclesMap 📖mathematicalHasHomology
ComplexShape.Embedding.BoundaryLE
ComplexShape.Embedding.f
Hom.f
truncLE'
truncLE'Map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
cycles
CategoryTheory.Iso.hom
truncLE'XIsoCycles
cyclesMap
CategoryTheory.Iso.inv
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
CategoryTheory.Category.assoc
truncGE'Map_f_eq_opcyclesMap
instHasHomologyOppositeOp
instHasHomologyOppositeObjSymmOpFunctorOp
opcyclesOpIso_inv_naturality_assoc
CategoryTheory.Iso.hom_inv_id_assoc
truncLE'Map_id 📖mathematicalHasHomologytruncLE'Map
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE'
CategoryTheory.Functor.congr_map
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
truncGE'Map_id
truncLE'ToRestriction_naturality 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE'
restriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
truncLE'Map
truncLE'ToRestriction
restrictionMap
CategoryTheory.Functor.congr_map
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeObjSymmOpFunctorOp
ComplexShape.Embedding.IsTruncGE.toIsRelIff
restrictionToTruncGE'_naturality
truncLE'ToRestriction_naturality_assoc 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE'
truncLE'Map
restriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
truncLE'ToRestriction
restrictionMap
ComplexShape.Embedding.IsTruncLE.toIsRelIff
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
truncLE'ToRestriction_naturality
truncLE'_d_eq 📖mathematicalHasHomology
ComplexShape.Rel
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryLE
d
truncLE'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
truncLE'XIso
ComplexShape.Embedding.not_boundaryLE_prev
ComplexShape.Embedding.IsTruncLE.toIsRelIff
CategoryTheory.Iso.inv
ComplexShape.Embedding.not_boundaryLE_prev
ComplexShape.Embedding.IsTruncLE.toIsRelIff
CategoryTheory.Category.assoc
truncGE'_d_eq
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
truncLE'_d_eq_toCycles 📖mathematicalHasHomology
ComplexShape.Rel
ComplexShape.Embedding.f
ComplexShape.Embedding.BoundaryLE
d
truncLE'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
truncLE'XIso
ComplexShape.Embedding.not_boundaryLE_prev
ComplexShape.Embedding.IsTruncLE.toIsRelIff
cycles
toCycles
CategoryTheory.Iso.inv
truncLE'XIsoCycles
ComplexShape.Embedding.not_boundaryLE_prev
ComplexShape.Embedding.IsTruncLE.toIsRelIff
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Category.assoc
opcyclesOpIso_hom_toCycles_op
truncGE'_d_eq_fromOpcycles
truncLEMap_comp 📖mathematicalHasHomologytruncLEMap
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE
CategoryTheory.Functor.congr_map
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeObjSymmOpFunctorOp
CategoryTheory.Limits.hasZeroObject_op
truncGEMap_comp
truncLEMap_comp_assoc 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE
truncLEMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
truncLEMap_comp
truncLEMap_id 📖mathematicalHasHomologytruncLEMap
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE
CategoryTheory.Functor.congr_map
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
truncGEMap_id
ιTruncLE_naturality 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE
truncLEMap
ιTruncLE
CategoryTheory.Functor.congr_map
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeObjSymmOpFunctorOp
CategoryTheory.Limits.hasZeroObject_op
πTruncGE_naturality
ιTruncLE_naturality_assoc 📖mathematicalHasHomologyCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
truncLE
truncLEMap
ιTruncLE
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ιTruncLE_naturality

---

← Back to Index