| Name | Category | Theorems |
X đ | CompOp | 1141 mathmath: CategoryTheory.InjectiveResolution.injective, CategoryTheory.InjectiveResolution.Hom.hom'_f, pOpcycles_restrictionOpcyclesIso_hom_assoc, eqToHom_f, CochainComplex.mappingConeCompTriangleh_commâ_assoc, extendSingleIso_inv_f, restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, AlgebraicTopology.DoldKan.P_f_0_eq, singleMapHomologicalComplex_hom_app_ne, ChainComplex.truncate_map_f, AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f, CategoryTheory.NatIso.mapHomologicalComplex_inv_app_f, dFrom_comp_xNextIsoSelf, CochainComplex.HomComplex.Cochain.fromSingleMk_neg, ComplexShape.Embedding.isIso_liftExtend_f_iff, CochainComplex.mappingCone.inl_v_descCochain_v_assoc, rightUnitor'_inv, CategoryTheory.Functor.mapHomologicalComplexIdIso_hom_app_f, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, mapBifunctor.Îč_Dâ, mapBifunctorââ.Îč_Dâ_assoc, isZero_single_obj_X, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, singleMapHomologicalComplex_hom_app_self, double_d_eq_zeroâ, truncGE.rightHomologyMapData_ÏQ, mapBifunctorââ.d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, AlgebraicTopology.DoldKan.Ï_comp_PInfty_assoc, XIsoOfEq_hom_comp_XIsoOfEq_hom, dFrom_eq_zero, alternatingConst_iCycles_odd_comp_assoc, CochainComplex.mappingCone.inr_f_d_assoc, pOpcycles_opcyclesToCycles_iCycles_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, Hom.comm_from_apply, CochainComplex.HomComplex.Cochain.ÎŽ_single, pOpcycles_opcyclesIsoSc'_hom, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom_assoc, pOpcycles_singleObjOpcyclesSelfIso_inv, prevD_comp_left, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, opcyclesIsoSc'_inv_fromOpcycles, AlgebraicTopology.DoldKan.Îâ.Obj.Termwise.mapMono_comp_assoc, singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_iCycles, groupCohomology.cocyclesIsoâ_hom_comp_f, CategoryTheory.InjectiveResolution.Îč'_f_zero, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CochainComplex.mappingCone.liftCochain_v_snd_v_assoc, extend.d_comp_eq_zero_iff, CochainComplex.augmentTruncate_inv_f_zero, groupCohomology.eq_dââ_comp_inv, ChainComplex.mkAux_eq_shortComplex_mk_d_comp_d, CochainComplex.mappingCone.inr_f_fst_v, CochainComplex.isStrictlyLE_iff, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, homotopyCofiber.inlX_fstX, mapBifunctor.Îč_Dâ_assoc, op_d, homotopyCofiber.inrX_fstX_assoc, CochainComplex.HomComplex.Cochain.fromSingleEquiv_fromSingleMk, opSymm_d, groupCohomology.eq_dââ_comp_inv, AlgebraicTopology.DoldKan.Îâ.Obj.map_on_summandâ', Homotopy.nullHomotopicMap_comp, toCycles_i, shortComplexFunctor'_obj_Xâ, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, groupHomology.eq_dââ_comp_inv, HomologicalComplexâ.shiftFunctorâXXIso_refl, AlgebraicTopology.DoldKan.HigherFacesVanish.of_P, CochainComplex.mappingCone.liftCochain_v_snd_v, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, mapBifunctor.Îč_Dâ_assoc, leftUnitor'_inv_comm, SimplicialObject.Splitting.PInfty_comp_ÏSummand_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, ComplexShape.Embedding.liftExtend.comm_assoc, dTo_eq_zero, HomologicalComplexâ.comm_f, isZero_stupidTrunc_X, ChainComplex.mk'_X_0, CochainComplex.mk'_X_0, mapBifunctorââ.Îč_Dâ, CochainComplex.mappingCone.homologySequenceÎŽ_triangleh, CategoryTheory.Functor.mapHomologicalComplex_obj_d, restriction.sc'Iso_inv_Ïâ, mapBifunctorââ.dâ_eq, Hom.comm_to_apply, opcyclesIsoSc'_inv_fromOpcycles_assoc, groupHomology.comp_dââ_eq, instMonoICycles, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ_assoc, CategoryTheory.Functor.mapHomologicalComplex_map_f, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, Homotopy.nullHomotopicMap_f_eq_zero, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_succ, HomologicalComplexâ.totalAux.dâ_eq, CochainComplex.mappingCone.d_snd_v, p_fromOpcycles, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, CochainComplex.HomComplex.Cochain.ÎŽ_fromSingleMk, CochainComplex.HomComplex.Cochain.map_v, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, CochainComplex.truncate_obj_X, HomologicalComplexâ.d_f_comp_d_f, add_f_apply, extend_op_d_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, ChainComplex.mk_X_2, groupCohomology.comp_dââ_eq, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d, HomologicalComplexâ.dâ_eq_zero', CategoryTheory.InjectiveResolution.of_def, Homotopy.extend_hom_eq, homotopyCofiber.inrX_sndX_assoc, CategoryTheory.ProjectiveResolution.cochainComplex_d, CochainComplex.HomComplex.Cochain.toSingleMk_neg, CochainComplex.HomComplex.Cochain.ofHom_v_comp_d, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, unopInverse_map, Hom.next_eq, CategoryTheory.NatTrans.mapHomologicalComplex_app_f, CochainComplex.cm5b.fac, groupCohomology.dArrowIsoââ_inv_right, mapBifunctorââ.dâ_eq, natIsoSc'_inv_app_Ïâ, CochainComplex.HomComplex.Cochain.toSingleMk_v, groupCohomology.eq_dââ_comp_inv_assoc, CategoryTheory.InjectiveResolution.complex_d_comp, restrictionCyclesIso_hom_iCycles, CochainComplex.ConnectData.cochainComplex_X, homotopyCofiber.desc_f', single_obj_d, Rep.standardComplex.d_eq, CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, XIsoOfEq_hom_comp_d_assoc, truncLE'_d_eq_toCycles, Homotopy.prevD_succ_cochainComplex, d_toCycles_assoc, HomologicalComplexâ.ÎčTotalOrZero_map_assoc, asFunctor_obj_X, CochainComplex.Îč_mapBifunctorShiftâIso_hom_f_assoc, HomologicalComplexâ.ÎčTotal_map, xPrevIsoSelf_comp_dTo, CochainComplex.homotopyUnop_hom_eq, CochainComplex.HomComplex.Cochain.toSingleMk_add, HomologicalComplexâ.Îč_totalShiftâIso_hom_f_assoc, Îč_mapBifunctorAssociatorX_hom, mapBifunctorââ.Îč_Dâ_assoc, CochainComplex.mappingCone.inr_f_d, instHasMapProdObjGradedObjectFunctorMapBifunctorXÏ, HomologicalComplexâ.Îč_Dâ_assoc, groupHomology.chainsMap_id_f_map_mono, CochainComplex.HomComplex.ÎŽ_v, d_comp_d_assoc, CochainComplex.HomComplex.Cochain.comp_v, forgetEval_hom_app, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_inv_assoc, CochainComplex.fromSingleâEquiv_apply_coe, instEpiFÏTruncGE, CochainComplex.HomComplex.Cochain.comp_zero_cochain_v, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, CochainComplex.HomComplex.Cochain.neg_v, shortComplexFunctor'_map_Ïâ, CochainComplex.HomComplex.Cochain.sub_v, groupHomology.dââArrowIso_hom_left, XIsoOfEq_inv_naturality_assoc, CochainComplex.mappingCone.liftCochain_v_descCochain_v, Homotopy.nullHomotopicMap'_f_eq_zero, CochainComplex.mappingCone.lift_f_fst_v, AlgebraicTopology.DoldKan.Îâ.Obj.map_on_summand_assoc, CochainComplex.mappingCone.inl_v_triangle_morâ_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, HomologicalComplexâ.dâ_eq_zero, AlgebraicTopology.DoldKan.PInfty_f_naturality_assoc, mapBifunctorMapHomotopy.commâ, HomologicalComplexâ.Îč_totalShiftâIso_inv_f, extendSingleIso_inv_f_assoc, natIsoSc'_inv_app_Ïâ, XIsoOfEq_inv_comp_XIsoOfEq_inv, homotopyCofiber_X, HomologicalComplexâ.Îč_totalDesc_assoc, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc, instHasTensorXTensorUnit_1, CochainComplex.mappingCone.inr_triangleÎŽ, CochainComplex.HomComplex.Cochain.ofHoms_comp, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles, XIsoOfEq_inv_naturality, XIsoOfEq_rfl, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d, fromOpcycles_d_assoc, restriction_d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, dTo_eq, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, AlgebraicTopology.DoldKan.comp_P_eq_self_iff, natIsoSc'_hom_app_Ïâ, CochainComplex.mappingCone.id_X, CategoryTheory.ProjectiveResolution.instProjectiveXNatOfComplex, CochainComplex.HomComplex.Cochain.single_zero, CochainComplex.mappingCone.inr_descShortComplex_assoc, groupHomology.chainsMap_f_3_comp_chainsIsoâ, instEpiFOfHasFiniteColimits, instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported, ChainComplex.singleâObjXSelf, groupHomology.eq_dââ_comp_inv, mapBifunctorââ.hom_ext_iff, mapBifunctorââ.Îč_mapBifunctorââDesc, CochainComplex.mappingConeCompHomotopyEquiv_commâ_assoc, Hom.sqFrom_comp, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, groupCohomology.dArrowIsoââ_hom_right, shortComplexFunctor_obj_Xâ, extendCyclesIso_inv_iCycles_assoc, groupCohomology.toCocycles_comp_isoCocyclesâ_hom, mapBifunctorââ.Îč_mapBifunctorââDesc, mapBifunctorââ.Îč_Dâ_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_postcomp, mapBifunctorââ.ÎčOrZero_eq_zero, homotopyCofiber.inrX_d_assoc, mapBifunctor.hom_ext_iff, sub_f_apply, CochainComplex.mappingCone.d_snd_v'_assoc, Îč_mapBifunctorDesc, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ_assoc, Homotopy.map_nullHomotopicMap', AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, d_pOpcycles, HomologicalComplexâ.flipEquivalenceUnitIso_hom_app_f_f, CochainComplex.shiftFunctorZero_inv_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d_assoc, fromOpcycles_eq_zero, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f_assoc, ChainComplex.toSingleâEquiv_apply_coe, AlgebraicTopology.DoldKan.PInfty_on_Îâ_splitting_summand_eq_self_assoc, extendMap_f, HomologicalComplexâ.Îč_totalShiftâIso_inv_f_assoc, AlgebraicTopology.DoldKan.P_f_idem_assoc, HomologicalComplexâ.d_comm, pOpcycles_restrictionOpcyclesIso_inv, extend.mapX_some, IsStrictlySupported.isZero, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero_assoc, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d_assoc, restriction.sc'Iso_inv_Ïâ, CochainComplex.HomComplex.Cochain.zero_cochain_comp_v, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id_assoc, homotopyCofiber.inrCompHomotopy_hom_desc_hom, HomologicalComplexâ.d_f_comp_d_f_assoc, homotopyCofiber.inlX_sndX_assoc, Hom.isoOfComponents_inv_f, CochainComplex.of_d_ne, mapBifunctorAssociatorX_hom_Dâ, homologyÎč_comp_fromOpcycles, groupCohomology.comp_dââ_eq, restriction_X, CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero, HomologicalComplexâ.Îč_Dâ, AlgebraicTopology.DoldKan.QInfty_f_0, isZero_double_X, CategoryTheory.InjectiveResolution.Îč_f_succ, prevD_eq_toPrev_dTo, CochainComplex.isStrictlyGE_iff, AlgebraicTopology.DoldKan.Îâ_obj_p_app, Homotopy.nullHomotopicMap'_comp, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv_assoc, instMonoFÎčTruncLE, HomologicalComplexâ.total.mapAux.dâ_mapMap, CochainComplex.mappingCone.lift_f_fst_v_assoc, cyclesIsoSc'_inv_iCycles_assoc, mapBifunctorMapHomotopy.zeroâ, Homotopy.dNext_zero_chainComplex, mapBifunctorââ.dâ_eq_zero, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d_assoc, groupHomology.chainsMap_f_single, HomologicalComplexâ.dâ_eq, groupCohomology.Ï_comp_H0IsoOfIsTrivial_hom, opcyclesToCycles_iCycles_assoc, Homotopy.prevD_chainComplex, groupCohomology.cochainsMap_f_map_epi, groupCohomology.comp_dââ_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, single_obj_X_self, CochainComplex.HomComplex.Cochain.zero_v, AlgebraicTopology.DoldKan.map_HÏ, instMonoFTruncLE'ToRestriction, id_f, singleMapHomologicalComplex_inv_app_self, restrictionMap_f'_assoc, CochainComplex.isZero_of_isStrictlyLE, mapBifunctorââ.dâ_eq_zero, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_1, HomologicalComplexâ.XXIsoOfEq_hom_ÎčTotal_assoc, extendSingleIso_hom_f_assoc, restrictionToTruncGE'.comm_assoc, iCycles_d, mapBifunctorââ.ÎčOrZero_eq_zero, prevD_nat, CategoryTheory.InjectiveResolution.extMk_zero, dTo_comp_dFrom, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f, CochainComplex.shiftFunctor_obj_X, CochainComplex.mappingConeCompHomotopyEquiv_commâ, groupCohomology.dArrowIsoââ_inv_left, CategoryTheory.Functor.mapHomologicalComplex_obj_X, d_comp_eqToHom, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ, CochainComplex.mk'_X_1, restrictionToTruncGE'.comm, CochainComplex.HomComplex.Cochain.fromSingleMk_v, instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjÏ, CochainComplex.HomComplex.Cochain.fromSingleMk_add, HomologicalComplexâ.totalFlipIsoX_hom_Dâ_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_HÏ_eq_zero, XIsoOfEq_hom_comp_d, CategoryTheory.ProjectiveResolution.Hom.hom'_f_assoc, HomologicalComplexâ.XXIsoOfEq_rfl, dgoToHomologicalComplex_obj_X, CochainComplex.mappingCone.ext_from_iff, ChainComplex.augmentTruncate_inv_f_succ, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, HomologicalComplexâ.