Documentation Verification Report

ExactSequence

📁 Source: Mathlib/Algebra/Homology/ExactSequence.lean

Statistics

MetricCount
Definitionssc, sc', IsComplex, sc, sc', sc'Map, sc'MapIso, scMap, scMapIso, mapToComposableArrows, toComposableArrows
11
Theoremsexact, exact', isIso_map', toIsComplex, δlast, δ₀, zero, zero', zero'_assoc, zero_assoc, exact_iff_of_iso, exact_iff_δlast, exact_iff_δ₀, exact_of_iso, exact_of_δlast, exact_of_δ₀, exact₀, exact₁, exact₂_iff, exact₂_mk, isComplex_iff_of_iso, isComplex_of_iso, isComplex₀, isComplex₁, isComplex₂_iff, isComplex₂_mk, sc'MapIso_hom, sc'MapIso_inv, sc'Map_τ₁, sc'Map_τ₂, sc'Map_τ₃, scMapIso_hom, scMapIso_inv, scMap_τ₁, scMap_τ₂, scMap_τ₃, exact_toComposableArrows, exact_iff_exact_toComposableArrows, isComplex_toComposableArrows, mapToComposableArrows_app_0, mapToComposableArrows_app_1, mapToComposableArrows_app_2, mapToComposableArrows_comp, mapToComposableArrows_id, toComposableArrows_map, toComposableArrows_obj
46
Total57

CategoryTheory.ComposableArrows

Definitions

NameCategoryTheorems
IsComplex 📖CompData
7 mathmath: CategoryTheory.ShortComplex.isComplex_toComposableArrows, Exact.toIsComplex, isComplex₁, isComplex₂_mk, isComplex₂_iff, isComplex₀, isComplex_iff_of_iso
sc 📖CompOp
8 mathmath: scMap_τ₁, IsComplex.opcyclesToCycles_fac_assoc, IsComplex.opcyclesToCycles_fac, scMapIso_inv, scMapIso_hom, scMap_τ₃, scMap_τ₂, Exact.exact
sc' 📖CompOp
7 mathmath: sc'MapIso_inv, sc'MapIso_hom, sc'Map_τ₁, sc'Map_τ₃, exact₂_iff, Exact.exact', sc'Map_τ₂
sc'Map 📖CompOp
5 mathmath: sc'MapIso_inv, sc'MapIso_hom, sc'Map_τ₁, sc'Map_τ₃, sc'Map_τ₂
sc'MapIso 📖CompOp
2 mathmath: sc'MapIso_inv, sc'MapIso_hom
scMap 📖CompOp
5 mathmath: scMap_τ₁, scMapIso_inv, scMapIso_hom, scMap_τ₃, scMap_τ₂
scMapIso 📖CompOp
2 mathmath: scMapIso_inv, scMapIso_hom

Theorems

NameKindAssumesProvesValidatesDepends On
exact_iff_of_iso 📖mathematicalExactexact_of_iso
exact_iff_δlast 📖mathematicalExact
δlast
mk₂
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
IsComplex.zero
Exact.toIsComplex
Exact.exact
isComplex₂_iff
exact₂_iff
LE.le.lt_or_eq
exact_iff_δ₀ 📖mathematicalExact
mk₂
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
δ₀
isComplex₂_iff
IsComplex.zero
Exact.toIsComplex
exact₂_iff
Exact.exact
exact_of_iso 📖ExactisComplex_of_iso
Exact.toIsComplex
CategoryTheory.ShortComplex.exact_of_iso
Exact.exact
exact_of_δlast 📖Exact
δlast
mk₂
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
exact_iff_δlast
exact_of_δ₀ 📖Exact
mk₂
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
δ₀
exact_iff_δ₀
exact₀ 📖mathematicalExactisComplex₀
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
exact₁ 📖mathematicalExactisComplex₁
exact₂_iff 📖mathematicalIsComplexExact
CategoryTheory.ShortComplex.Exact
sc'
Exact.exact
exact₂_mk 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.Exact
Exactexact₂_iff
isComplex_iff_of_iso 📖mathematicalIsComplexisComplex_of_iso
isComplex_of_iso 📖IsComplexCategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.Limits.comp_zero
CategoryTheory.NatTrans.naturality_assoc
CategoryTheory.NatTrans.naturality
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
IsComplex.zero
CategoryTheory.Limits.zero_comp
isComplex₀ 📖mathematicalIsComplexNat.instCharZero
Nat.instAtLeastTwoHAddOfNat
isComplex₁ 📖mathematicalIsComplex
isComplex₂_iff 📖mathematicalIsComplex
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
IsComplex.zero
isComplex₂_mk 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
IsComplexisComplex₂_iff
sc'MapIso_hom 📖mathematicalIsComplexCategoryTheory.Iso.hom
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc'
sc'MapIso
sc'Map
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
sc'MapIso_inv 📖mathematicalIsComplexCategoryTheory.Iso.inv
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc'
sc'MapIso
sc'Map
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
sc'Map_τ₁ 📖mathematicalIsComplexCategoryTheory.ShortComplex.Hom.τ₁
sc'
sc'Map
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
sc'Map_τ₂ 📖mathematicalIsComplexCategoryTheory.ShortComplex.Hom.τ₂
sc'
sc'Map
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
sc'Map_τ₃ 📖mathematicalIsComplexCategoryTheory.ShortComplex.Hom.τ₃
sc'
sc'Map
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
scMapIso_hom 📖mathematicalIsComplexCategoryTheory.Iso.hom
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc
scMapIso
scMap
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
scMapIso_inv 📖mathematicalIsComplexCategoryTheory.Iso.inv
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
sc
scMapIso
scMap
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
scMap_τ₁ 📖mathematicalIsComplexCategoryTheory.ShortComplex.Hom.τ₁
sc
scMap
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
scMap_τ₂ 📖mathematicalIsComplexCategoryTheory.ShortComplex.Hom.τ₂
sc
scMap
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
scMap_τ₃ 📖mathematicalIsComplexCategoryTheory.ShortComplex.Hom.τ₃
sc
scMap
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder

