Documentation Verification Report

HomologicalBicomplex

📁 Source: Mathlib/Algebra/Homology/HomologicalBicomplex.lean

Statistics

MetricCount
DefinitionsHomologicalComplex₂, XXIsoOfEq, flip, flipEquivalence, flipEquivalenceCounitIso, flipEquivalenceUnitIso, flipFunctor, homMk, ofGradedObject, toGradedObject, toGradedObjectFunctor, toGradedObjectMap
12
TheoremsXXIsoOfEq_rfl, comm_f, comm_f_assoc, d_comm, d_comm_assoc, d_f_comp_d_f, d_f_comp_d_f_assoc, flipEquivalenceCounitIso_hom_app_f_f, flipEquivalenceCounitIso_inv_app_f_f, flipEquivalenceUnitIso_hom_app_f_f, flipEquivalenceUnitIso_inv_app_f_f, flipEquivalence_counitIso, flipEquivalence_functor, flipEquivalence_inverse, flipEquivalence_unitIso, flipFunctor_map_f_f, flipFunctor_obj, flip_X_X, flip_X_d, flip_d_f, flip_flip, homMk_f_f, instFaithfulGradedObjectProdToGradedObjectFunctor, ofGradedObject_X_X, ofGradedObject_X_d, ofGradedObject_d_f, ofGradedObject_toGradedObject, shape_f, toGradedObjectFunctor_map, toGradedObjectFunctor_obj, toGradedObjectMap_apply
31
Total43

HomologicalComplex₂

Definitions

NameCategoryTheorems
XXIsoOfEq 📖CompOp
5 mathmath: XXIsoOfEq_hom_ΚTotal_assoc, XXIsoOfEq_rfl, XXIsoOfEq_inv_ΚTotal_assoc, XXIsoOfEq_inv_ΚTotal, XXIsoOfEq_hom_ΚTotal
flip 📖CompOp
22 mathmath: totalFlipIso_hom_f_D₁, ιTotal_totalFlipIso_f_inv_assoc, flip_flip, totalFlipIsoX_hom_D₂_assoc, flipFunctor_obj, flip_X_X, instHasTotalFlip, ιTotal_totalFlipIso_f_hom_assoc, totalFlipIso_hom_f_D₂, totalFlipIso_hom_f_D₁_assoc, totalFlipIsoX_hom_D₁, instHasTotalFlip_1, flip_totalFlipIso, ιTotal_totalFlipIso_f_hom, flip_X_d, totalFlipIsoX_hom_D₂, flip_d_f, flip_hasTotal_iff, flipFunctor_map_f_f, totalFlipIsoX_hom_D₁_assoc, totalFlipIso_hom_f_D₂_assoc, ιTotal_totalFlipIso_f_inv
flipEquivalence 📖CompOp
4 mathmath: flipEquivalence_unitIso, flipEquivalence_counitIso, flipEquivalence_functor, flipEquivalence_inverse
flipEquivalenceCounitIso 📖CompOp
3 mathmath: flipEquivalence_counitIso, flipEquivalenceCounitIso_inv_app_f_f, flipEquivalenceCounitIso_hom_app_f_f
flipEquivalenceUnitIso 📖CompOp
3 mathmath: flipEquivalence_unitIso, flipEquivalenceUnitIso_hom_app_f_f, flipEquivalenceUnitIso_inv_app_f_f
flipFunctor 📖CompOp
8 mathmath: flipEquivalenceUnitIso_hom_app_f_f, flipFunctor_obj, flipEquivalenceUnitIso_inv_app_f_f, flipEquivalence_functor, flipEquivalence_inverse, flipEquivalenceCounitIso_inv_app_f_f, flipEquivalenceCounitIso_hom_app_f_f, flipFunctor_map_f_f
homMk 📖CompOp
1 mathmath: homMk_f_f
ofGradedObject 📖CompOp
6 mathmath: CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, ofGradedObject_toGradedObject, ofGradedObject_X_d, ofGradedObject_X_X, ofGradedObject_d_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f
toGradedObject 📖CompOp
56 mathmath: totalAux.ιMapObj_D₁, totalFlipIso_hom_f_D₁, ofGradedObject_toGradedObject, totalAux.d₂_eq, D₂_totalShift₁XIso_hom_assoc, D₂_totalShift₂XIso_hom_assoc, d₁_eq_zero', D₁_D₁_assoc, total.mapAux.mapMap_D₁_assoc, D₁_D₁, D₂_D₁_assoc, toGradedObjectFunctor_obj, D₂_D₂, ι_D₁_assoc, d₂_eq_zero, ι_D₂, total.mapAux.d₁_mapMap, totalAux.ιMapObj_D₂_assoc, D₁_shape, totalFlipIsoX_hom_D₂_assoc, ι_D₂_assoc, totalAux.d₂_eq', totalAux.d₁_eq, D₁_totalShift₂XIso_hom_assoc, total.mapAux.d₂_mapMap_assoc, d₁_eq_zero, D₁_totalShift₁XIso_hom_assoc, total.mapAux.mapMap_D₁, d₂_eq_zero', total.mapAux.mapMap_D₂, totalAux.ιMapObj_D₂, D₂_shape, total.mapAux.mapMap_D₂_assoc, totalFlipIso_hom_f_D₂, D₁_totalShift₁XIso_hom, D₂_totalShift₁XIso_hom, totalFlipIso_hom_f_D₁_assoc, totalFlipIsoX_hom_D₁, D₂_D₂_assoc, D₂_D₁, D₁_D₂_assoc, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, total.mapAux.d₂_mapMap, ι_D₁, total_d, total.mapAux.d₁_mapMap_assoc, totalFlipIsoX_hom_D₂, D₁_totalShift₂XIso_hom, D₂_totalShift₂XIso_hom, totalAux.ιMapObj_D₁_assoc, totalAux.d₁_eq', D₁_D₂, totalFlipIsoX_hom_D₁_assoc, total.forget_map, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, totalFlipIso_hom_f_D₂_assoc
toGradedObjectFunctor 📖CompOp
3 mathmath: toGradedObjectFunctor_obj, toGradedObjectFunctor_map, instFaithfulGradedObjectProdToGradedObjectFunctor
toGradedObjectMap 📖CompOp
11 mathmath: total.mapAux.mapMap_D₁_assoc, total.mapAux.d₁_mapMap, total.mapAux.d₂_mapMap_assoc, total.mapAux.mapMap_D₁, total.mapAux.mapMap_D₂, total.mapAux.mapMap_D₂_assoc, total.mapAux.d₂_mapMap, toGradedObjectFunctor_map, total.mapAux.d₁_mapMap_assoc, toGradedObjectMap_apply, total.forget_map