Îč_Dâ_assoc, CochainComplex.HomComplex.Cocycle.toSingleMk_zero, units_smul_f_apply, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, p_opcyclesMap, AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, homotopyCofiber.inrX_fstX, CochainComplex.HomComplex.Cochain.leftUnshift_v, CategoryTheory.NatIso.mapHomologicalComplex_hom_app_f, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_X, CochainComplex.mappingConeCompHomotopyEquiv_commâ_assoc, coconeOfHasColimitEval_pt_X, restriction.sc'Iso_hom_Ïâ, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, mapBifunctorââ.Îč_Dâ, leftUnitor'_inv_comm_assoc, SimplicialObject.Splitting.cofan_inj_comp_PInfty_eq_zero, opcyclesOpIso_hom_toCycles_op, mapBifunctorââ.Îč_mapBifunctorââDesc_assoc, SimplicialObject.Splitting.ÎčSummand_comp_d_comp_ÏSummand_eq_zero, groupHomology.chainsMap_f_map_epi, Homotopy.nullHomotopicMap_f, d_toCycles, mapBifunctorAssociatorX_hom_Dâ_assoc, unop_X, opFunctor_map_f, groupCohomology.isoCocyclesâ_hom_comp_i, cyclesIsoSc'_inv_iCycles, CochainComplex.mappingCone.inr_f_snd_v, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, CochainComplex.mappingConeCompTriangle_morâ_naturality, groupHomology.comp_dââ_eq, d_pOpcycles_assoc, CategoryTheory.ProjectiveResolution.of_def, HomologicalComplexâ.totalAux.dâ_eq', Homotopy.zero, CategoryTheory.ProjectiveResolution.Ï'_f_zero_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, truncLE'Map_f_eq_cyclesMap, CategoryTheory.ProjectiveResolution.Ï_f_succ, HomologicalComplexâ.totalAux.dâ_eq, groupCohomology.dArrowIsoââ_hom_left, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, homotopyCofiber.sndX_inrX_assoc, HomologicalComplexâ.shiftFunctorâXXIso_refl, xPrevIso_comp_dTo, Homotopy.extend.hom_eq_zeroâ, ComplexShape.Embedding.epi_liftExtend_f_iff, prevD_eq, mapBifunctor.dâ_eq, groupHomology.toCycles_comp_isoCyclesâ_hom_assoc, AlgebraicTopology.DoldKan.P_f_idem, HomologicalComplexâ.Îč_totalDesc, CochainComplex.mappingCone.ext_to_iff, AlgebraicTopology.DoldKan.Îâ.Obj.map_on_summandâ, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, CochainComplex.ConnectData.restrictionLEIso_inv_f, Îč_mapBifunctorFlipIso_inv_assoc, extend_single_d, CochainComplex.mappingCone.inr_f_desc_f, mapBifunctor.dâ_eq_zero, groupCohomology.cocyclesIsoâ_inv_comp_iCocycles_assoc, Homotopy.map_nullHomotopicMap, HomologicalComplexâ.dâ_eq_zero, zsmul_f_apply, HomologicalComplexâ.flip_X_X, cyclesMap_i_assoc, CategoryTheory.ProjectiveResolution.Hom.hom'_f, CochainComplex.singleFunctor_obj_d, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', mapBifunctorââ.Îč_Dâ, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, Hom.isoOfComponents_hom_f, CochainComplex.HomComplex.Cochain.rightUnshift_v, SimplicialObject.Splitting.nondegComplex_X, extend_d_to_eq_zero, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_Ï_f_zero_assoc, CochainComplex.mappingCone.inl_v_desc_f_assoc, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, nsmul_f_apply, CochainComplex.shiftFunctorAdd'_inv_app_f', groupHomology.dââArrowIso_inv_right, truncGE'_d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_0, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_inv_f_f, prevD_eq_zero, AlgebraicTopology.DoldKan.QInfty_f_naturality_assoc, fromOpcycles_op_cyclesOpIso_inv_assoc, CategoryTheory.Functor.mapCochainComplexShiftIso_inv_app_f, CochainComplex.shiftFunctorAdd'_inv_app_f, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, Homotopy.extend.homAux_eq, ChainComplex.mk_X_0, CochainComplex.mappingCone.liftCochain_v_fst_v, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d, groupHomology.chainsMap_id_f_map_epi, isZero_extend_X, mapBifunctorââ.Îč_Dâ, homotopyCofiber.inlX_desc_f_assoc, SimplicialObject.Splitting.ÏSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, CochainComplex.HomComplex.Cochain.fromSingleMk_zero, CochainComplex.mappingCone.decomp_from, CochainComplex.mappingCone.inl_v_triangle_morâ_f_assoc, AlgebraicTopology.DoldKan.map_PInfty_f, unopSymm_X, eval_obj, homotopyCofiber.d_fstX, CochainComplex.ConnectData.X_zero, groupCohomology.cochainsMap_id_f_map_mono, shortComplexFunctor_map_Ïâ, CochainComplex.mappingCone.inr_triangleÎŽ_assoc, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, CochainComplex.of_x, comp_f, CochainComplex.mappingCone.inl_v_snd_v_assoc, XIsoOfEq_hom_comp_XIsoOfEq_inv_assoc, Îč_mapBifunctorAssociatorX_hom_assoc, AlgebraicTopology.DoldKan.Îâ.Obj.Termwise.mapMono_comp, CategoryTheory.Functor.mapHomotopy_hom, ÎčOrZero_mapBifunctorAssociatorX_hom, extend.rightHomologyData.d_comp_desc_eq_zero_iff, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, shortComplexFunctor'_obj_Xâ, CochainComplex.HomComplex.Cochain.ofHoms_v_comp_d, CochainComplex.mappingCone.inr_f_triangle_morâ_f, AlgebraicTopology.DoldKan.Îâ.Obj.mapMono_on_summand_id, CategoryTheory.Functor.mapHomologicalComplexIdIso_inv_app_f, homotopyCofiber.inrX_desc_f, Homotopy.compRight_hom, CochainComplex.cm5b.fac_assoc, AlgebraicTopology.DoldKan.HÏ_eq_zero, CochainComplex.ConnectData.dâ_comp, tensor_unit_dâ, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_hom_f_f, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_inv, CochainComplex.shiftFunctorZero'_hom_app_f, HomologicalComplexâ.flipEquivalenceUnitIso_inv_app_f_f, CategoryTheory.ProjectiveResolution.lift_commutes_zero, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, mapBifunctorAssociatorX_hom_Dâ_assoc, homologyÎč_comp_fromOpcycles_assoc, groupHomology.eq_dââ_comp_inv_assoc, HomologicalComplexâ.dâ_eq_zero', shortComplexFunctor_map_Ïâ, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp, HomologicalComplexâ.Îč_totalShiftâIso_inv_f_assoc, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_hom_assoc, d_comp_d', zero_f, groupHomology.cyclesIsoâ_inv_comp_iCycles, HomologicalComplexâ.XXIsoOfEq_inv_ÎčTotal_assoc, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id, homotopyCofiber.inrCompHomotopy_hom_eq_zero, CochainComplex.mappingCone.d_snd_v_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, CochainComplex.shiftFunctor_map_f, isIso_truncLE'ToRestriction, CochainComplex.mappingCone.d_snd_v', extend_op_d, ComplexShape.Embedding.mono_liftExtend_f_iff, AlgebraicTopology.DoldKan.Îâ_map_app, extend.rightHomologyData_p, Hom.comm_to, shortComplexFunctor'_obj_Xâ, AlgebraicTopology.DoldKan.Q_f_0_eq, complexOfFunctorsToFunctorToComplex_map_app_f, CategoryTheory.ProjectiveResolution.complex_d_comp_Ï_f_zero, mapBifunctor.d_eq, unopSymm_d, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, stupidTruncMap_stupidTruncXIso_hom_assoc, XIsoOfEq_inv_comp_XIsoOfEq_hom_assoc, CochainComplex.ConnectData.X_ofNat, Homotopy.nullHomotopicMap_f_of_not_rel_right, CochainComplex.homotopyOp_hom_eq, CochainComplex.mappingCone.inr_f_descCochain_v_assoc, AlgebraicTopology.DoldKan.QInfty_f_naturality, natIsoSc'_hom_app_Ïâ, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem, AlgebraicTopology.DoldKan.Îâ.Obj.map_on_summandâ'_assoc, Homotopy.ofEq_hom, CochainComplex.mappingCone.d_fst_v_assoc, CochainComplex.shiftFunctorAdd_inv_app_f, CochainComplex.truncate_map_f, HomologicalComplexâ.Îč_totalShiftâIso_hom_f_assoc, ChainComplex.augmentTruncate_hom_f_succ, CochainComplex.mappingCone.map_id, groupHomology.chainsMap_id_f_hom_eq_mapRange, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, XIsoOfEq_hom_naturality_assoc, groupHomology.toCycles_comp_isoCyclesâ_hom, ComplexShape.Embedding.liftExtend.comm, CategoryTheory.ProjectiveResolution.exact_succ, alternatingConst_iCycles_odd_comp, homotopyCofiber.inlX_sndX, CategoryTheory.ProjectiveResolution.Ï'_f_zero, Homotopy.ofExtend_hom, leftUnitor'_inv, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, dNext_comp_left, AlgebraicTopology.DoldKan.P_f_naturality_assoc, CochainComplex.mappingCone.inl_v_fst_v, forget_obj, AlgebraicTopology.DoldKan.map_P, xPrevIso_comp_dTo_assoc, homotopyCofiber.inlX_d, mapBifunctorââ.dâ_eq, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, Homotopy.comp_nullHomotopicMap, groupHomology.chainsMap_f_map_mono, extend.rightHomologyData_g', single_map_f_self_assoc, groupHomology.eq_dââ_comp_inv, Îč_mapBifunctorMap_assoc, homologicalComplexToDGO_map_f, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, ÎčMapBifunctorOrZero_eq_zero, AlgebraicTopology.DoldKan.PInfty_on_Îâ_splitting_summand_eq_self, extend.homologyData'_right_p, extendCyclesIso_hom_iCycles, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc, IsStrictlySupportedOutside.isZero, groupHomology.eq_dââ_comp_inv_assoc, CochainComplex.ConnectData.restrictionLEIso_hom_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d, Homotopy.symm_hom, groupHomology.chainsMap_f_1_comp_chainsIsoâ_assoc, extend.homologyData'_left_i, truncGE'_d_eq_fromOpcycles, CochainComplex.mappingCone.inr_f_descCochain_v, CochainComplex.Îč_mapBifunctorShiftâIso_hom_f, CochainComplex.cm5b.instQuasiIsoIntP, XIsoOfEq_hom_comp_XIsoOfEq_hom_assoc, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, groupCohomology.cocyclesIsoâ_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, ComplexShape.Embedding.homRestrict.comm_assoc, HasHomotopyCofiber.hasBinaryBiproduct, HomologicalComplexâ.comm_f_assoc, d_comp_XIsoOfEq_inv_assoc, mapBifunctorââ.Îč_eq, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ_assoc, CochainComplex.mappingCone.isZero_X_iff, CochainComplex.mappingCone.quasiIso_descShortComplex, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, Homotopy.comp_nullHomotopicMap', XIsoOfEq_inv_comp_d, CategoryTheory.ProjectiveResolution.complex_d_succ_comp, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.Îâ.map_app, Homotopy.dNext_succ_chainComplex, XIsoOfEq_inv_comp_d_assoc, HomologicalComplexâ.XXIsoOfEq_inv_ÎčTotal, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp_assoc, groupHomology.chainsMap_f_3_comp_chainsIsoâ_assoc, CochainComplex.mappingConeCompHomotopyEquiv_commâ, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_hom_assoc, groupCohomology.cocyclesMkâ_eq, mapBifunctorââ.Îč_Dâ, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_X, CochainComplex.HomComplex.ÎŽ_zero_cochain_v, CochainComplex.HomComplex.Cochain.units_smul_v, CochainComplex.HomComplex.Cochain.ÎŽ_toSingleMk, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, smul_f_apply, CochainComplex.cm5b.instMonoFIntI, mapBifunctorMapHomotopy.ÎčMapBifunctor_homâ, mapBifunctorAssociatorX_hom_Dâ, groupHomology.chainsMap_f_0_comp_chainsIsoâ_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_precomp, AlgebraicTopology.DoldKan.Q_f_naturality_assoc, mapBifunctorââ.Îč_Dâ_assoc, HomologicalComplexâ.ofGradedObject_X_d, singleObjCyclesSelfIso_inv_iCycles_assoc, Homotopy.compLeftId_hom, CochainComplex.HomComplex.Cocycle.fromSingleMk_zero, zero_f_apply, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, CategoryTheory.ProjectiveResolution.extMk_zero, alternatingConst_iCycles_even_comp, d_comp_XIsoOfEq_hom_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_hom, pOpcycles_extendOpcyclesIso_hom_assoc, toCycles_eq_zero, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self, homotopyCofiber.inlX_d'_assoc, CochainComplex.mappingCone.inr_f_fst_v_assoc, CategoryTheory.ProjectiveResolution.instProjectiveXIntCochainComplex, Homotopy.add_hom, CategoryTheory.InjectiveResolution.Îč'_f_zero_assoc, HomologicalComplexâ.totalFlipIsoX_hom_Dâ, CochainComplex.mappingCone.inl_v_d_assoc, CochainComplex.shiftFunctorZero'_inv_app_f, CochainComplex.mappingCone.inl_v_desc_f, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, SimplicialObject.Splitting.PInfty_comp_ÏSummand_id_assoc, truncLE'_d_eq, ChainComplex.mk'_d, singleMapHomologicalComplex_inv_app_ne, pOpcycles_extendOpcyclesIso_inv, CochainComplex.isZero_of_isStrictlyGE, groupHomology.eq_dââ_comp_inv_assoc, shortComplexFunctor'_map_Ïâ, Îč_mapBifunctorDesc_assoc, homology_Ï_Îč_assoc, instMonoFOfHasFiniteLimits, HomologicalComplexâ.ofGradedObject_X_X, CochainComplex.mappingCone.map_comp_assoc, Rep.standardComplex.d_comp_Δ, groupCohomology.toCocycles_comp_isoCocyclesâ_hom_assoc, single_map_f_self, ChainComplex.fromSingleâEquiv_symm_apply_f_zero, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ_assoc, toCycles_comp_homologyÏ, Homotopy.compRightId_hom, CochainComplex.HomComplex.Cochain.smul_v, homotopyCofiber.d_sndX, CochainComplex.ConnectData.X_negOne, CategoryTheory.InjectiveResolution.Hom.hom'_f_assoc, xPrevIsoSelf_comp_dTo_assoc, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, mapBifunctorââ.dâ_eq_zero, groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_sub, CochainComplex.toSingleâEquiv_symm_apply_f_succ, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, singleCompEvalIsoSelf_inv_app, toCycles_cyclesIsoSc'_hom_assoc, asFunctor_obj_d, ChainComplex.augmentTruncate_hom_f_zero, shortComplexFunctor_obj_Xâ, HomologicalComplexâ.