Documentation Verification Report

ExactSequenceFour

📁 Source: Mathlib/Algebra/Homology/ExactSequenceFour.lean

Statistics

MetricCount
DefinitionscokerIsoKer, cokerIsoKer', cokerToKer', opcyclesIsoCycles, cokerToKer, cokerToKer', opcyclesToCycles
7
TheoremscokerIsoKer'_hom, cokerIsoKer'_hom_inv_id, cokerIsoKer'_hom_inv_id_assoc, cokerIsoKer'_inv_hom_id, cokerIsoKer'_inv_hom_id_assoc, cokerIsoKer_hom_fac, cokerIsoKer_hom_fac_assoc, isIso_cokerToKer', opcyclesIsoCycles_hom_fac, opcyclesIsoCycles_hom_fac_assoc, cokerToKer'_fac, cokerToKer'_fac_assoc, cokerToKer_fac, cokerToKer_fac_assoc, epi_cokerToKer', mono_cokerToKer', opcyclesToCycles_fac, opcyclesToCycles_fac_assoc
18
Total25

CategoryTheory.ComposableArrows.Exact

Definitions

NameCategoryTheorems
cokerIsoKer 📖CompOp
2 mathmath: cokerIsoKer_hom_fac_assoc, cokerIsoKer_hom_fac
cokerIsoKer' 📖CompOp
5 mathmath: cokerIsoKer'_hom_inv_id_assoc, cokerIsoKer'_hom, cokerIsoKer'_inv_hom_id, cokerIsoKer'_hom_inv_id, cokerIsoKer'_inv_hom_id_assoc
cokerToKer' 📖CompOp
6 mathmath: cokerIsoKer'_hom_inv_id_assoc, cokerIsoKer'_hom, cokerIsoKer'_inv_hom_id, cokerIsoKer'_hom_inv_id, cokerIsoKer'_inv_hom_id_assoc, isIso_cokerToKer'
opcyclesIsoCycles 📖CompOp
2 mathmath: opcyclesIsoCycles_hom_fac_assoc, opcyclesIsoCycles_hom_fac

Theorems

NameKindAssumesProvesValidatesDepends On
cokerIsoKer'_hom 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Iso.hom
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cone.pt
cokerIsoKer'
cokerToKer'
cokerIsoKer'_hom_inv_id 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cone.pt
cokerToKer'
CategoryTheory.Iso.inv
cokerIsoKer'
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
cokerIsoKer'_hom_inv_id_assoc 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cone.pt
cokerToKer'
CategoryTheory.Iso.inv
cokerIsoKer'
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
cokerIsoKer'_hom_inv_id
cokerIsoKer'_inv_hom_id 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
cokerIsoKer'
cokerToKer'
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
cokerIsoKer'_inv_hom_id_assoc 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Iso.inv
cokerIsoKer'
cokerToKer'
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
cokerIsoKer'_inv_hom_id
cokerIsoKer_hom_fac 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Limits.cokernel
CategoryTheory.ComposableArrows.map'
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.kernel
CategoryTheory.Iso.hom
cokerIsoKer
CategoryTheory.Limits.kernel.ι
CategoryTheory.ComposableArrows.IsComplex.cokerToKer_fac
toIsComplex
cokerIsoKer_hom_fac_assoc 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Limits.cokernel
CategoryTheory.ComposableArrows.map'
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.kernel
CategoryTheory.Iso.hom
cokerIsoKer
CategoryTheory.Limits.kernel.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cokerIsoKer_hom_fac
isIso_cokerToKer' 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.IsIso
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cone.pt
cokerToKer'
CategoryTheory.ComposableArrows.IsComplex.mono_cokerToKer'
toIsComplex
exact
CategoryTheory.ComposableArrows.IsComplex.epi_cokerToKer'
CategoryTheory.isIso_of_mono_of_epi
opcyclesIsoCycles_hom_fac 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
sc
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.cycles
CategoryTheory.Iso.hom
opcyclesIsoCycles
CategoryTheory.ShortComplex.iCycles
CategoryTheory.ComposableArrows.map'
CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac
toIsComplex
opcyclesIsoCycles_hom_fac_assoc 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ShortComplex.opcycles
sc
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.cycles
CategoryTheory.Iso.hom
opcyclesIsoCycles
CategoryTheory.ShortComplex.iCycles
CategoryTheory.ComposableArrows.map'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesIsoCycles_hom_fac