Theorems

NameKindAssumesProvesValidatesDepends On
XXIsoOfEq_rfl 📖mathematical—XXIsoOfEq
CategoryTheory.Iso.refl
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
——
comm_f 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.Hom.f
HomologicalComplex.d
—HomologicalComplex.congr_hom
HomologicalComplex.Hom.comm
comm_f_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.Hom.f
HomologicalComplex.d
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm_f
d_comm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.Hom.f
HomologicalComplex.d
—HomologicalComplex.Hom.comm
d_comm_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.Hom.f
HomologicalComplex.d
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_comm
d_f_comp_d_f 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.Hom.f
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—HomologicalComplex.comp_f
HomologicalComplex.d_comp_d
HomologicalComplex.zero_f
d_f_comp_d_f_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.Hom.f
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_f_comp_d_f
flipEquivalenceCounitIso_hom_app_f_f 📖mathematical—HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.Functor.obj
HomologicalComplex₂
CategoryTheory.Functor.comp
flipFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
flipEquivalenceCounitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipEquivalenceCounitIso_inv_app_f_f 📖mathematical—HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.Functor.obj
HomologicalComplex₂
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
flipFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
flipEquivalenceCounitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipEquivalenceUnitIso_hom_app_f_f 📖mathematical—HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.Functor.obj
HomologicalComplex₂
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
flipFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
flipEquivalenceUnitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipEquivalenceUnitIso_inv_app_f_f 📖mathematical—HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.Functor.obj
HomologicalComplex₂
CategoryTheory.Functor.comp
flipFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
flipEquivalenceUnitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——
flipEquivalence_counitIso 📖mathematical—CategoryTheory.Equivalence.counitIso
HomologicalComplex₂
HomologicalComplex.instCategory
HomologicalComplex
HomologicalComplex.instHasZeroMorphisms
flipEquivalence
flipEquivalenceCounitIso
——
flipEquivalence_functor 📖mathematical—CategoryTheory.Equivalence.functor
HomologicalComplex₂
HomologicalComplex.instCategory
HomologicalComplex
HomologicalComplex.instHasZeroMorphisms
flipEquivalence
flipFunctor
——
flipEquivalence_inverse 📖mathematical—CategoryTheory.Equivalence.inverse
HomologicalComplex₂
HomologicalComplex.instCategory
HomologicalComplex
HomologicalComplex.instHasZeroMorphisms
flipEquivalence
flipFunctor
——
flipEquivalence_unitIso 📖mathematical—CategoryTheory.Equivalence.unitIso
HomologicalComplex₂
HomologicalComplex.instCategory
HomologicalComplex
HomologicalComplex.instHasZeroMorphisms
flipEquivalence
flipEquivalenceUnitIso
——
flipFunctor_map_f_f 📖mathematical—HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
flip
CategoryTheory.Functor.map
HomologicalComplex₂
flipFunctor
——
flipFunctor_obj 📖mathematical—CategoryTheory.Functor.obj
HomologicalComplex₂
HomologicalComplex.instCategory
HomologicalComplex
HomologicalComplex.instHasZeroMorphisms
flipFunctor
flip
——
flip_X_X 📖mathematical—HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
flip
——
flip_X_d 📖mathematical—HomologicalComplex.d
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
flip
HomologicalComplex.Hom.f
——
flip_d_f 📖mathematical—HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.d
shape_f
flip
—shape_f
flip_flip 📖mathematical—flip——
homMk_f_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
toGradedObject
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.Hom.f
HomologicalComplex.d
homMk——
instFaithfulGradedObjectProdToGradedObjectFunctor 📖mathematical—CategoryTheory.Functor.Faithful
HomologicalComplex₂
HomologicalComplex.instCategory
HomologicalComplex
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
toGradedObjectFunctor
—HomologicalComplex.hom_ext
ofGradedObject_X_X 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ofGradedObject
——
ofGradedObject_X_d 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ofGradedObject
——
ofGradedObject_d_f 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
HomologicalComplex.Hom.f
HomologicalComplex.d
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ofGradedObject
——
ofGradedObject_toGradedObject 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
toGradedObject
ofGradedObject
——
shape_f 📖mathematicalComplexShape.RelHomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
—HomologicalComplex.shape
HomologicalComplex.zero_f
toGradedObjectFunctor_map 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex₂
HomologicalComplex.instCategory
HomologicalComplex
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
toGradedObjectFunctor
toGradedObjectMap
——
toGradedObjectFunctor_obj 📖mathematical—CategoryTheory.Functor.obj
HomologicalComplex₂
HomologicalComplex.instCategory
HomologicalComplex
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
toGradedObjectFunctor
toGradedObject
——
toGradedObjectMap_apply 📖mathematical—toGradedObjectMap
HomologicalComplex.Hom.f
HomologicalComplex.X
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
——

