Documentation Verification Report

TruncLEHomology

📁 Source: Mathlib/Algebra/Homology/Embedding/TruncLEHomology.lean

Statistics

MetricCount
DefinitionsshortComplexTruncLE
1
Theoremsacyclic_truncLE_iff_isSupportedOutside, epi_homologyMap_shortComplexTruncLE_g, instEpiGShortComplexTruncLE, instHasHomologyTruncLE, instMonoFShortComplexTruncLE, instQuasiIsoAtιTruncLEF, isIso_homologyMap_shortComplexTruncLE_g, mono_homologyMap_shortComplexTruncLE_g, quasiIsoAt_shortComplexTruncLE_g, quasiIsoAt_ιTruncLE, quasiIso_truncLEMap_iff, quasiIso_ιTruncLE_iff_isSupported, shortComplexTruncLE_X₁, shortComplexTruncLE_X₂, shortComplexTruncLE_X₃_isSupportedOutside, shortComplexTruncLE_f, shortComplexTruncLE_shortExact, shortComplexTruncLE_shortExact_δ_eq_zero, quasiIsoAt_truncLE'ToRestriction, truncLE'_hasHomology
20
Total21

HomologicalComplex

Definitions

NameCategoryTheorems
shortComplexTruncLE 📖CompOp
15 mathmath: instEpiGShortComplexTruncLE, instMonoFShortComplexTruncLE, isIso_homologyMap_shortComplexTruncLE_g, g_shortComplexTruncLEX₃ToTruncGE, mono_homologyMap_shortComplexTruncLE_g, quasiIsoAt_shortComplexTruncLE_g, shortComplexTruncLE_f, shortComplexTruncLE_shortExact, shortComplexTruncLE_X₂, epi_homologyMap_shortComplexTruncLE_g, shortComplexTruncLE_X₁, instQuasiIsoShortComplexTruncLEX₃ToTruncGE, shortComplexTruncLE_shortExact_δ_eq_zero, g_shortComplexTruncLEX₃ToTruncGE_assoc, shortComplexTruncLE_X₃_isSupportedOutside

