📁 Source: Mathlib/Algebra/Homology/Embedding/TruncLEHomology.lean
shortComplexTruncLE
acyclic_truncLE_iff_isSupportedOutside
epi_homologyMap_shortComplexTruncLE_g
instEpiGShortComplexTruncLE
instHasHomologyTruncLE
instMonoFShortComplexTruncLE
instQuasiIsoAtιTruncLEF
isIso_homologyMap_shortComplexTruncLE_g
mono_homologyMap_shortComplexTruncLE_g
quasiIsoAt_shortComplexTruncLE_g
quasiIsoAt_ιTruncLE
quasiIso_truncLEMap_iff
quasiIso_ιTruncLE_iff_isSupported
shortComplexTruncLE_X₁
shortComplexTruncLE_X₂
shortComplexTruncLE_X₃_isSupportedOutside
shortComplexTruncLE_f
shortComplexTruncLE_shortExact
shortComplexTruncLE_shortExact_δ_eq_zero
quasiIsoAt_truncLE'ToRestriction
truncLE'_hasHomology
g_shortComplexTruncLEX₃ToTruncGE
instQuasiIsoShortComplexTruncLEX₃ToTruncGE
g_shortComplexTruncLEX₃ToTruncGE_assoc
HasHomology
Acyclic
truncLE
IsSupportedOutside
acyclic_op_iff
isSupportedOutside_op_iff
acyclic_truncGE_iff_isSupportedOutside
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
CategoryTheory.Epi
homology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₂
HomologicalComplex
instCategory
instHasZeroMorphisms
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.ShortComplex.X₃
homologyMap
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Exact.epi_f
CategoryTheory.ShortComplex.ShortExact.comp_δ
CategoryTheory.ShortComplex.ShortExact.homology_exact₃
CategoryTheory.Abelian.hasZeroObject
epi_homologyMap_of_epi_of_not_rel
instEpiFOfHasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
CategoryTheory.Limits.coequalizer.π_epi
instHasHomologyUnopOfOpposite
truncGE.instHasHomology
CategoryTheory.Mono
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
instMonoιTruncLE
QuasiIsoAt
ιTruncLE
ComplexShape.Embedding.f
CategoryTheory.IsIso
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.ShortComplex.Exact.mono_g
CategoryTheory.ShortComplex.ShortExact.homology_exact₂
CategoryTheory.Limits.IsZero.eq_of_src
ExactAt.isZero_homology
exactAt_of_isSupported
instIsSupportedOfIsStrictlySupported
instIsStrictlySupportedTruncLE
quasiIsoAt_iff_isIso_homologyMap
quasiIsoAt_πTruncGE
instHasHomologyObjOppositeSymmUnopFunctorOp
instQuasiIsoAtMapOppositeSymmUnopFunctorOp
QuasiIso
truncLEMap
instHasHomologyOppositeObjSymmOpFunctorOp
quasiIso_opFunctor_map_iff
quasiIsoAt_opFunctor_map_iff
quasiIso_truncGEMap_iff
IsSupported
isSupported_op_iff
quasiIso_πTruncGE_iff_isSupported
exactAt_iff_isZero_homology
CategoryTheory.ShortComplex.Exact.isZero_X₂
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
instIsIsoHomologyMapOfQuasiIsoAt
CategoryTheory.Limits.comp_zero
homologyMap_comp
CategoryTheory.Limits.cokernel.condition
homologyMap_zero
CategoryTheory.Limits.IsZero.iff_id_eq_zero
CategoryTheory.Category.comp_id
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.ShortExact
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
ComplexShape.Rel
CategoryTheory.ShortComplex.ShortExact.δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Limits.zero_comp
CategoryTheory.ShortComplex.ShortExact.δ_comp
CategoryTheory.Limits.IsZero.eq_of_tgt
HomologicalComplex.HasHomology
ComplexShape.Embedding.BoundaryLE
HomologicalComplex.truncLE'
HomologicalComplex.restriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
HomologicalComplex.truncLE'ToRestriction
ComplexShape.Embedding.instIsRelIffOp
HomologicalComplex.instHasHomologyOppositeOp
HomologicalComplex.truncGE'.truncGE'_hasHomology
HomologicalComplex.instHasHomologyObjOppositeSymmUnopFunctorOp
HomologicalComplex.quasiIsoAt_unopFunctor_map_iff
HomologicalComplex.truncGE'.quasiIsoAt_restrictionToTruncGE'
HomologicalComplex.instHasHomologyUnopOfOpposite
---
← Back to Index