(root)

Definitions

NameCategoryTheorems
HomologicalComplex₂ 📖CompOp
64 mathmath: CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, HomologicalComplex₂.totalShift₂Iso_hom_naturality_assoc, HomologicalComplex₂.shiftFunctor₂XXIso_refl, HomologicalComplex₂.total.mapIso_hom, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, HomologicalComplex₂.flipEquivalence_unitIso, HomologicalComplex₂.toGradedObjectFunctor_obj, HomologicalComplex₂.ι_totalShift₁Iso_hom_f_assoc, HomologicalComplex₂.ι_totalShift₁Iso_inv_f, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, HomologicalComplex₂.flipEquivalenceUnitIso_hom_app_f_f, HomologicalComplex₂.ι_totalShift₂Iso_inv_f_assoc, HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₂, HomologicalComplex₂.instHasTotalIntObjUpCompShiftFunctor₁ShiftFunctor₂, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_X, HomologicalComplex₂.totalFunctor_obj, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom, HomologicalComplex₂.flipFunctor_obj, HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, HomologicalComplex₂.shiftFunctor₁XXIso_refl, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, HomologicalComplex₂.instHasTotalIntObjUpCompShiftFunctor₂ShiftFunctor₁, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_hom_f_f, HomologicalComplex₂.flipEquivalenceUnitIso_inv_app_f_f, HomologicalComplex₂.ι_totalShift₁Iso_inv_f_assoc, HomologicalComplex₂.total.mapIso_inv, HomologicalComplex₂.flipEquivalence_counitIso, HomologicalComplex₂.ι_totalShift₂Iso_hom_f_assoc, HomologicalComplex₂.D₁_totalShift₁XIso_hom, HomologicalComplex₂.D₂_totalShift₁XIso_hom, HomologicalComplex₂.total.map_comp, HomologicalComplex₂.flipEquivalence_functor, HomologicalComplex₂.flipEquivalence_inverse, HomologicalComplex₂.totalShift₁Iso_trans_totalShift₂Iso, HomologicalComplex₂.total.map_comp_assoc, HomologicalComplex₂.ι_totalShift₂Iso_inv_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, HomologicalComplex₂.totalShift₂Iso_hom_naturality, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom_assoc, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_inv_f_f, HomologicalComplex₂.totalShift₁Iso_hom_naturality_assoc, HomologicalComplex₂.flipEquivalenceCounitIso_inv_app_f_f, HomologicalComplex₂.toGradedObjectFunctor_map, HomologicalComplex₂.ι_totalShift₂Iso_hom_f, HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₁, HomologicalComplex₂.totalShift₁Iso_hom_naturality, HomologicalComplex₂.D₁_totalShift₂XIso_hom, HomologicalComplex₂.D₂_totalShift₂XIso_hom, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, HomologicalComplex₂.flipEquivalenceCounitIso_hom_app_f_f, HomologicalComplex₂.flipFunctor_map_f_f, HomologicalComplex₂.total.map_id, HomologicalComplex₂.totalFunctor_map, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, HomologicalComplex₂.ι_totalShift₁Iso_hom_f, HomologicalComplex₂.instFaithfulGradedObjectProdToGradedObjectFunctor, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f

---

← Back to Index