Theorems

NameKindAssumesProvesValidatesDepends On
acyclic_truncLE_iff_isSupportedOutside 📖mathematicalHasHomologyAcyclic
truncLE
IsSupportedOutside
acyclic_op_iff
isSupportedOutside_op_iff
acyclic_truncGE_iff_isSupportedOutside
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
epi_homologyMap_shortComplexTruncLE_g 📖mathematicalCategoryTheory.Epi
homology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₂
HomologicalComplex
instCategory
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.ShortComplex.X₃
homologyMap
CategoryTheory.ShortComplex.g
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.Exact.epi_f
shortComplexTruncLE_shortExact
CategoryTheory.ShortComplex.ShortExact.comp_δ
CategoryTheory.ShortComplex.ShortExact.homology_exact₃
CategoryTheory.Abelian.hasZeroObject
shortComplexTruncLE_shortExact_δ_eq_zero
epi_homologyMap_of_epi_of_not_rel
instEpiFOfHasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
instEpiGShortComplexTruncLE
instEpiGShortComplexTruncLE 📖mathematicalCategoryTheory.Epi
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
CategoryTheory.ShortComplex.X₂
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.coequalizer.π_epi
instHasHomologyTruncLE 📖mathematicalHasHomologytruncLEComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
instHasHomologyUnopOfOpposite
truncGE.instHasHomology
instMonoFShortComplexTruncLE 📖mathematicalCategoryTheory.Mono
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
CategoryTheory.ShortComplex.X₁
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.Abelian.hasZeroObject
instMonoιTruncLE
instQuasiIsoAtιTruncLEF 📖mathematicalHasHomologyQuasiIsoAt
truncLE
ιTruncLE
ComplexShape.Embedding.f
instHasHomologyTruncLE
quasiIsoAt_ιTruncLE
isIso_homologyMap_shortComplexTruncLE_g 📖mathematicalCategoryTheory.IsIso
homology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₂
HomologicalComplex
instCategory
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.ShortComplex.X₃
homologyMap
CategoryTheory.ShortComplex.g
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
mono_homologyMap_shortComplexTruncLE_g
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
epi_homologyMap_shortComplexTruncLE_g
mono_homologyMap_shortComplexTruncLE_g 📖mathematicalCategoryTheory.Mono
homology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₂
HomologicalComplex
instCategory
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.ShortComplex.X₃
homologyMap
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Exact.mono_g
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.ShortExact.homology_exact₂
shortComplexTruncLE_shortExact
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.Abelian.hasZeroObject
instHasHomologyTruncLE
ExactAt.isZero_homology
exactAt_of_isSupported
instIsSupportedOfIsStrictlySupported
instIsStrictlySupportedTruncLE
quasiIsoAt_shortComplexTruncLE_g 📖mathematicalQuasiIsoAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₂
HomologicalComplex
instCategory
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
quasiIsoAt_iff_isIso_homologyMap
isIso_homologyMap_shortComplexTruncLE_g
quasiIsoAt_ιTruncLE 📖mathematicalHasHomology
ComplexShape.Embedding.f
QuasiIsoAt
truncLE
ιTruncLE
instHasHomologyTruncLE
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
truncGE.instHasHomology
quasiIsoAt_πTruncGE
instHasHomologyObjOppositeSymmUnopFunctorOp
instQuasiIsoAtMapOppositeSymmUnopFunctorOp
quasiIso_truncLEMap_iff 📖mathematicalHasHomologyQuasiIso
truncLE
truncLEMap
instHasHomologyTruncLE
QuasiIsoAt
instHasHomologyTruncLE
instHasHomologyOppositeObjSymmOpFunctorOp
quasiIso_opFunctor_map_iff
quasiIsoAt_opFunctor_map_iff
quasiIso_truncGEMap_iff
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
CategoryTheory.Limits.hasZeroObject_op
quasiIso_ιTruncLE_iff_isSupported 📖mathematicalHasHomologyQuasiIso
truncLE
ιTruncLE
instHasHomologyTruncLE
IsSupported
instHasHomologyTruncLE
instHasHomologyOppositeObjSymmOpFunctorOp
quasiIso_opFunctor_map_iff
isSupported_op_iff
quasiIso_πTruncGE_iff_isSupported
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
instHasHomologyOppositeOp
CategoryTheory.Limits.hasZeroObject_op
shortComplexTruncLE_X₁ 📖mathematicalCategoryTheory.ShortComplex.X₁
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
instHasZeroMorphisms
shortComplexTruncLE
truncLE
CategoryTheory.Abelian.hasZeroObject
shortComplexTruncLE_X₂ 📖mathematicalCategoryTheory.ShortComplex.X₂
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
instHasZeroMorphisms
shortComplexTruncLE
shortComplexTruncLE_X₃_isSupportedOutside 📖mathematicalIsSupportedOutside
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₃
HomologicalComplex
instCategory
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
exactAt_iff_isZero_homology
CategoryTheory.ShortComplex.Exact.isZero_X₂
shortComplexTruncLE_shortExact
CategoryTheory.ShortComplex.ShortExact.comp_δ
CategoryTheory.ShortComplex.ShortExact.homology_exact₃
CategoryTheory.Abelian.hasZeroObject
instHasHomologyTruncLE
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
instIsIsoHomologyMapOfQuasiIsoAt
instQuasiIsoAtιTruncLEF
CategoryTheory.Limits.comp_zero
homologyMap_comp
CategoryTheory.Limits.cokernel.condition
homologyMap_zero
shortComplexTruncLE_shortExact_δ_eq_zero
CategoryTheory.Limits.IsZero.iff_id_eq_zero
epi_homologyMap_shortComplexTruncLE_g
CategoryTheory.Category.comp_id
CategoryTheory.ShortComplex.zero
shortComplexTruncLE_f 📖mathematicalCategoryTheory.ShortComplex.f
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
instHasZeroMorphisms
shortComplexTruncLE
ιTruncLE
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Abelian.hasZeroObject
shortComplexTruncLE_shortExact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
instHasZeroMorphisms
shortComplexTruncLE
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
instMonoFShortComplexTruncLE
instEpiGShortComplexTruncLE
shortComplexTruncLE_shortExact_δ_eq_zero 📖mathematicalComplexShape.RelCategoryTheory.ShortComplex.ShortExact.δ
shortComplexTruncLE
shortComplexTruncLE_shortExact
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₃
HomologicalComplex
instCategory
instHasZeroMorphisms
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
sc
CategoryTheory.ShortComplex.X₁
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
shortComplexTruncLE_shortExact
CategoryTheory.Abelian.hasZeroObject
instHasHomologyTruncLE
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
instIsIsoHomologyMapOfQuasiIsoAt
instQuasiIsoAtιTruncLEF
CategoryTheory.Limits.zero_comp
CategoryTheory.ShortComplex.ShortExact.δ_comp
CategoryTheory.Limits.IsZero.eq_of_tgt
ExactAt.isZero_homology
exactAt_of_isSupported
instIsSupportedOfIsStrictlySupported
instIsStrictlySupportedTruncLE

HomologicalComplex.truncLE'

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIsoAt_truncLE'ToRestriction 📖mathematicalHomologicalComplex.HasHomology
ComplexShape.Embedding.BoundaryLE
QuasiIsoAt
HomologicalComplex.truncLE'
HomologicalComplex.restriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
HomologicalComplex.truncLE'ToRestriction
ComplexShape.Embedding.IsTruncLE.toIsRelIff
ComplexShape.Embedding.instIsRelIffOp
HomologicalComplex.instHasHomologyOppositeOp
ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
HomologicalComplex.truncGE'.truncGE'_hasHomology
HomologicalComplex.instHasHomologyObjOppositeSymmUnopFunctorOp
HomologicalComplex.quasiIsoAt_unopFunctor_map_iff
HomologicalComplex.truncGE'.quasiIsoAt_restrictionToTruncGE'
truncLE'_hasHomology 📖mathematicalHomologicalComplex.HasHomologyHomologicalComplex.truncLE'ComplexShape.Embedding.instIsTruncGEOpOfIsTruncLE
HomologicalComplex.instHasHomologyOppositeOp
HomologicalComplex.instHasHomologyUnopOfOpposite
HomologicalComplex.truncGE'.truncGE'_hasHomology

---

← Back to Index