ÎčTotalOrZero_map, truncGE'Map_f_eq_opcyclesMap, kernel_from_eq_kernel, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, CochainComplex.cm5b.instInjectiveXIntI, CochainComplex.cm5b.instMonoIntI, AlgebraicTopology.DoldKan.Îâ.Obj.Termwise.mapMono_eq_zero, groupHomology.cyclesMkâ_eq, groupHomology.chainsMap_f_1_comp_chainsIsoâ, CochainComplex.ConnectData.X_negSucc, AlgebraicTopology.DoldKan.Îâ.Obj.Termwise.mapMono_naturality, isZero_extend_X', groupHomology.isoCyclesâ_inv_comp_iCycles_assoc, AlgebraicTopology.DoldKan.hÏ'_eq, HomologicalComplexâ.dâ_eq, groupHomology.chainsMap_f_2_comp_chainsIsoâ, extend_d_from_eq_zero, groupHomology.pOpcycles_comp_opcyclesIso_hom, Homotopy.extend.hom_eq_zeroâ, Homotopy.nullHomotopicMap'_f_of_not_rel_left, homotopyCofiber.inlX_d', AlgebraicTopology.DoldKan.PInfty_f_0, Homotopy.nullHomotopicMap_f_of_not_rel_left, groupCohomology.eq_dââ_comp_inv, toCycles_comp_homologyÏ_assoc, groupCohomology.cochainsMap_f_map_mono, groupHomology.coinvariantsMk_comp_opcyclesIsoâ_inv, CochainComplex.mappingCone.map_comp, AlgebraicTopology.DoldKan.PInfty_f_naturality, CategoryTheory.InjectiveResolution.cochainComplex_d_assoc, AlgebraicTopology.DoldKan.hÏ'_eq_zero, AlgebraicTopology.DoldKan.Îâ.Obj.map_on_summand, HomologicalComplexâ.shape_f, AlgebraicTopology.DoldKan.PInfty_f_idem_assoc, ComplexShape.Embedding.liftExtend_f, groupCohomology.isoCocyclesâ_inv_comp_iCocycles, homotopyCofiber.inlX_fstX_assoc, image_eq_image, CochainComplex.cm5b.i_f_comp, ComplexShape.Embedding.homRestrict.comm, CochainComplex.mappingCone.decomp_to, extend.leftHomologyData_i, inhomogeneousCochains.d_eq, image_to_eq_image, extend.comp_d_eq_zero_iff, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne_assoc, restrictionCyclesIso_inv_iCycles_assoc, groupCohomology.cocyclesMkâ_eq, Homotopy.trans_hom, ComplexShape.Embedding.liftExtend.f_eq, CochainComplex.mappingCone.liftCochain_v_fst_v_assoc, groupCohomology.cochainsMap_id_f_map_epi, dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem_assoc, CochainComplex.mappingCone.lift_desc_f, CochainComplex.ConnectData.restrictionGEIso_inv_f, AlgebraicTopology.DoldKan.map_Q, AlgebraicTopology.DoldKan.Îâ.Obj.map_on_summandâ_assoc, HomologicalComplexâ.Îč_totalShiftâIso_inv_f, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, AlgebraicTopology.DoldKan.PInfty_f_idem, pOpcycles_opcyclesIsoSc'_hom_assoc, Hom.sqTo_right, eqToHom_comp_d, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, CochainComplex.HomComplex.Cochain.leftShift_v, CochainComplex.mappingCone.desc_f, groupHomology.cyclesMkâ_eq, CochainComplex.mappingCone.d_fst_v'_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp_assoc, AlgebraicTopology.DoldKan.Ï_comp_PInfty, CochainComplex.HomComplex.Cochain.toSingleMk_zero, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_hom_f_f, groupCohomology.isoCocyclesâ_hom_comp_i, dNext_eq_dFrom_fromNext, CochainComplex.augmentTruncate_inv_f_succ, double_d, CochainComplex.mappingCone.inl_v_d, AlgebraicTopology.NormalizedMooreComplex.obj_X, CochainComplex.shiftFunctor_obj_X', Hom.sqFrom_left, CochainComplex.HomComplex.Cochain.shift_v, CochainComplex.shiftFunctorZero_hom_app_f, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_Ï_f_zero, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ, AlgebraicTopology.DoldKan.Nâ_obj_X_X, CochainComplex.mappingCone.inr_f_snd_v_assoc, mapBifunctorMapHomotopy.commâ_aux, ChainComplex.linearYonedaObj_d, Hom.comm_assoc, CochainComplex.mk_X_2, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, Homotopy.smul_hom, Rep.standardComplex.x_projective, Homotopy.prevD_zero_cochainComplex, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported, mapBifunctor.Îč_Dâ, HomologicalComplexâ.total.mapAux.dâ_mapMap, groupCohomology.cochainsMap_f_3_comp_cochainsIsoâ, restrictionMap_f', homotopyCofiber.inrX_d, SimplicialObject.Splitting.ÏSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_hom, CochainComplex.ConnectData.dâ_comp_assoc, ChainComplex.fromSingleâEquiv_apply, CochainComplex.mappingCone.d_fst_v', CategoryTheory.InjectiveResolution.desc_commutes_zero, singleObjCyclesSelfIso_hom_assoc, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, CochainComplex.shiftFunctorAdd'_hom_app_f', CochainComplex.mappingCone.inl_v_descCochain_v, d_comp_XIsoOfEq_hom, Homotopy.comm, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, mapBifunctor.dâ_eq', Hom.comm_from, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ_assoc, CochainComplex.augmentTruncate_hom_f_succ, CochainComplex.shiftEval_hom_app, d_comp_d, singleCompEvalIsoSelf_hom_app, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ, HomologicalComplexâ.flip_X_d, op_X, XIsoOfEq_inv_comp_XIsoOfEq_hom, mapBifunctor.dâ_eq_zero, ChainComplex.chainComplex_d_succ_succ_zero, CochainComplex.cm5b.i_f_comp_assoc, CochainComplex.HomComplex_X, d_eqToHom_assoc, coneOfHasLimitEval_pt_X, Homotopy.comp_hom, dNext_eq, CochainComplex.shiftFunctor_obj_d', Hom.sqFrom_right, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, groupHomology.isoCyclesâ_hom_comp_i_assoc, mapBifunctorââ.d_eq, CochainComplex.mappingCone.inr_descShortComplex, CochainComplex.Îč_mapBifunctorShiftâIso_hom_f_assoc, CochainComplex.cm5b.I_d, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne, CategoryTheory.ProjectiveResolution.exactâ, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, homotopyCofiber.inlX_d_assoc, pOpcycles_extendOpcyclesIso_hom, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_inv_f_f, CochainComplex.HomComplex.Cochain.d_comp_ofHom_v, AlgebraicTopology.DoldKan.karoubi_PInfty_f, mapBifunctorAssociatorX_hom_Dâ, homologicalComplexToDGO_obj_obj, homotopyCofiber.desc_f, extendCyclesIso_inv_iCycles, CochainComplex.ConnectData.comp_dâ, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, ChainComplex.augmentTruncate_inv_f_zero, CochainComplex.shiftFunctorAdd_hom_app_f, restrictionCyclesIso_hom_iCycles_assoc, restriction.sc'Iso_inv_Ïâ, Îč_mapBifunctorFlipIso_hom, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, homology_Ï_Îč, ChainComplex.of_x, CategoryTheory.Idempotents.DoldKan.Î_map_app, CategoryTheory.ProjectiveResolution.projective, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, shortComplexFunctor'_map_Ïâ, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CochainComplex.mappingCone.inl_v_descShortComplex_f, homotopyCofiber.sndX_inrX, instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjÏX, HomologicalComplexâ.Îč_Dâ, HomologicalComplexâ.flipEquivalenceCounitIso_inv_app_f_f, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty, mapBifunctorââ.dâ_eq_zero, CochainComplex.HomComplex.Cochain.d_comp_ofHoms_v, CochainComplex.HomComplex.Cochain.toSingleMk_postcomp, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, extendCyclesIso_hom_iCycles_assoc, mapBifunctor.dâ_eq_zero', Hom.sqTo_left, CochainComplex.mappingCone.inr_f_descShortComplex_f, asFunctor_map_f, Hom.comm_from_assoc, CochainComplex.toSingleâEquiv_apply, mapBifunctorMapHomotopy.ÎčMapBifunctor_homâ_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp, ComplexShape.Embedding.homRestrict_f, groupHomology.isoCyclesâ_inv_comp_iCycles, CochainComplex.HomComplex.Cochain.single_v_eq_zero', CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f, extend.d_eq, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, shortComplexFunctor_map_Ïâ, CochainComplex.shiftFunctorAdd'_hom_app_f, mapBifunctor.dâ_eq', CochainComplex.mappingCone.inr_f_triangle_morâ_f_assoc, Homotopy.compLeft_hom, isIso_restrictionToTruncGE', CochainComplex.cochainComplex_d_succ_succ_zero, truncLE'Map_f_eq, groupHomology.toCycles_comp_isoCyclesâ_hom, prevD_comp_right, Hom.comm', HomologicalComplexâ.Îč_totalShiftâIso_hom_f, dFrom_comp_xNextIso_assoc, toCycles_cyclesIsoSc'_hom, fromOpcycles_op_cyclesOpIso_inv, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_HÏ_eq, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero_assoc, groupHomology.chainsMap_f_2_comp_chainsIsoâ_assoc, pOpcycles_opcyclesToCycles_iCycles, extend_d_eq, AlgebraicTopology.DoldKan.QInfty_f_idem_assoc, mapBifunctor.dâ_eq_zero', CochainComplex.shiftFunctorComm_hom_app_f, groupCohomology.iCocycles_mk, ComplexShape.Embedding.homRestrict.f_eq, AlgebraicTopology.DoldKan.QInfty_f_idem, groupHomology.isoCyclesâ_hom_comp_i, restrictionToTruncGE'.f_eq_iso_hom_iso_inv, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0, CochainComplex.mappingCone.inl_v_snd_v, p_fromOpcycles_assoc, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, groupHomology.isoCyclesâ_inv_comp_iCycles, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f, unit_tensor_dâ, HomologicalComplexâ.XXIsoOfEq_hom_ÎčTotal, ChainComplex.mk'_X_1, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, Hom.isoApp_inv, CochainComplex.mappingConeCompTriangle_morâ_naturality_assoc, CategoryTheory.InjectiveResolution.exact_succ, ChainComplex.mk_d, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, CategoryTheory.ProjectiveResolution.liftFOne_zero_comm, CochainComplex.ConnectData.comp_dâ_assoc, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f, CategoryTheory.InjectiveResolution.instMonoFNatÎč, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ, HomologicalComplexâ.dâ_eq', CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero, CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero, isZero_X_of_isStrictlySupported, AlgebraicTopology.DoldKan.Îâ.Obj.mapMono_on_summand_id_assoc, groupHomology.dââArrowIso_hom_right, Homotopy.dNext_cochainComplex, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, Homotopy.nullHomotopicMap'_f, CategoryTheory.Functor.mapCochainComplexShiftIso_hom_app_f, HomologicalComplexâ.totalFlipIsoX_hom_Dâ, extend.leftHomologyData.lift_d_comp_eq_zero_iff, CochainComplex.shiftEval_inv_app, mapBifunctorââ.Îč_Dâ_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIsoâ_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, pOpcycles_opcyclesToCycles, AlgebraicTopology.DoldKan.Îâ.Obj.Termwise.mapMono_id, Homotopy.nullHomotopicMap'_f_of_not_rel_right, dNext_comp_right, homotopyCofiber.inlX_desc_f, fromOpcycles_d, iCycles_d_assoc, HomologicalComplexâ.dâ_eq', instHasTensorXTensorUnit, groupHomology.inhomogeneousChains.d_eq, cyclesMap_i, AlgebraicTopology.DoldKan.Îâ_map_f_app, CochainComplex.HomComplex.Cochain.equivHomotopy_symm_apply_hom, AlgebraicTopology.DoldKan.decomposition_Q, extendMap_f_eq_zero, CategoryTheory.InjectiveResolution.exactâ, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_succ_succ, groupHomology.cyclesMkâ_eq, groupHomology.isoCyclesâ_hom_comp_i, AlgebraicTopology.DoldKan.Ï_comp_P_eq_zero, mapBifunctorââ.Îč_eq, HomologicalComplexâ.toGradedObjectMap_apply, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, CochainComplex.mappingCone.lift_f_snd_v, HomologicalComplexâ.ÎčTotalOrZero_eq_zero, double_d_eq_zeroâ, unop_d, XIsoOfEq_hom_comp_XIsoOfEq_inv, truncGE'.homologyÎč_truncGE'XIsoOpcycles_inv_d, HomologicalComplexâ.flip_d_f, truncGE'Map_f_eq, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, dFrom_eq, AlgebraicTopology.AlternatingFaceMapComplex.obj_X, AlgebraicTopology.DoldKan.Q_f_idem_assoc, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0_assoc, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, CochainComplex.HomComplex.Cochain.rightShift_v, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, groupCohomology.cocyclesMkâ_eq, CochainComplex.mappingConeCompTriangleh_commâ, AlgebraicTopology.DoldKan.Q_f_naturality, mapBifunctorââ.dâ_eq, groupHomology.lsingle_comp_chainsMap_f_assoc, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, d_comp_XIsoOfEq_inv, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f_assoc, ChainComplex.truncate_obj_X, CochainComplex.singleâ_obj_zero, alternatingConst_X, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, restrictionToTruncGE'_f_eq_iso_hom_iso_inv, instEpiPOpcycles, groupHomology.cyclesIsoâ_inv_comp_iCycles_assoc, CochainComplex.cm5b.instInjectiveXIntMappingConeIdI, stupidTruncMap_stupidTruncXIso_hom, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, mapBifunctorââ.dâ_eq, AlgebraicTopology.alternatingFaceMapComplex_obj_X, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Homotopy.extend.hom_eq, mapBifunctorââ.