CategoryTheory.ComposableArrows.Exact

Definitions

NameCategoryTheorems
sc 📖CompOp
2 mathmath: opcyclesIsoCycles_hom_fac_assoc, opcyclesIsoCycles_hom_fac
sc' 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
exact 📖mathematicalCategoryTheory.ComposableArrows.ExactCategoryTheory.ShortComplex.Exact
CategoryTheory.ComposableArrows.sc
toIsComplex
exact' 📖mathematicalCategoryTheory.ComposableArrows.ExactCategoryTheory.ShortComplex.Exact
CategoryTheory.ComposableArrows.sc'
toIsComplex
toIsComplex
exact
isIso_map' 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIsotoIsComplex
CategoryTheory.ShortComplex.Exact.mono_g
exact
CategoryTheory.ShortComplex.Exact.epi_f
CategoryTheory.isIso_of_mono_of_epi
toIsComplex 📖mathematicalCategoryTheory.ComposableArrows.ExactCategoryTheory.ComposableArrows.IsComplex
δlast 📖mathematicalCategoryTheory.ComposableArrows.ExactCategoryTheory.ComposableArrows.δlastCategoryTheory.ComposableArrows.exact_iff_δlast
δ₀ 📖mathematicalCategoryTheory.ComposableArrows.ExactCategoryTheory.ComposableArrows.δ₀CategoryTheory.ComposableArrows.exact_iff_δ₀

CategoryTheory.ComposableArrows.IsComplex

Theorems

NameKindAssumesProvesValidatesDepends On
zero 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
zero' 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
zero
zero'_assoc 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
zero'
zero_assoc 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
zero

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
mapToComposableArrows 📖CompOp
5 mathmath: mapToComposableArrows_app_0, mapToComposableArrows_app_1, mapToComposableArrows_comp, mapToComposableArrows_app_2, mapToComposableArrows_id
toComposableArrows 📖CompOp
10 mathmath: mapToComposableArrows_app_0, isComplex_toComposableArrows, mapToComposableArrows_app_1, exact_iff_exact_toComposableArrows, mapToComposableArrows_comp, mapToComposableArrows_app_2, toComposableArrows_map, Exact.exact_toComposableArrows, toComposableArrows_obj, mapToComposableArrows_id

Theorems

NameKindAssumesProvesValidatesDepends On
exact_iff_exact_toComposableArrows 📖mathematicalExact
CategoryTheory.ComposableArrows.Exact
toComposableArrows
isComplex_toComposableArrows
CategoryTheory.ComposableArrows.exact₂_iff
isComplex_toComposableArrows 📖mathematicalCategoryTheory.ComposableArrows.IsComplex
toComposableArrows
zero
mapToComposableArrows_app_0 📖mathematicalCategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
toComposableArrows
mapToComposableArrows
Hom.τ₁
mapToComposableArrows_app_1 📖mathematicalCategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
toComposableArrows
mapToComposableArrows
Hom.τ₂
mapToComposableArrows_app_2 📖mathematicalCategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
toComposableArrows
mapToComposableArrows
Hom.τ₃
mapToComposableArrows_comp 📖mathematicalmapToComposableArrows
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
toComposableArrows
CategoryTheory.ComposableArrows.hom_ext₂
mapToComposableArrows_id 📖mathematicalmapToComposableArrows
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
toComposableArrows
CategoryTheory.ComposableArrows.hom_ext₂
toComposableArrows_map 📖mathematicalCategoryTheory.Functor.map
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
toComposableArrows
CategoryTheory.ComposableArrows.Precomp.map
CategoryTheory.ComposableArrows.mk₁
X₂
X₃
g
X₁
f
toComposableArrows_obj 📖mathematicalCategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
toComposableArrows
CategoryTheory.ComposableArrows.Precomp.obj
CategoryTheory.ComposableArrows.mk₁
X₂
X₃
g
X₁

CategoryTheory.ShortComplex.Exact

Theorems

NameKindAssumesProvesValidatesDepends On
exact_toComposableArrows 📖mathematicalCategoryTheory.ShortComplex.ExactCategoryTheory.ComposableArrows.Exact
CategoryTheory.ShortComplex.toComposableArrows
CategoryTheory.ShortComplex.zero

---

← Back to Index