Documentation Verification Report

GrothendieckAbelian

📁 Source: Mathlib/Algebra/Homology/GrothendieckAbelian.lean

Statistics

MetricCount
Definitions0
Theoremsab5OfSize, hasExactColimitsOfShape, instHasFilteredColimitsOfSize, isGrothendieckAbelian, locallySmall
5
Total5

HomologicalComplex

Theorems

NameKindAssumesProvesValidatesDepends On
ab5OfSize 📖mathematicalCategoryTheory.AB5OfSize
HomologicalComplex
instCategory
instHasFilteredColimitsOfSize
instHasFilteredColimitsOfSize
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
hasExactColimitsOfShape
CategoryTheory.AB5OfSize.ofShape
hasExactColimitsOfShape 📖mathematicalCategoryTheory.HasExactColimitsOfShape
HomologicalComplex
instCategory
instHasColimitsOfShape
instHasColimitsOfShape
instPreservesColimitsOfShapeEvalOfHasColimitsOfShape
CategoryTheory.Limits.comp_preservesLimit
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.whiskeringRight_preservesLimitsOfShape
instHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_of_hasFiniteLimits
instPreservesLimitsOfShapeEvalOfHasLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.HasExactColimitsOfShape.preservesFiniteLimits
CategoryTheory.NatIso.naturality_2
instHasFilteredColimitsOfSize 📖mathematicalCategoryTheory.Limits.HasFilteredColimitsOfSize
HomologicalComplex
instCategory
instHasColimitsOfShape
CategoryTheory.Limits.hasColimitsOfShape_of_has_filtered_colimits
isGrothendieckAbelian 📖mathematicalCategoryTheory.IsGrothendieckAbelian
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
instAbelian
locallySmall
CategoryTheory.IsGrothendieckAbelian.locallySmall
instHasFilteredColimitsOfSize
CategoryTheory.IsGrothendieckAbelian.hasFilteredColimitsOfSize
ab5OfSize
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.IsGrothendieckAbelian.ab5OfSize
CategoryTheory.Limits.hasColimitsOfShape_of_equivalence
CategoryTheory.Limits.hasCoproductsOfShape_of_hasCoproducts
CategoryTheory.Limits.hasColimitsOfShapeOfHasColimitsOfSize
CategoryTheory.IsGrothendieckAbelian.hasColimits
instHasSeparator
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.IsGrothendieckAbelian.hasSeparator
locallySmall 📖mathematicalCategoryTheory.LocallySmall
HomologicalComplex
instCategory
CategoryTheory.instSmallHomOfLocallySmall
hom_ext
Equiv.surjective
EquivLike.toEmbeddingLike
small_of_injective
small_Pi
UnivLE.small
univLE_of_max
UnivLE.self

---

← Back to Index