Îč_Dâ, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_hom_f_f, AlgebraicTopology.DoldKan.Îâ.Obj.map_on_summand', CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_inv_assoc, homotopyCofiber.d_sndX_assoc, mapBifunctorââ.Îč_mapBifunctorââDesc_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, dNext_nat, mapBifunctorMapHomotopy.ÎčMapBifunctor_homâ, groupCohomology.cochainsMap_f_1_comp_cochainsIsoâ, neg_f_apply, CategoryTheory.ProjectiveResolution.instEpiFNatÏ, CategoryTheory.ProjectiveResolution.complex_d_comp_Ï_f_zero_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, pOpcycles_restrictionOpcyclesIso_inv_assoc, unopFunctor_map_f, Hom.comm, groupCohomology.cochainsMap_f_0_comp_cochainsIsoâ_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, shape, HomologicalComplexâ.flipEquivalenceCounitIso_hom_app_f_f, AlgebraicTopology.DoldKan.Îâ_obj_termwise_mapMono_comp_PInfty_assoc, Homotopy.refl_hom, CochainComplex.HomComplex.Cochain.toSingleEquiv_toSingleMk, pOpcycles_extendOpcyclesIso_inv_assoc, AlgebraicTopology.DoldKan.map_hÏ', CochainComplex.HomComplex.Cochain.ofHoms_zero, dFrom_comp_xNextIso, mapBifunctorââ.dâ_eq, groupCohomology.eq_dââ_comp_inv_assoc, pOpcycles_opcyclesToCycles_assoc, opcyclesOpIso_hom_toCycles_op_assoc, singleObjCyclesSelfIso_hom, restriction_d_eq_assoc, mapBifunctorââ.dâ_eq_zero, HomologicalComplexâ.d_comm_assoc, AlgebraicTopology.DoldKan.P_f_naturality, alternatingConst_iCycles_even_comp_assoc, dNext_eq_zero, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, CochainComplex.mappingCone.lift_f, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, groupHomology.dââArrowIso_inv_left, XIsoOfEq_hom_naturality, homotopyCofiber.inrX_sndX, AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty, HomologicalComplexâ.totalAux.dâ_eq', Hom.comm_to_assoc, opcyclesToCycles_iCycles, Îč_mapBifunctorFlipIso_hom_assoc, extendSingleIso_hom_f, restriction.sc'Iso_hom_Ïâ, HomologicalComplexâ.total.hom_ext_iff, XIsoOfEq_inv_comp_XIsoOfEq_inv_assoc, CochainComplex.HomComplex.Cochain.add_v, d_eqToHom, CochainComplex.toSingleâEquiv_symm_apply_f_zero, CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, CochainComplex.augmentTruncate_hom_f_zero, CochainComplex.mappingCone.inl_v_fst_v_assoc, comp_f_assoc, ChainComplex.singleâ_obj_zero, CategoryTheory.ProjectiveResolution.cochainComplex_d_assoc, ChainComplex.of_d_ne, ChainComplex.fromSingleâEquiv_symm_apply_f_succ, rightUnitor'_inv_comm, AlgebraicTopology.DoldKan.hÏ'_naturality, AlgebraicTopology.DoldKan.Îâ.Obj.Termwise.mapMono_naturality_assoc, AlgebraicTopology.DoldKan.P_add_Q_f, opInverse_map, HomologicalComplexâ.flipFunctor_map_f_f, groupCohomology.eq_dââ_comp_inv_assoc, dFrom_comp_xNextIsoSelf_assoc, mapBifunctorAssociatorX_hom_Dâ_assoc, AlgebraicTopology.DoldKan.Îâ_obj_termwise_mapMono_comp_PInfty, CochainComplex.HomComplex.Cochain.toSingleMk_sub, Hom.isoApp_hom, groupCohomology.isoCocyclesâ_hom_comp_i_assoc, CategoryTheory.InjectiveResolution.descFOne_zero_comm, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, singleObjOpcyclesSelfIso_hom_assoc, mapBifunctor.dâ_eq, mapBifunctorMapHomotopy.ÎčMapBifunctor_homâ_assoc, HomologicalComplexâ.totalFlipIsoX_hom_Dâ_assoc, dgoEquivHomologicalComplexCounitIso_inv_app_f, Homotopy.nullHomotopy'_hom, AlgebraicTopology.DoldKan.Îâ.Obj.map_on_summand'_assoc, CochainComplex.mappingCone.lift_f_snd_v_assoc, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, Rep.FiniteCyclicGroup.resolution.Ï_f, natIsoSc'_inv_app_Ïâ, restriction.sc'Iso_hom_Ïâ, kernel_eq_kernel, homotopyCofiber.d_fstX_assoc, opSymm_X, CochainComplex.mappingCone.inr_f_desc_f_assoc, Hom.fAddMonoidHom_apply, CategoryTheory.InjectiveResolution.instInjectiveXIntCochainComplex, toCycles_i_assoc, CochainComplex.shiftFunctor_obj_d, CochainComplex.HomComplex.Cochain.toSingleMk_precomp, Îč_mapBifunctorMap, CochainComplex.mappingCone.d_fst_v, CochainComplex.singleâObjXSelf, CategoryTheory.InjectiveResolution.instInjectiveXNatOfCocomplex, mapBifunctorââ.dâ_eq_zero, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, ÎčOrZero_mapBifunctorAssociatorX_hom_assoc, homotopyCofiber.inrX_desc_f_assoc, natIsoSc'_hom_app_Ïâ, extendMap_id_f, p_opcyclesMap_assoc, groupHomology.isoCyclesâ_hom_comp_i_assoc, CochainComplex.mk_X_0, groupHomology.comp_dââ_eq, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, groupHomology.chainsMap_f_0_comp_chainsIsoâ, restrictionCyclesIso_inv_iCycles, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, HomologicalComplexâ.ÎčTotal_map_assoc, Îč_mapBifunctorFlipIso_inv, CochainComplex.cm5b.I_X, groupCohomology.isoCocyclesâ_inv_comp_iCocycles_assoc, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, pOpcycles_restrictionOpcyclesIso_hom, HomologicalComplexâ.Îč_totalShiftâIso_hom_f, instEpiFRestrictionToTruncGE', forgetEval_inv_app, ChainComplex.mk_X_1, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, CochainComplex.mk_X_1, mapBifunctorââ.Îč_Dâ_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, CochainComplex.Îč_mapBifunctorShiftâIso_hom_f, shortComplexFunctor_obj_Xâ, AlgebraicTopology.DoldKan.Q_f_idem, CochainComplex.HomComplex.Cochain.single_v_eq_zero, Hom.prev_eq, CategoryTheory.InjectiveResolution.cochainComplex_d, CochainComplex.mappingCone.map_ÎŽ, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_inv, ChainComplex.linearYonedaObj_X, CochainComplex.ConnectData.restrictionGEIso_hom_f, Hom.sqFrom_id
|
XIsoOfEq đ | CompOp | 58 mathmath: XIsoOfEq_hom_comp_XIsoOfEq_hom, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, XIsoOfEq_hom_comp_d_assoc, CochainComplex.homotopyUnop_hom_eq, XIsoOfEq_inv_naturality_assoc, CochainComplex.XIsoOfEq_shift, natIsoSc'_inv_app_Ïâ, XIsoOfEq_inv_comp_XIsoOfEq_inv, XIsoOfEq_inv_naturality, XIsoOfEq_rfl, natIsoSc'_hom_app_Ïâ, CochainComplex.shiftFunctorZero_inv_app_f, XIsoOfEq_hom_comp_d, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, CochainComplex.shiftFunctorAdd'_inv_app_f', CochainComplex.shiftFunctorAdd'_inv_app_f, XIsoOfEq_hom_comp_XIsoOfEq_inv_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_inv, CochainComplex.shiftFunctorZero'_hom_app_f, XIsoOfEq_inv_comp_XIsoOfEq_hom_assoc, CochainComplex.homotopyOp_hom_eq, CochainComplex.shiftFunctorAdd_inv_app_f, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, XIsoOfEq_hom_naturality_assoc, XIsoOfEq_hom_comp_XIsoOfEq_hom_assoc, d_comp_XIsoOfEq_inv_assoc, XIsoOfEq_inv_comp_d, XIsoOfEq_inv_comp_d_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_hom_assoc, d_comp_XIsoOfEq_hom_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_hom, CochainComplex.shiftFunctorZero'_inv_app_f, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, CochainComplex.shiftFunctorZero_hom_app_f, CochainComplex.shiftFunctorAdd'_hom_app_f', d_comp_XIsoOfEq_hom, CochainComplex.shiftEval_hom_app, XIsoOfEq_inv_comp_XIsoOfEq_hom, CochainComplex.shiftFunctorAdd_hom_app_f, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, CochainComplex.shiftFunctorAdd'_hom_app_f, CochainComplex.shiftFunctorComm_hom_app_f, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, CochainComplex.shiftEval_inv_app, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, XIsoOfEq_hom_comp_XIsoOfEq_inv, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, d_comp_XIsoOfEq_inv, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_inv_assoc, XIsoOfEq_hom_naturality, XIsoOfEq_inv_comp_XIsoOfEq_inv_assoc, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, Rep.FiniteCyclicGroup.resolution.Ï_f, natIsoSc'_inv_app_Ïâ, natIsoSc'_hom_app_Ïâ
|
comp đ | CompOp | â |
d đ | CompOp | 325 mathmath: ChainComplex.truncate_map_f, double_d_eq_zeroâ, mapBifunctorââ.d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, CochainComplex.mappingCone.inr_f_d_assoc, AlgebraicTopology.NormalizedMooreComplex.obj_d, pOpcycles_opcyclesToCycles_iCycles_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, CochainComplex.HomComplex.Cochain.ÎŽ_single, groupCohomology.inhomogeneousCochains.d_def, extend.d_comp_eq_zero_iff, CochainComplex.augmentTruncate_inv_f_zero, groupCohomology.eq_dââ_comp_inv, ChainComplex.mkAux_eq_shortComplex_mk_d_comp_d, coneOfHasLimitEval_pt_d, op_d, opSymm_d, groupCohomology.eq_dââ_comp_inv, toCycles_i, groupHomology.eq_dââ_comp_inv, leftUnitor'_inv_comm, Rep.barComplex.d_def, ComplexShape.Embedding.liftExtend.comm_assoc, HomologicalComplexâ.comm_f, CategoryTheory.ProjectiveResolution.ofComplex_d_1_0, CategoryTheory.Functor.mapHomologicalComplex_obj_d, mapBifunctorââ.dâ_eq, groupHomology.comp_dââ_eq, CochainComplex.ConnectData.d_ofNat, CategoryTheory.Functor.mapHomologicalComplex_map_f, HomologicalComplexâ.totalAux.dâ_eq, CochainComplex.mappingCone.d_snd_v, p_fromOpcycles, CochainComplex.HomComplex.Cochain.ÎŽ_fromSingleMk, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, HomologicalComplexâ.d_f_comp_d_f, extend_op_d_assoc, groupCohomology.comp_dââ_eq, CategoryTheory.InjectiveResolution.of_def, CategoryTheory.ProjectiveResolution.cochainComplex_d, CochainComplex.HomComplex.Cochain.ofHom_v_comp_d, groupCohomology.dArrowIsoââ_inv_right, mapBifunctorââ.dâ_eq, CochainComplex.ConnectData.d_zero_one, groupCohomology.eq_dââ_comp_inv_assoc, groupCohomology.eq_dââ_comp_inv_apply, CategoryTheory.InjectiveResolution.complex_d_comp, groupCohomology.eq_dââ_comp_inv_apply, single_obj_d, Rep.standardComplex.d_eq, AlgebraicTopology.alternatingFaceMapComplex_obj_d, XIsoOfEq_hom_comp_d_assoc, truncLE'_d_eq_toCycles, Homotopy.prevD_succ_cochainComplex, d_toCycles_assoc, CochainComplex.mappingCone.inr_f_d, CochainComplex.HomComplex.ÎŽ_v, d_comp_d_assoc, CochainComplex.fromSingleâEquiv_apply_coe, dgoToHomologicalComplex_obj_d, shortComplexFunctor'_map_Ïâ, groupHomology.dââArrowIso_hom_left, CochainComplex.of_d, mapBifunctorMapHomotopy.commâ, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d, fromOpcycles_d_assoc, restriction_d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, dTo_eq, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, groupHomology.eq_dââ_comp_inv, groupCohomology.dArrowIsoââ_hom_right, coconeOfHasColimitEval_pt_d, homotopyCofiber.inrX_d_assoc, CochainComplex.mappingCone.d_snd_v'_assoc, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, d_pOpcycles, ChainComplex.toSingleâEquiv_apply_coe, SimplicialObject.Splitting.nondegComplex_d, HomologicalComplexâ.d_comm, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero_assoc, groupHomology.inhomogeneousChains.d_def, HomologicalComplexâ.d_f_comp_d_f_assoc, ChainComplex.mk_d_1_0, CochainComplex.of_d_ne, groupCohomology.comp_dââ_eq, CochainComplex.ConnectData.d_negSucc, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d_assoc, HomologicalComplexâ.dâ_eq, Homotopy.prevD_chainComplex, groupCohomology.comp_dââ_eq, CochainComplex.mk_d_2_0, restrictionToTruncGE'.comm_assoc, iCycles_d, prevD_nat, groupCohomology.dArrowIsoââ_inv_left, d_comp_eqToHom, restriction_d, restrictionToTruncGE'.comm, groupHomology.eq_dââ_comp_inv_apply, XIsoOfEq_hom_comp_d, ChainComplex.augmentTruncate_inv_f_succ, leftUnitor'_inv_comm_assoc, SimplicialObject.Splitting.ÎčSummand_comp_d_comp_ÏSummand_eq_zero, CochainComplex.ConnectData.d_sub_two_sub_one, Homotopy.nullHomotopicMap_f, d_toCycles, groupHomology.comp_dââ_eq, d_pOpcycles_assoc, CategoryTheory.ProjectiveResolution.of_def, HomologicalComplexâ.totalAux.dâ_eq', CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, CategoryTheory.InjectiveResolution.ofCocomplex_d_0_1, HomologicalComplexâ.totalAux.dâ_eq, groupCohomology.dArrowIsoââ_hom_left, xPrevIso_comp_dTo, prevD_eq, mapBifunctor.dâ_eq, groupCohomology.eq_dââ_comp_inv_apply, extend_single_d, CochainComplex.singleFunctor_obj_d, extend_d_to_eq_zero, groupHomology.dââArrowIso_inv_right, truncGE'_d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.