CategoryTheory.ComposableArrows.IsComplex

Definitions

NameCategoryTheorems
cokerToKer 📖CompOp
2 mathmath: cokerToKer_fac, cokerToKer_fac_assoc
cokerToKer' 📖CompOp
4 mathmath: mono_cokerToKer', epi_cokerToKer', cokerToKer'_fac_assoc, cokerToKer'_fac
opcyclesToCycles 📖CompOp
2 mathmath: opcyclesToCycles_fac_assoc, opcyclesToCycles_fac

Theorems

NameKindAssumesProvesValidatesDepends On
cokerToKer'_fac 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Cofork.π
CategoryTheory.Limits.Cone.pt
cokerToKer'
CategoryTheory.Limits.Fork.ι
CategoryTheory.Limits.Cofork.IsColimit.π_desc_assoc
CategoryTheory.Limits.Fork.IsLimit.lift_ι
cokerToKer'_fac_assoc 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cofork.π
CategoryTheory.Limits.Cone.pt
cokerToKer'
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cokerToKer'_fac
cokerToKer_fac 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Limits.cokernel
CategoryTheory.ComposableArrows.map'
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.kernel
cokerToKer
CategoryTheory.Limits.kernel.ι
cokerToKer'_fac
CategoryTheory.Limits.cokernel.condition
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.kernel.condition
CategoryTheory.Limits.comp_zero
cokerToKer_fac_assoc 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.Limits.cokernel
CategoryTheory.ComposableArrows.map'
CategoryTheory.Limits.cokernel.π
CategoryTheory.Limits.kernel
cokerToKer
CategoryTheory.Limits.kernel.ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cokerToKer_fac
epi_cokerToKer' 📖mathematicalCategoryTheory.ComposableArrows.IsComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.ShortComplex.Exact
CategoryTheory.ComposableArrows.sc
CategoryTheory.Epi
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cone.pt
cokerToKer'
CategoryTheory.ShortComplex.Exact.hasZeroObject
CategoryTheory.ShortComplex.Exact.hasHomology
CategoryTheory.Limits.Cofork.IsColimit.hom_ext
CategoryTheory.ShortComplex.LeftHomologyData.exact_iff_epi_f'
CategoryTheory.cancel_mono
CategoryTheory.ShortComplex.LeftHomologyData.instMonoI
CategoryTheory.ShortComplex.LeftHomologyData.f'_i
CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_i
CategoryTheory.Category.assoc
cokerToKer'_fac
CategoryTheory.epi_of_epi_fac
mono_cokerToKer' 📖mathematicalCategoryTheory.ComposableArrows.IsComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.ShortComplex.Exact
CategoryTheory.ComposableArrows.sc
CategoryTheory.Mono
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.map'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.Cone.pt
cokerToKer'
CategoryTheory.ShortComplex.Exact.hasZeroObject
CategoryTheory.ShortComplex.Exact.hasHomology
CategoryTheory.Limits.Fork.IsLimit.hom_ext
CategoryTheory.ShortComplex.RightHomologyData.exact_iff_mono_g'
CategoryTheory.cancel_epi
CategoryTheory.ShortComplex.RightHomologyData.instEpiP
CategoryTheory.ShortComplex.RightHomologyData.p_g'
CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_p
cokerToKer'_fac
CategoryTheory.mono_of_mono_fac
opcyclesToCycles_fac 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ComposableArrows.sc
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.cycles
opcyclesToCycles
CategoryTheory.ShortComplex.iCycles
CategoryTheory.ComposableArrows.map'
cokerToKer'_fac
CategoryTheory.ShortComplex.f_pOpcycles
CategoryTheory.ShortComplex.iCycles_g
opcyclesToCycles_fac_assoc 📖mathematicalCategoryTheory.ComposableArrows.IsComplexCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ComposableArrows.sc
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.cycles
opcyclesToCycles
CategoryTheory.ShortComplex.iCycles
CategoryTheory.ComposableArrows.map'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesToCycles_fac

---

← Back to Index