Documentation Verification Report

CM5b

📁 Source: Mathlib/Algebra/Homology/Factorizations/CM5b.lean

Statistics

MetricCount
DefinitionsI, homotopyEquiv, i, p
4
Theoremscm5b, I_X, I_d, degreewiseEpiWithInjectiveKernel_p, fac, fac_assoc, i_f_comp, i_f_comp_assoc, instInjectiveXIntI, instInjectiveXIntMappingConeIdI, instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, instIsStrictlyGEI, instMonoFIntI, instMonoIntI, instQuasiIsoIntP
15
Total19

CochainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
cm5b 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat
cm5b.instMonoIntI
cm5b.degreewiseEpiWithInjectiveKernel_p
cm5b.instQuasiIsoIntP
cm5b.fac

CochainComplex.cm5b

Definitions

NameCategoryTheorems
I 📖CompOp
14 mathmath: fac, instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, fac_assoc, instQuasiIsoIntP, instIsStrictlyGEI, instMonoFIntI, instInjectiveXIntI, instMonoIntI, i_f_comp, i_f_comp_assoc, I_d, degreewiseEpiWithInjectiveKernel_p, instInjectiveXIntMappingConeIdI, I_X
homotopyEquiv 📖CompOp
i 📖CompOp
6 mathmath: fac, fac_assoc, instMonoFIntI, instMonoIntI, i_f_comp, i_f_comp_assoc
p 📖CompOp
4 mathmath: fac, fac_assoc, instQuasiIsoIntP, degreewiseEpiWithInjectiveKernel_p

Theorems

NameKindAssumesProvesValidatesDepends On
I_X 📖mathematicalHomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
I
CategoryTheory.Injective.under
AddRightCancelSemigroup.toIsRightCancelAdd
I_d 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
I
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Injective.under
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
degreewiseEpiWithInjectiveKernel_p 📖mathematicalCochainComplex.degreewiseEpiWithInjectiveKernel
CategoryTheory.Limits.biprod
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
HomologicalComplex.instHasBinaryBiproduct
p
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Abelian.epiWithInjectiveKernel_iff
instInjectiveXIntMappingConeIdI
CategoryTheory.Limits.BinaryBicone.inl_snd
CategoryTheory.Limits.BinaryBicone.inl_fst
CategoryTheory.Limits.BinaryBicone.inr_snd
CategoryTheory.Limits.biprod.total
fac 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.biprod
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
HomologicalComplex.instHasBinaryBiproduct
i
p
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Limits.biprod.lift_snd
fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.biprod
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
HomologicalComplex.instHasBinaryBiproduct
i
p
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fac
i_f_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Limits.biprod
CochainComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.Hom.f
i
CategoryTheory.Limits.biprod.fst
CochainComplex.HomComplex.Cochain.v
CochainComplex.mappingCone.snd
add_zero
AddMonoid.toAddZeroClass
Int.instAddMonoid
CategoryTheory.Injective.ι
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
add_zero
HomologicalComplex.biprod_lift_fst_f_assoc
CochainComplex.mappingCone.lift_f_snd_v
CochainComplex.HomComplex.Cochain.ofHoms_v
i_f_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Limits.biprod
CochainComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.Hom.f
i
CategoryTheory.Limits.biprod.fst
CochainComplex.HomComplex.Cochain.v
CochainComplex.mappingCone.snd
add_zero
AddMonoid.toAddZeroClass
Int.instAddMonoid
CategoryTheory.Injective.ι
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
add_zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
i_f_comp
instInjectiveXIntI 📖mathematicalCategoryTheory.Injective
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
I
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Injective.injective_under
instInjectiveXIntMappingConeIdI 📖mathematicalCategoryTheory.Injective
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CochainComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Injective.of_iso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Injective.instBiprod
instInjectiveXIntI
instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat 📖mathematicalCochainComplex.IsStrictlyGE
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.biprod
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
HomologicalComplex.instHasBinaryBiproduct
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
CochainComplex.isStrictlyGE_iff
CategoryTheory.Limits.IsZero.of_iso
CategoryTheory.Functor.hasBinaryBiproduct_of_preserves
HomologicalComplex.instPreservesZeroMorphismsEval
HomologicalComplex.instPreservesBinaryBiproductEval
CochainComplex.isZero_of_isStrictlyGE
instIsStrictlyGEI
instIsStrictlyGEI 📖mathematicalCochainComplex.IsStrictlyGE
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
I
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.isStrictlyGE_iff
CategoryTheory.Injective.isZero_under
CochainComplex.isZero_of_isStrictlyGE
instMonoFIntI 📖mathematicalCategoryTheory.Mono
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Limits.biprod
CochainComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.Hom.f
i
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.mono_of_mono_fac
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
add_zero
CategoryTheory.Injective.ι_mono
i_f_comp
instMonoIntI 📖mathematicalCategoryTheory.Mono
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.biprod
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
HomologicalComplex.instHasBinaryBiproduct
i
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.mono_of_mono_f
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
instMonoFIntI
instQuasiIsoIntP 📖mathematicalQuasiIso
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Limits.biprod
CochainComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
I
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
HomologicalComplex.instHasBinaryBiproduct
p
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomotopyEquiv.quasiIso_hom
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian

---

← Back to Index