Îâ.Obj.Termwise.mapMono_ÎŽâ', CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d, truncGE'.homologyData_right_g', homotopyCofiber.d_fstX, shortComplexFunctor_map_Ïâ, extend.rightHomologyData.d_comp_desc_eq_zero_iff, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, CochainComplex.HomComplex.Cochain.ofHoms_v_comp_d, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, CochainComplex.ConnectData.dâ_comp, AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq, AlgebraicTopology.normalizedMooreComplex_objD, groupHomology.eq_dââ_comp_inv_assoc, shortComplexFunctor_map_Ïâ, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp, d_comp_d', shortComplexFunctor_obj_f, CochainComplex.mappingCone.d_snd_v_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, CochainComplex.shiftFunctor_map_f, CochainComplex.mappingCone.d_snd_v', extend_op_d, CategoryTheory.ProjectiveResolution.complex_d_comp_Ï_f_zero, mapBifunctor.d_eq, unopSymm_d, Homotopy.nullHomotopicMap_f_of_not_rel_right, shortComplexFunctor'_obj_g, CochainComplex.mappingCone.d_fst_v_assoc, CochainComplex.truncate_map_f, ChainComplex.augmentTruncate_hom_f_succ, ComplexShape.Embedding.liftExtend.comm, CategoryTheory.ProjectiveResolution.exact_succ, xPrevIso_comp_dTo_assoc, CochainComplex.ConnectData.cochainComplex_d, homotopyCofiber.inlX_d, mapBifunctorââ.dâ_eq, groupHomology.eq_dââ_comp_inv, homologicalComplexToDGO_map_f, groupHomology.eq_dââ_comp_inv_assoc, truncGE'_d_eq_fromOpcycles, ComplexShape.Embedding.homRestrict.comm_assoc, HomologicalComplexâ.comm_f_assoc, d_comp_XIsoOfEq_inv_assoc, XIsoOfEq_inv_comp_d, CategoryTheory.ProjectiveResolution.complex_d_succ_comp, Homotopy.dNext_succ_chainComplex, XIsoOfEq_inv_comp_d_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp_assoc, CochainComplex.HomComplex.ÎŽ_zero_cochain_v, CochainComplex.HomComplex.Cochain.ÎŽ_toSingleMk, HomologicalComplexâ.ofGradedObject_X_d, d_comp_XIsoOfEq_hom_assoc, CochainComplex.mappingCone.inl_v_d_assoc, truncLE'_d_eq, ChainComplex.mk'_d, groupHomology.eq_dââ_comp_inv_assoc, shortComplexFunctor'_map_Ïâ, Rep.standardComplex.d_comp_Δ, homotopyCofiber.d_sndX, alternatingConst_d, asFunctor_obj_d, ChainComplex.augmentTruncate_hom_f_zero, kernel_from_eq_kernel, HomologicalComplexâ.dâ_eq, extend_d_from_eq_zero, Homotopy.nullHomotopicMap'_f_of_not_rel_left, coconeOfHasColimitEval_Îč_app_f, Homotopy.nullHomotopicMap_f_of_not_rel_left, groupCohomology.eq_dââ_comp_inv, CategoryTheory.InjectiveResolution.cochainComplex_d_assoc, HomologicalComplexâ.shape_f, image_eq_image, ComplexShape.Embedding.homRestrict.comm, ChainComplex.truncate_obj_d, inhomogeneousCochains.d_eq, image_to_eq_image, extend.comp_d_eq_zero_iff, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne_assoc, HomologicalComplexâ.ofGradedObject_d_f, eqToHom_comp_d, CochainComplex.mappingCone.d_fst_v'_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp_assoc, CochainComplex.augmentTruncate_inv_f_succ, double_d, CochainComplex.mappingCone.inl_v_d, ChainComplex.linearYonedaObj_d, Hom.comm_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, homotopyCofiber.inrX_d, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CochainComplex.ConnectData.dâ_comp_assoc, CochainComplex.mappingCone.d_fst_v', d_comp_XIsoOfEq_hom, mapBifunctor.dâ_eq', CochainComplex.augmentTruncate_hom_f_succ, d_comp_d, homologicalComplexToDGO_obj_d, HomologicalComplexâ.flip_X_d, ChainComplex.chainComplex_d_succ_succ_zero, d_eqToHom_assoc, dNext_eq, CochainComplex.shiftFunctor_obj_d', AlgebraicTopology.DoldKan.Nâ_obj_X_d, coneOfHasLimitEval_Ï_app_f, mapBifunctorââ.d_eq, CochainComplex.cm5b.I_d, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne, CategoryTheory.ProjectiveResolution.exactâ, homotopyCofiber.inlX_d_assoc, homotopyCofiber_d, CochainComplex.HomComplex.Cochain.d_comp_ofHom_v, CochainComplex.ConnectData.comp_dâ, ChainComplex.augmentTruncate_inv_f_zero, shortComplexFunctor'_map_Ïâ, CochainComplex.HomComplex.Cochain.d_comp_ofHoms_v, asFunctor_map_f, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp, extend.d_eq, shortComplexFunctor_map_Ïâ, mapBifunctor.dâ_eq', shortComplexFunctor_obj_g, CochainComplex.cochainComplex_d_succ_succ_zero, Hom.comm', dFrom_comp_xNextIso_assoc, HomologicalComplexâ.total_d, pOpcycles_opcyclesToCycles_iCycles, extend_d_eq, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0, p_fromOpcycles_assoc, CategoryTheory.InjectiveResolution.exact_succ, ChainComplex.mk_d, CategoryTheory.ProjectiveResolution.liftFOne_zero_comm, CochainComplex.ConnectData.comp_dâ_assoc, HomologicalComplexâ.dâ_eq', CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero, groupHomology.dââArrowIso_hom_right, Homotopy.dNext_cochainComplex, Homotopy.nullHomotopicMap'_f, CochainComplex.mk'_d_1_0, extend.leftHomologyData.lift_d_comp_eq_zero_iff, Homotopy.nullHomotopicMap'_f_of_not_rel_right, ChainComplex.mk'_d_1_0, fromOpcycles_d, iCycles_d_assoc, HomologicalComplexâ.dâ_eq', groupHomology.inhomogeneousChains.d_eq, groupHomology.eq_dââ_comp_inv_apply, CategoryTheory.InjectiveResolution.exactâ, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_succ_succ, shortComplexFunctor'_obj_f, double_d_eq_zeroâ, unop_d, truncGE'.homologyÎč_truncGE'XIsoOpcycles_inv_d, HomologicalComplexâ.flip_d_f, dFrom_eq, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, mapBifunctorââ.dâ_eq, d_comp_XIsoOfEq_inv, ChainComplex.of_d, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, mapBifunctorââ.dâ_eq, homotopyCofiber.d_sndX_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, dNext_nat, CategoryTheory.ProjectiveResolution.complex_d_comp_Ï_f_zero_assoc, CochainComplex.HomComplex.Cochain.diff_v, Hom.comm, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, shape, CochainComplex.truncate_obj_d, dFrom_comp_xNextIso, mapBifunctorââ.dâ_eq, groupCohomology.eq_dââ_comp_inv_assoc, restriction_d_eq_assoc, HomologicalComplexâ.d_comm_assoc, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, groupHomology.dââArrowIso_inv_left, HomologicalComplexâ.totalAux.dâ_eq', d_eqToHom, CochainComplex.augmentTruncate_hom_f_zero, groupHomology.eq_dââ_comp_inv_apply, CategoryTheory.ProjectiveResolution.cochainComplex_d_assoc, ChainComplex.of_d_ne, CochainComplex.mk_d_1_0, rightUnitor'_inv_comm, groupCohomology.eq_dââ_comp_inv_assoc, CategoryTheory.InjectiveResolution.descFOne_zero_comm, mapBifunctor.dâ_eq, ChainComplex.mk_d_2_1, kernel_eq_kernel, homotopyCofiber.d_fstX_assoc, toCycles_i_assoc, CochainComplex.shiftFunctor_obj_d, AlgebraicTopology.DoldKan.Îâ.Obj.Termwise.mapMono_ÎŽâ, CochainComplex.mappingCone.d_fst_v, groupHomology.comp_dââ_eq, CochainComplex.HomComplex_d_hom_apply, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, CategoryTheory.InjectiveResolution.cochainComplex_d
|
dFrom đ | CompOp | 22 mathmath: dFrom_comp_xNextIsoSelf, dFrom_eq_zero, Hom.comm_from_apply, Homotopy.mkInductiveAuxâ, Hom.sqFrom_comp, dTo_comp_dFrom, Homotopy.mkCoinductiveAuxâ_add_one, Homotopy.mkCoinductiveAuxâ_zero, kernel_from_eq_kernel, Homotopy.mkCoinductiveAuxâ, dNext_eq_dFrom_fromNext, Hom.sqFrom_left, Hom.comm_from, Hom.sqFrom_right, Hom.comm_from_assoc, dFrom_comp_xNextIso_assoc, dFrom_eq, dFrom_comp_xNextIso, Homotopy.mkInductiveAuxâ_zero, dFrom_comp_xNextIsoSelf_assoc, Homotopy.mkInductiveAuxâ_add_one, Hom.sqFrom_id
|
dTo đ | CompOp | 20 mathmath: Homotopy.mkInductiveAuxâ, dTo_eq_zero, Hom.comm_to_apply, xPrevIsoSelf_comp_dTo, dTo_eq, prevD_eq_toPrev_dTo, dTo_comp_dFrom, xPrevIso_comp_dTo, Hom.comm_to, Homotopy.mkCoinductiveAuxâ_add_one, xPrevIso_comp_dTo_assoc, Homotopy.mkCoinductiveAuxâ_zero, xPrevIsoSelf_comp_dTo_assoc, Homotopy.mkCoinductiveAuxâ, image_to_eq_image, Hom.sqTo_right, Hom.sqTo_left, Hom.comm_to_assoc, Homotopy.mkInductiveAuxâ_zero, Homotopy.mkInductiveAuxâ_add_one
|
eval đ | CompOp | 30 mathmath: evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, instPreservesFiniteLimitsEvalOfHasFiniteLimits, eval_map, forgetEval_hom_app, instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, isSeparator_coproduct_separatingFamily, instPreservesZeroMorphismsEval, instHasLimitDiscreteWalkingPairCompPairEval, eval_obj, instPreservesColimitsOfShapeEvalOfHasColimitsOfShape, AlgebraicTopology.DoldKan.natTransPInfty_f_app, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_r, singleCompEvalIsoSelf_inv_app, instPreservesLimitsOfShapeEvalOfHasLimitsOfShape, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CochainComplex.shiftEval_hom_app, singleCompEvalIsoSelf_hom_app, evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, instPreservesFiniteColimitsEvalOfHasFiniteColimits, instPreservesBinaryBiproductEval, CochainComplex.shiftEval_inv_app, eval_additive, instHasBinaryBiproductObjEval, shortExact_iff_degreewise_shortExact, instHasColimitDiscreteWalkingPairCompPairEval, isZero_single_comp_eval, exact_iff_degreewise_exact, forgetEval_inv_app
|
forget đ | CompOp | 6 mathmath: instFaithfulGradedObjectForget, forget_map, forgetEval_hom_app, forget_obj, HomologicalComplexâ.total.forget_map, forgetEval_inv_app
|
forgetEval đ | CompOp | 2 mathmath: forgetEval_hom_app, forgetEval_inv_app
|
id đ | CompOp | â |
instCategory đ | CompOp | 1377 mathmath: AlgebraicTopology.DoldKan.natTransPInfty_app, HomotopyCategory.spectralObjectMappingCone_ÎŽ'_app, DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp, CochainComplex.acyclic_op, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoXâCochainComplexMapSingleFunctorOfNatXâ, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex, eqToHom_f, CochainComplex.triangleOfDegreewiseSplit_objâ, CochainComplex.mappingConeCompTriangleh_commâ_assoc, extendSingleIso_inv_f, CochainComplex.HomComplex.Cochain.rightShiftAddEquiv_symm_apply, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, singleMapHomologicalComplex_hom_app_ne, homotopyEquivalences_le_quasiIso, ChainComplex.truncate_map_f, CategoryTheory.NatIso.mapHomologicalComplex_inv_app_f, instPreservesLimitsOfShapeSingle, CochainComplex.HomComplex.Cochain.fromSingleMk_neg, CochainComplex.mappingCone.ÎŽ_inl, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, rightUnitor'_inv, ComplexShape.Embedding.truncLEFunctor_obj, CategoryTheory.Functor.mapHomologicalComplexIdIso_hom_app_f, HomotopyCategory.quotient_map_out_comp_out, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, DerivedCategory.right_fac, isZero_single_obj_X, CochainComplex.HomComplex.Cocycle.fromSingleMk_add, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, singleMapHomologicalComplex_hom_app_self, ÏTruncGE_naturality_assoc, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, truncGE.rightHomologyMapData_ÏQ, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, CochainComplex.HomComplex.Cocycle.leftShiftAddEquiv_symm_apply, opcyclesMap_comp, truncLEMap_comp_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, instPreservesColimitsOfShapeSingle, CochainComplex.mappingConeCompTriangle_objâ, pOpcycles_singleObjOpcyclesSelfIso_inv, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_Îč, quasiIsoAt_iff_comp_right, isZero_single_obj_homology, AlgebraicTopology.DoldKan.Nâ_map_f, cyclesFunctor_map, CochainComplex.HomComplex.Cocycle.equivHom_symm_apply, CochainComplex.isStrictlyGE_shift, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, CochainComplex.mappingCone.id, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_iCycles, CochainComplex.shiftFunctorZero_eq, instIsStrictlySupportedOfNat, HomologicalComplexâ.totalShiftâIso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.Îč'_f_zero, CategoryTheory.ProjectiveResolution.quasiIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, opcyclesMapIso_inv, CochainComplex.augmentTruncate_inv_f_zero, AlgebraicTopology.singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace, biprod_inr_desc_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, CochainComplex.HomComplex.Cochain.leftShift_smul, biprod_lift_fst_f_assoc, homologyÎč_singleObjOpcyclesSelfIso_inv_assoc, CochainComplex.HomComplex.Cochain.fromSingleEquiv_fromSingleMk, ComplexShape.Embedding.truncGE'Functor_obj, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.