| Name | Category | Theorems |
IsComplex 📖 | CompData | 7 mathmath: CategoryTheory.ShortComplex.isComplex_toComposableArrows, Exact.toIsComplex, isComplex₁, isComplex₂_mk, isComplex₂_iff, isComplex₀, isComplex_iff_of_iso
|
sc 📖 | CompOp | 8 mathmath: scMap_τ₁, IsComplex.opcyclesToCycles_fac_assoc, IsComplex.opcyclesToCycles_fac, scMapIso_inv, scMapIso_hom, scMap_τ₃, scMap_τ₂, Exact.exact
|
sc' 📖 | CompOp | 7 mathmath: sc'MapIso_inv, sc'MapIso_hom, sc'Map_τ₁, sc'Map_τ₃, exact₂_iff, Exact.exact', sc'Map_τ₂
|
sc'Map 📖 | CompOp | 5 mathmath: sc'MapIso_inv, sc'MapIso_hom, sc'Map_τ₁, sc'Map_τ₃, sc'Map_τ₂
|
sc'MapIso 📖 | CompOp | 2 mathmath: sc'MapIso_inv, sc'MapIso_hom
|
scMap 📖 | CompOp | 5 mathmath: scMap_τ₁, scMapIso_inv, scMapIso_hom, scMap_τ₃, scMap_τ₂
|
scMapIso 📖 | CompOp | 2 mathmath: scMapIso_inv, scMapIso_hom
|