ÎâNondegComplexIso_inv_f, Homotopy.nullHomotopicMap_comp, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, shortComplexFunctor'_obj_Xâ, CochainComplex.mappingCone.triangle_morâ, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, AlgebraicTopology.DoldKan.identity_Nâ, HomologicalComplexâ.shiftFunctorâXXIso_refl, AlgebraicTopology.DoldKan.PInfty_comp_QInfty, CochainComplex.IsKInjective.nonempty_homotopy_zero, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, unopFunctor_obj, CategoryTheory.Abelian.LeftResolution.chainComplexMap_zero, groupHomology.chainsMap_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, CochainComplex.instIsStrictlyLEObjHomologicalComplexIntUpSingle, CategoryTheory.InjectiveResolution.self_Îč, HomologicalComplexâ.comm_f, CochainComplex.exactAt_op, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Abelian.LeftResolution.chainComplexMap_comp, CategoryTheory.Functor.mapHomologicalComplex_linear, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_Ï_assoc, HomotopyCategory.isZero_quotient_obj_iff, CategoryTheory.Abelian.LeftResolution.chainComplexMap_id, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_functor, restrictionMap_comp, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp, CategoryTheory.Functor.mapHomotopyEquiv_inv, AlgebraicTopology.DoldKan.PInfty_idem, AlgebraicTopology.DoldKan.homotopyPInftyToId_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Functor.mapHomologicalComplex_obj_d, HomologicalComplexâ.total.mapIso_hom, instPreservesFiniteLimitsEvalOfHasFiniteLimits, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, opcyclesOpIso_inv_naturality_assoc, CochainComplex.instLinearIntFunctorSingleFunctors, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, inl_biprodXIso_inv_assoc, cyclesMap_comp_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, instIsStableUnderRetractsQuasiIso, biprod_inr_snd_f_assoc, CategoryTheory.Functor.mapHomologicalComplex_map_f, CochainComplex.IsKProjective.homotopyZero_def, biprod_inl_snd_f_assoc, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_Ï, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_succ, HomologicalComplexâ.totalAux.dâ_eq, CochainComplex.HomComplex.Cochain.rightUnshift_neg, instIsNormalEpiCategory, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, CochainComplex.HomComplex.Cochain.ÎŽ_fromSingleMk, CategoryTheory.Functor.mapHomotopyEquiv_homotopyHomInvId, eval_map, map_isStrictlySupported, AlgebraicTopology.DoldKan.QInfty_idem, stupidTruncMap_comp, to_single_hom_ext_iff, CochainComplex.HomComplex.Cochain.map_v, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, biprodXIso_hom_fst, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, CochainComplex.truncate_obj_X, HomologicalComplexâ.d_f_comp_d_f, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, HomologicalComplexâ.flipEquivalence_unitIso, add_f_apply, extend_op_d_assoc, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_hom_app, CochainComplex.ConnectData.map_comp_map, groupCohomology.cochainsMap_comp, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, CategoryTheory.Functor.map_homogical_complex_additive, CochainComplex.mappingConeCompTriangle_morâ, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d, HomologicalComplexâ.dâ_eq_zero', CochainComplex.HomComplex.Cochain.shift_add, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, CategoryTheory.InjectiveResolution.of_def, CochainComplex.HomComplex.Cochain.comp_id, CategoryTheory.Preadditive.DoldKan.equivalence_functor, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.self_Ï, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, singleObjCyclesSelfIso_inv_homologyÏ, CochainComplex.HomComplex.Cochain.toSingleMk_neg, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ_assoc, unopInverse_map, CategoryTheory.NatTrans.mapHomologicalComplex_app_f, CochainComplex.shiftShortComplexFunctorIso_add'_hom_app, CochainComplex.HomComplex.Cochain.map_zero, CochainComplex.cm5b.fac, natIsoSc'_inv_app_Ïâ, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, CochainComplex.instIsCompatibleWithShiftHomologicalComplexIntUpQuasiIso, CochainComplex.HomComplex.Cochain.toSingleMk_v, unopEquivalence_functor, CochainComplex.IsKInjective.rightOrthogonal, single_obj_d, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, HomotopyCategory.quotient_inverts_homotopyEquivalences, CochainComplex.IsKInjective.Qh_map_bijective, CochainComplex.HomComplex.Cochain.leftShiftLinearEquiv_apply, AlgebraicTopology.alternatingFaceMapComplex_obj_d, CochainComplex.HomComplex.Cochain.shift_neg, CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, instFaithfulGradedObjectForget, biprod_lift_fst_f, DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, ÎčTruncLE_naturality, CochainComplex.instIsIsoIntÏTruncGEOfIsStrictlyGE, HomologicalComplexâ.toGradedObjectFunctor_obj, forget_map, CategoryTheory.NatTrans.mapHomologicalComplex_id, HomologicalComplexâ.ÎčTotalOrZero_map_assoc, asFunctor_obj_X, CochainComplex.Îč_mapBifunctorShiftâIso_hom_f_assoc, HomologicalComplexâ.ÎčTotal_map, CochainComplex.homotopyUnop_hom_eq, CochainComplex.HomComplex.Cochain.toSingleMk_add, CategoryTheory.NatTrans.mapHomotopyCategory_app, HomologicalComplexâ.Îč_totalShiftâIso_hom_f_assoc, CategoryTheory.Functor.mapProjectiveResolution_Ï, cyclesMap_id, complexOfFunctorsToFunctorToComplex_obj, opcyclesOpIso_inv_naturality, CategoryTheory.instIsIsoToRightDerivedZero', HomologicalComplexâ.Îč_Dâ_assoc, opEquivalence_unitIso, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, CochainComplex.instIsStrictlyGEObjHomologicalComplexIntUpSingle, forgetEval_hom_app, homologyÎč_singleObjOpcyclesSelfIso_inv, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_inv_assoc, CochainComplex.fromSingleâEquiv_apply_coe, dgoToHomologicalComplex_obj_d, HomotopyCategory.quotient_map_eq_zero_iff, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, CochainComplex.HomComplex.Cocycle.equivHomShift'_symm_apply, shortComplexFunctor'_map_Ïâ, isZero_zero, CategoryTheory.Abelian.LeftResolution.exactAt_map_chainComplex_succ, CochainComplex.mappingCone.inl_v_triangle_morâ_f, HomotopyCategory.instFullHomologicalComplexQuotient, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, HomologicalComplexâ.dâ_eq_zero, CochainComplex.XIsoOfEq_shift, HomologicalComplexâ.Îč_totalShiftâIso_inv_f, extendSingleIso_inv_f_assoc, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, natIsoSc'_inv_app_Ïâ, CochainComplex.ÎčTruncLE_naturality_assoc, HomologicalComplexâ.Îč_totalDesc_assoc, truncGEMap_comp_assoc, HomotopyCategory.isoOfHomotopyEquiv_hom, CochainComplex.HomComplex.Cochain.rightUnshift_comp, CochainComplex.HomComplex.Cochain.rightUnshift_units_smul, AlgebraicTopology.DoldKan.Nâ_obj_p, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc, dgoEquivHomologicalComplex_unitIso, CochainComplex.mappingCone.inr_triangleÎŽ, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_map_f, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_eq, mapBifunctorFlipIso_hom_naturality_assoc, homotopyCofiber.inrCompHomotopy_hom, CategoryTheory.Equivalence.mapHomologicalComplex_unitIso, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, opFunctor_obj, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, natIsoSc'_hom_app_Ïâ, instQuasiIsoAtMapOppositeSymmUnopFunctorOp, CochainComplex.ÏTruncGE_naturality, truncGE'Map_comp, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CochainComplex.mappingCone.inr_descShortComplex_assoc, CategoryTheory.Idempotents.instIsIdempotentCompleteHomologicalComplex, ChainComplex.singleâObjXSelf, instEpiGShortComplexTruncLE, ComplexShape.Embedding.restrictionFunctor_map, cyclesOpIso_inv_naturality_assoc, AlgebraicTopology.DoldKan.QInfty_idem_assoc, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, CochainComplex.mappingConeCompHomotopyEquiv_commâ_assoc, Hom.sqFrom_comp, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, HomologicalComplexUpToQuasiIso.Q_inverts_homotopyEquivalences, shortComplexFunctor_obj_Xâ, singleObjCyclesSelfIso_hom_naturality, cylinder.ÏCompÎčâHomotopy.nullHomotopicMap_eq, CochainComplex.HomComplex.Cochain.fromSingleMk_postcomp, singleObjCyclesSelfIso_inv_naturality_assoc, sub_f_apply, instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences, HomotopyCategory.eq_of_homotopy, homotopyCofiber.descSigma_ext_iff, instRespectsIsoQuasiIso, Homotopy.map_nullHomotopicMap', CochainComplex.HomComplex.Cochain.shift_zero, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_unitIso, HomologicalComplexâ.flipEquivalenceUnitIso_hom_app_f_f, CochainComplex.shiftFunctorZero_inv_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d_assoc, ChainComplex.toSingleâEquiv_apply_coe, opcyclesMap_id, CategoryTheory.Functor.mapProjectiveResolution_complex, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_inverse, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, HomologicalComplexâ.Îč_totalShiftâIso_inv_f_assoc, AlgebraicTopology.alternatingFaceMapComplex_map_f, CochainComplex.HomComplex.Cochain.leftShift_comp, HomologicalComplexâ.d_comm, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, CochainComplex.triangleOfDegreewiseSplit_objâ, Rep.standardComplex.ΔToSingleâ_comp_eq, AlgebraicTopology.DoldKan.Îâ'_obj, inr_biprodXIso_inv, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d_assoc, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id_assoc, ChainComplex.exactAt_succ_single_obj, stupidTruncMap_id, homotopyCofiber.inrCompHomotopy_hom_desc_hom, CochainComplex.g_shortComplexTruncLEXâToTruncGE, HomologicalComplexâ.d_f_comp_d_f_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_inv, instHasFilteredColimitsOfSize, Hom.isoOfComponents_inv_f, CochainComplex.homologyFunctor_shift, CategoryTheory.Idempotents.DoldKan.hΔ, cyclesOpNatIso_inv_app, opcyclesFunctor_map, ChainComplex.truncateAugment_inv_f, CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero, gradedHomologyFunctor_map, quasiIso_iff_evaluation, quasiIsoAt_comp, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, HomologicalComplexâ.Îč_Dâ, homologyMap_neg, isZero_stupidTrunc_iff, CategoryTheory.InjectiveResolution.Hom.Îč_comp_hom_assoc, CategoryTheory.InjectiveResolution.Îč_f_succ, CochainComplex.isKInjective_shift_iff, from_single_hom_ext_iff, AlgebraicTopology.DoldKan.Îâ_obj_p_app, Homotopy.nullHomotopicMap'_comp, natTransHomologyÏ_app, CategoryTheory.Idempotents.DoldKan.Nâ_map_isoÎâ_hom_app_f, CochainComplex.HomComplex.Cochain.leftShift_rightShift_eq_negOnePow_rightShift_leftShift, HomologicalComplexâ.total.mapAux.dâ_mapMap, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, dgoEquivHomologicalComplexUnitIso_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.NatTrans.mapHomologicalComplex_comp, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d_assoc, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, opcyclesMapIso_hom, CategoryTheory.InjectiveResolution.instIsIsoToRightDerivedZero'Self, HomologicalComplexâ.dâ_eq, DerivedCategory.right_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ProjectiveResolution.Hom.hom_comp_Ï_assoc, CochainComplex.HomComplex.Cochain.leftShift_rightShift, cyclesMap_comp, CochainComplex.HomComplex.Cochain.ofHom_neg, CochainComplex.isSplitEpi_to_singleFunctor_obj_of_projective, CochainComplex.HomComplex.Cocycle.toSingleMk_add, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, homologyÏ_singleObjHomologySelfIso_hom_assoc, HomologicalComplexâ.instHasTotalIntObjUpShiftFunctorâ, instQuasiIsoMapOppositeSymmUnopFunctorOp, single_obj_X_self, biprod_inr_snd_f, id_f, DerivedCategory.instLinearCochainComplexIntQ, singleMapHomologicalComplex_inv_app_self, dgoEquivHomologicalComplex_functor, AlgebraicTopology.DoldKan.compatibility_ÎâNâ_ÎâNâ_natTrans, ComplexShape.Embedding.instFaithfulHomologicalComplexExtendFunctor, HomologicalComplexâ.XXIsoOfEq_hom_ÎčTotal_assoc, extendSingleIso_hom_f_assoc, homologyMapIso_hom, AlgebraicTopology.DoldKan.ÎâNondegComplexIso_hom_f, instHasHomologyObjSingle, AlgebraicTopology.DoldKan.Îâ_obj_map, groupCohomology.cochainsMap_zero, CochainComplex.instAdditiveIntFunctorSingleFunctors, CochainComplex.shiftFunctor_obj_X, CochainComplex.mappingConeCompHomotopyEquiv_commâ, AlgebraicTopology.DoldKan.NâÎâ_hom_app_f_f, instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, CochainComplex.exactAt_succ_single_obj, CategoryTheory.Functor.mapHomologicalComplex_obj_X, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, CochainComplex.HomComplex.Cocycle.toSingleMk_mem_coboundaries_iff, groupHomology.map_chainsFunctor_shortExact, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, ÎčTruncLE_naturality_assoc, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ, instMonoFShortComplexTruncLE, CochainComplex.HomComplex.Cochain.map_add, CochainComplex.homologySequenceÎŽ_quotient_mapTriangle_obj_assoc, CategoryTheory.ProjectiveResolution.extMk_hom, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, CochainComplex.HomComplex.Cochain.fromSingleMk_v, CategoryTheory.Idempotents.DoldKan.equivalence_counitIso, CategoryTheory.Functor.mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, CochainComplex.HomComplex.Cochain.fromSingleMk_add, CochainComplex.singleâ_map_f_zero, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, AlgebraicTopology.DoldKan.ÎâNâToKaroubiIso_hom_app, CochainComplex.HomComplex.Cochain.shift_smul, CategoryTheory.Functor.mapHomologicalComplex_reflects_iso, CategoryTheory.Abelian.LeftResolution.chainComplexMap_comp_assoc, CochainComplex.HomComplex.Cochain.leftShiftAddEquiv_apply, HomologicalComplexâ.instHasTotalIntObjUpCompShiftFunctorâShiftFunctorâ, opcyclesOpIso_hom_naturality_assoc, HomologicalComplexâ.XXIsoOfEq_rfl, CochainComplex.IsKInjective.homotopyZero_def, dgoToHomologicalComplex_obj_X, ChainComplex.augmentTruncate_inv_f_succ, HomotopyCategory.instEssSurjHomologicalComplexQuotient, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, HomotopyCategory.quasiIso_eq_quasiIso_map_quotient, extendMap_comp_assoc, groupCohomology.cochainsMap_id_comp, restrictionMap_id, DerivedCategory.instIsIsoMapCochainComplexIntQ, HomologicalComplexâ.Îč_Dâ_assoc, ComplexShape.Embedding.AreComplementary.hom_ext, isIso_homologyMap_shortComplexTruncLE_g, HomotopyCategory.quot_mk_eq_quotient_map, CochainComplex.HomComplex.Cocycle.toSingleMk_zero, CochainComplex.HomComplex.Cochain.rightShiftAddEquiv_apply, units_smul_f_apply, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, quasiIsoAt_unopFunctor_map_iff, CochainComplex.isIso_ÏTruncGE_iff, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, CochainComplex.HomComplex.Cochain.leftUnshift_v, CategoryTheory.NatIso.mapHomologicalComplex_hom_app_f, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_X, CochainComplex.mappingConeCompHomotopyEquiv_commâ_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, ChainComplex.quasiIsoAtâ_iff, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, groupCohomology.cochainsMap_comp_assoc, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, HomologicalComplexâ.totalFunctor_obj, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_map, CochainComplex.HomComplex.Cochain.rightShift_leftShift, mono_of_mono_f, groupHomology.isoShortComplexH1_hom, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_zero, isSeparator_coproduct_separatingFamily, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom, CochainComplex.HomComplex.Cochain.ofHom_sub, CochainComplex.instLinearHomologicalComplexIntUpShiftFunctor, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_Ï, opFunctor_map_f, instIsMultiplicativeQuasiIso, instIsIsoÏTruncGEOfIsStrictlySupported, CategoryTheory.ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self, HomologicalComplexâ.flipFunctor_obj, CochainComplex.HomComplex.Cochain.leftUnshift_smul, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, CochainComplex.instIsKInjectiveObjIntShiftFunctor, CochainComplex.mappingConeCompTriangle_morâ_naturality, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CochainComplex.HomComplex.Cochain.shiftLinearMap_apply, CategoryTheory.ProjectiveResolution.of_def, HomologicalComplexâ.totalAux.dâ_eq', CategoryTheory.ProjectiveResolution.Ï'_f_zero_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, CategoryTheory.ProjectiveResolution.Ï_f_succ, HomologicalComplexâ.totalAux.dâ_eq, ComplexShape.Embedding.homRestrict_precomp, instPreservesZeroMorphismsEval, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, CochainComplex.HomComplex.Cocycle.toSingleMk_coe, HomologicalComplexâ.shiftFunctorâXXIso_refl, AlgebraicTopology.inclusionOfMooreComplex_app, homologyMap_id, AlgebraicTopology.DoldKan.Îâ_obj_X_map, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_inv_f_f, instHasLimitDiscreteWalkingPairCompPairEval, instQuasiIsoAtOppositeMapSymmOpFunctorOp, DerivedCategory.left_fac_of_isStrictlyLE_of_isStrictlyGE, CochainComplex.shiftFunctor_map_f', HomologicalComplexâ.Îč_totalDesc, ComplexShape.Embedding.extendFunctor_map, AlgebraicTopology.DoldKan.PInfty_idem_assoc, HomologicalComplexUpToQuasiIso.Q_map_eq_of_homotopy, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, CochainComplex.ConnectData.restrictionLEIso_inv_f, Îč_mapBifunctorFlipIso_inv_assoc, extend_single_d, ComplexShape.Embedding.stupidTruncFunctor_map, singleObjHomologySelfIso_inv_homologyÎč_assoc, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_Ï', CochainComplex.HomComplex.Cochain.rightShift_zero, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_obj, Homotopy.map_nullHomotopicMap, HomologicalComplexâ.dâ_eq_zero, groupHomology.chainsFunctor_obj, zsmul_f_apply, HomologicalComplexâ.flip_X_X, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, CategoryTheory.Idempotents.DoldKan.equivalence_inverse, HomotopyCategory.instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, CochainComplex.singleFunctor_obj_d, biprod_lift_snd_f, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, homologyMap_add, Hom.isoOfComponents_hom_f, CochainComplex.quasiIso_shift_iff, cylinder.Îčâ_Ï, CochainComplex.HomComplex.Cochain.rightUnshift_v, HomotopyCategory.composableArrowsFunctor_obj, singleObjCyclesSelfIso_inv_homologyÏ_assoc, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty, biprod_inl_fst_f_assoc, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_Ï_f_zero_assoc, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, CategoryTheory.Functor.mapâHomologicalComplex_map_app, unopEquivalence_unitIso, nsmul_f_apply, g_shortComplexTruncLEXâToTruncGE, CochainComplex.shiftFunctorAdd'_inv_app_f', homotopyCofiber.inr_desc, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, AlgebraicTopology.DoldKan.NâÎâToKaroubiIso_hom_app, instHasLimitsOfShape, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_inv_f_f, opEquivalence_counitIso, HomotopyCategory.quotient_obj_surjective, inl_biprodXIso_inv, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, AlgebraicTopology.DoldKan.compatibility_Nâ_Nâ_karoubi, CochainComplex.mappingCone.map_inr, CategoryTheory.Functor.mapCochainComplexShiftIso_inv_app_f, homotopyCofiber.inr_desc_assoc, CochainComplex.shiftFunctorAdd'_eq, mapBifunctorFlipIso_hom_naturality, mono_homologyMap_shortComplexTruncLE_g, CochainComplex.shiftFunctorAdd'_inv_app_f, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, truncLEMap_comp, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d, cylinder.inrX_Ï_assoc, CochainComplex.truncateAugment_inv_f, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, homologyOp_hom_naturality_assoc, homologyMap_comp, homotopyCofiber.inlX_desc_f_assoc, biprod_inl_fst_f, CochainComplex.HomComplex.Cochain.fromSingleMk_zero, CochainComplex.mappingCone.inl_v_triangle_morâ_f_assoc, instAdditiveHomologyFunctor, AlgebraicTopology.DoldKan.P_succ, eval_obj, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_hom_app_f_f, ab5OfSize, shortComplexFunctor_map_Ïâ, HomologicalComplexâ.instHasTotalIntObjUpCompShiftFunctorâShiftFunctorâ, CochainComplex.mappingConeCompTriangle_morâ, CochainComplex.mappingCone.inr_triangleÎŽ_assoc, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, groupHomology.chainsMap_id_comp, CochainComplex.HomComplex.Cochain.leftShift_zero, comp_f, cylinder.Îčâ_Ï, CategoryTheory.Functor.mapHomotopy_hom, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_Ï'_assoc, singleObjOpcyclesSelfIso_inv_naturality, CochainComplex.instLinearIntShiftFunctor, isIso_ÎčTruncLE_iff, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, cyclesOpIso_inv_naturality, AlgebraicTopology.DoldKan.NâÎâ_compatible_with_NâÎâ, SimplicialObject.Split.nondegComplexFunctor_map_f, CochainComplex.triangleOfDegreewiseSplit_morâ, AlgebraicTopology.DoldKan.Îâ'_map_F, quasiIso_iff_comp_left, biprod_inr_fst_f, shortComplexFunctor'_obj_Xâ, opcyclesOpIso_hom_naturality, dgoEquivHomologicalComplex_counitIso, homotopyCofiber.eq_desc, truncLE'Map_id, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, CochainComplex.mappingCone.inr_f_triangle_morâ_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_coe, CategoryTheory.Functor.mapHomologicalComplexIdIso_inv_app_f, DerivedCategory.isLE_Q_obj_iff, Homotopy.compRight_hom, CochainComplex.cm5b.fac_assoc, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, AlgebraicTopology.normalizedMooreComplex_objD, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_hom_f_f, CochainComplex.IsKProjective.nonempty_homotopy_zero, instHasHomologyOppositeObjSymmOpFunctorOp, biprodXIso_hom_fst_assoc, CochainComplex.triangleOfDegreewiseSplit_objâ, CochainComplex.shiftFunctorZero'_hom_app_f, CategoryTheory.InjectiveResolution.self_cocomplex, HomologicalComplexâ.flipEquivalenceUnitIso_inv_app_f_f, CategoryTheory.ProjectiveResolution.lift_commutes_zero, AlgebraicTopology.DoldKan.QInfty_comp_PInfty, AlgebraicTopology.DoldKan.Q_idem, opcyclesMap_comp_assoc, quasiIsoAt_shortComplexTruncLE_g, HomotopyCategory.instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_NâÎâ_hom, HomologicalComplexâ.dâ_eq_zero', CategoryTheory.ProjectiveResolution.leftDerived_app_eq, CochainComplex.mappingCone.triangle_morâ, shortComplexFunctor_map_Ïâ, HomologicalComplexâ.Îč_totalShiftâIso_inv_f_assoc, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_hom_assoc, CochainComplex.HomComplex.Cocycle.leftUnshift_coe, shortComplexFunctor_obj_f, zero_f, AlgebraicTopology.normalizedMooreComplex_map, CategoryTheory.ProjectiveResolution.lift_commutes, HomologicalComplexâ.XXIsoOfEq_inv_ÎčTotal_assoc, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id, cylinder.Îčâ_Ï_assoc, homotopyCofiber.inrCompHomotopy_hom_eq_zero, AlgebraicTopology.DoldKan.Q_idem_assoc, CochainComplex.instAdditiveIntShiftFunctor, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, homologyFunctor_map, cylinder.Îčâ_Ï_assoc, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, CochainComplex.shiftFunctor_map_f, CochainComplex.quasiIsoAt_shift_iff, HomologicalComplexâ.total.mapIso_inv, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_apply, shortComplexTruncLE_f, CochainComplex.instIsKProjectiveObjIntShiftFunctor, extend_op_d, AlgebraicTopology.DoldKan.Îâ_map_app, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_Ï_assoc, shortComplexFunctor'_obj_Xâ, CategoryTheory.Idempotents.DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_hom_app, CochainComplex.HomComplex.Cochain.rightShift_smul, complexOfFunctorsToFunctorToComplex_map_app_f, CochainComplex.HomComplex.Cochain.map_comp, CategoryTheory.ProjectiveResolution.complex_d_comp_Ï_f_zero, cylinder.Îčâ_desc, opInverse_obj, CategoryTheory.ProjectiveResolution.Hom.hom_comp_Ï, isGrothendieckAbelian, mkHomToSingle_f, biprodXIso_hom_snd, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, CochainComplex.homotopyOp_hom_eq, CochainComplex.HomComplex.Cochain.map_sub, ComplexShape.Embedding.ÎčTruncLENatTrans_app, shortComplexFunctor'_obj_g, natIsoSc'_hom_app_Ïâ, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor, CochainComplex.IsKProjective.Qh_map_bijective, CategoryTheory.Equivalence.mapHomologicalComplex_functor, CochainComplex.homOfDegreewiseSplit_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_hom, cyclesOpIso_hom_naturality_assoc, HomologicalComplexâ.flipEquivalence_counitIso, CochainComplex.shiftFunctorAdd_inv_app_f, DerivedCategory.isGE_Q_obj_iff, CochainComplex.truncate_map_f, HomologicalComplexâ.Îč_totalShiftâIso_hom_f_assoc, CategoryTheory.NatTrans.mapHomologicalComplex_naturality, ChainComplex.augmentTruncate_hom_f_succ, CochainComplex.mappingCone.map_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_Ïâ, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, biprodXIso_hom_snd_assoc, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_inv_app, quasiIso_comp, CochainComplex.mappingConeCompTriangle_objâ, instPreservesZeroMorphismsHomologyFunctor, CategoryTheory.ProjectiveResolution.Ï'_f_zero, leftUnitor'_inv, HomologicalComplexâ.totalFlipIso_hom_f_Dâ, forget_obj, QuasiIsoAt.quasiIso, CategoryTheory.InjectiveResolution.desc_commutes, isSeparating_separatingFamily, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_neg, Homotopy.comp_nullHomotopicMap, CategoryTheory.InjectiveResolution.desc_commutes_assoc, single_map_f_self_assoc, isIso_ÏTruncGE_iff, homologicalComplexToDGO_map_f, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, ComplexShape.Embedding.instFullHomologicalComplexExtendFunctor, CochainComplex.exists_iso_single, groupHomology.isoShortComplexH1_inv, CochainComplex.HomComplex.Cocycle.rightShiftAddEquiv_symm_apply, CochainComplex.HomComplex.Cochain.shift_units_smul, AlgebraicTopology.DoldKan.toKaroubiCompNâIsoNâ_inv_app, CochainComplex.ConnectData.restrictionLEIso_hom_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d, CochainComplex.shiftFunctorAdd_eq, CochainComplex.HomComplex.Cochain.leftShiftLinearEquiv_symm_apply, CochainComplex.Îč_mapBifunctorShiftâIso_hom_f, CochainComplex.cm5b.instQuasiIsoIntP, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, ÏTruncGE_naturality, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, AlgebraicTopology.DoldKan.P_idem, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, ComplexShape.Embedding.instAdditiveHomologicalComplexRestrictionFunctor, ComplexShape.Embedding.homEquiv_symm_apply, HomologicalComplexâ.comm_f_assoc, cylinder.inrX_Ï, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, homologyMap_sub, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, Homotopy.comp_nullHomotopicMap', instPreservesColimitsOfShapeEvalOfHasColimitsOfShape, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, ComplexShape.Embedding.homEquiv_apply_coe, groupHomology.chainsMap_comp, HomologicalComplexâ.XXIsoOfEq_inv_ÎčTotal, AlgebraicTopology.DoldKan.natTransP_app, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero, DerivedCategory.instIsGEObjCochainComplexIntQOfIsGE, cylinder.ÏCompÎčâHomotopy.inrX_nullHomotopy_f, homologyÏ_singleObjHomologySelfIso_hom, CategoryTheory.Functor.mapHomotopyEquiv_homotopyInvHomId, HomologicalComplexâ.total.map_comp, SimplicialObject.Split.nondegComplexFunctor_obj, cyclesOpIso_hom_naturality, CochainComplex.mappingConeCompHomotopyEquiv_commâ, AlgebraicTopology.DoldKan.Nâ_obj_X, CategoryTheory.Functor.mapâHomologicalComplex_obj_obj, instHasColimitsOfShape, AlgebraicTopology.map_alternatingFaceMapComplex, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_X, CochainComplex.HomComplex.Cochain.ÎŽ_toSingleMk, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, smul_f_apply, CochainComplex.cm5b.instMonoFIntI, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, AlgebraicTopology.DoldKan.Îâ_obj_obj, CochainComplex.HomComplex.Cochain.fromSingleMk_precomp, HomologicalComplexâ.ofGradedObject_X_d, singleObjCyclesSelfIso_inv_iCycles_assoc, CochainComplex.HomComplex.Cochain.leftUnshift_add, HomologicalComplexâ.flipEquivalence_functor, Homotopy.compLeftId_hom, singleObjOpcyclesSelfIso_hom_naturality_assoc, CochainComplex.HomComplex.Cocycle.fromSingleMk_zero, zero_f_apply, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, HomotopyCategory.instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic, CochainComplex.instIsIsoIntÎčTruncLEOfIsStrictlyLE, natTransOpCyclesToCycles_app, CategoryTheory.Idempotents.DoldKan.Î_obj_map, Homotopy.add_hom, CategoryTheory.InjectiveResolution.Îč'_f_zero_assoc, Rep.standardComplex.quasiIso_forgetâ_ΔToSingleâ, instMonoÎčTruncLE, CochainComplex.shiftFunctorZero'_inv_app_f, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, inr_biprodXIso_inv_assoc, singleMapHomologicalComplex_inv_app_ne, CochainComplex.HomComplex.Cochain.rightShift_units_smul, CategoryTheory.ProjectiveResolution.self_complex, AlgebraicTopology.alternatingCofaceMapComplex_obj, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, truncLE'ToRestriction_naturality_assoc, dgoToHomologicalComplex_map_f, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexExtendFunctor, DerivedCategory.exists_iso_Q_obj_of_isGE_of_isLE, ChainComplex.truncateAugment_hom_f, shortComplexFunctor'_map_Ïâ, CochainComplex.HomComplex.Cochain.rightUnshift_smul, HomotopyCategory.composableArrowsFunctor_map, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, HomologicalComplexâ.ofGradedObject_X_X, AlgebraicTopology.DoldKan.Q_succ, AlgebraicTopology.DoldKan.natTransPInfty_f_app, instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences, cyclesMap_zero, CategoryTheory.Idempotents.DoldKan.Î_obj_obj, HomologicalComplexâ.flipEquivalence_inverse, single_map_f_self, ChainComplex.fromSingleâEquiv_symm_apply_f_zero, CochainComplex.HomComplex.Cocycle.equivHomShift'_apply, CochainComplex.instQuasiIsoIntMapHomologicalComplexUpShiftFunctor, CategoryTheory.InjectiveResolution.Hom.Îč'_comp_hom'_assoc, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ_assoc, homologyMap_zero, mapBifunctorFlipIso_flip, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.Equivalence.mapHomologicalComplex_counitIso, Homotopy.compRightId_hom, CochainComplex.isSplitMono_from_singleFunctor_obj_of_injective, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_r, AlgebraicTopology.DoldKan.ÎâNâToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, extendMap_add, CategoryTheory.Abelian.DoldKan.equivalence_inverse, cyclesFunctor_obj, CochainComplex.HomComplex.Cochain.ÎŽ_shift, CochainComplex.shiftShortComplexFunctor'_hom_app_Ïâ, CochainComplex.HomComplex.Cochain.fromSingleMk_sub, CochainComplex.toSingleâEquiv_symm_apply_f_succ, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, groupHomology.isoShortComplexH2_hom, shortComplexTruncLE_shortExact, CochainComplex.IsKProjective.leftOrthogonal, instHasTwoOutOfThreePropertyQuasiIso, singleCompEvalIsoSelf_inv_app, asFunctor_obj_d, ComplexShape.Embedding.truncLE'Functor_map, ChainComplex.augmentTruncate_hom_f_zero, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.ProjectiveResolution.lift_commutes_assoc, shortComplexFunctor_obj_Xâ, HomologicalComplexâ.ÎčTotalOrZero_map, restrictionMap_comp_assoc, HomotopyCategory.quotient_obj_as, HomologicalComplexâ.totalShiftâIso_trans_totalShiftâIso, DerivedCategory.exists_iso_Q_obj_of_isGE, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_inv_app, CochainComplex.cm5b.instMonoIntI, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, AlgebraicTopology.DoldKan.P_add_Q, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatNâ, shortComplexTruncLE_Xâ, HomologicalComplexâ.dâ_eq, ChainComplex.toSingleâEquiv_symm_apply_f_zero, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, ChainComplex.instHasHomologyNatObjAlternatingConst, CochainComplex.HomComplex.Cocycle.toSingleMk_sub, truncLEMap_id, ComplexShape.Embedding.ÏTruncGENatTrans_app, instHasFiniteColimits, ComplexShape.Embedding.truncLEFunctor_map, CochainComplex.isKProjective_iff_leftOrthogonal, HomologicalComplexâ.flip_totalFlipIso, quasiIsoAt_iff_evaluation, truncGE.rightHomologyMapData_ÏH, CategoryTheory.InjectiveResolution.extMk_hom, groupCohomology.isoShortComplexH1_hom, HomologicalComplexâ.total.map_comp_assoc, quasiIsoAt_iff', CochainComplex.HomComplex.Cocycle.fromSingleMk_sub, homologyFunctorSingleIso_inv_app, instPreservesLimitsOfShapeEvalOfHasLimitsOfShape, HomologicalComplexâ.shape_f, homotopy_congruence, ComplexShape.Embedding.truncLE'Functor_obj, CochainComplex.shortComplexTruncLE_shortExact, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CochainComplex.cm5b.i_f_comp, CochainComplex.HomComplex.Cochain.ÎŽ_rightUnshift, CochainComplex.mappingCone.inr_snd, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, ChainComplex.truncate_obj_d, HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, CochainComplex.HomComplex.Cochain.leftUnshift_units_smul, CochainComplex.mappingCone.inl_fst, CochainComplex.quasiIsoAtâ_iff, Rep.FiniteCyclicGroup.resolution_complex, CochainComplex.HomComplex.Cochain.rightShiftLinearEquiv_apply, singleObjHomologySelfIso_hom_naturality, gradedHomologyFunctor_obj, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, groupHomology.chainsFunctor_map, CochainComplex.HomComplex.Cocycle.shift_coe, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, cylinder.Îčâ_desc_assoc, dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem_assoc, CochainComplex.isStrictlyLE_shift, instQuasiIsoOppositeMapSymmOpFunctorOp, CochainComplex.ConnectData.restrictionGEIso_inv_f, restrictionToTruncGE'_naturality_assoc, singleObjHomologySelfIso_hom_naturality_assoc, CategoryTheory.NatTrans.mapHomologicalComplex_naturality_assoc, singleObjHomologySelfIso_inv_naturality_assoc, instHasBinaryBiproduct, CochainComplex.instFullIntSingleFunctor, HomologicalComplexâ.ofGradedObject_d_f, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, CochainComplex.HomComplex.Cochain.ÎŽ_rightShift, DerivedCategory.right_fac_of_isStrictlyLE, HomologicalComplexâ.Îč_totalShiftâIso_inv_f, CochainComplex.ConnectData.map_id, AlgebraicTopology.DoldKan.Nâ_obj_p_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, CochainComplex.HomComplex.Cochain.leftShift_v, CochainComplex.HomComplex.Cochain.rightUnshift_add, CochainComplex.HomComplex.Cochain.toSingleMk_zero, CochainComplex.homologySequenceÎŽ_quotient_mapTriangle_obj, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_hom_f_f, HomotopyCategory.homologyFunctor_shiftMap_assoc, CochainComplex.augmentTruncate_inv_f_succ, HomologicalComplexâ.totalShiftâIso_hom_naturality, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, CategoryTheory.Functor.mapHomotopyCategory_map, CochainComplex.shiftFunctor_obj_X', CochainComplex.HomComplex.Cochain.shift_v, CochainComplex.shiftFunctorZero_hom_app_f, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_Ï_f_zero, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, AlgebraicTopology.DoldKan.Nâ_obj_X_X, truncGE'Map_comp_assoc, CategoryTheory.Idempotents.DoldKan.isoNâ_hom_app_f, AlgebraicTopology.DoldKan.NâÎâ_hom_app, mapBifunctorMapHomotopy.commâ_aux, ComplexShape.Embedding.instAdditiveHomologicalComplexExtendFunctor, Rep.standardComplex.instQuasiIsoNatΔToSingleâ, epi_homologyMap_shortComplexTruncLE_g, truncGE'Map_id, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, Homotopy.smul_hom, CochainComplex.triangleOfDegreewiseSplit_morâ, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_extMk, CochainComplex.HomComplex.Cochain.shiftAddHom_apply, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, HomologicalComplexâ.total.mapAux.dâ_mapMap, CategoryTheory.InjectiveResolution.instQuasiIsoIntÎč', isZero_iff_isStrictlySupported_and_isStrictlySupportedOutside, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CochainComplex.HomComplex.Cochain.ÎŽ_leftUnshift, HomotopyCategory.spectralObjectMappingCone_Ïâ, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_hom, CochainComplex.HomComplex.Cocycle.toSingleMk_neg, ChainComplex.fromSingleâEquiv_apply, CategoryTheory.InjectiveResolution.desc_commutes_zero, Rep.FiniteCyclicGroup.resolution_quasiIso, cyclesMapIso_inv, singleObjCyclesSelfIso_hom_assoc, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, CochainComplex.shiftFunctorAdd'_hom_app_f', ComplexShape.Embedding.truncGE'Functor_map, CategoryTheory.Functor.mapHomotopyCategory_obj, AlgebraicTopology.DoldKan.P_zero, CochainComplex.HomComplex.Cochain.leftShift_add, ComplexShape.Embedding.homRestrict_precomp_assoc, CochainComplex.HomComplex.Cochain.leftShift_comp_zero_cochain, singleObjCyclesSelfIso_inv_naturality, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, quasiIsoAt_iff_comp_left, opEquivalence_functor, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ_assoc, CochainComplex.augmentTruncate_hom_f_succ, CochainComplex.shiftEval_hom_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_inv, singleCompEvalIsoSelf_hom_app, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ, homologicalComplexToDGO_obj_d, HomologicalComplexâ.flip_X_d, CochainComplex.instHasMapBifunctorObjIntShiftFunctor_1, CochainComplex.HomComplex.Cocycle.equivHomShift_comp, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality, instHasSeparator, CochainComplex.cm5b.i_f_comp_assoc, singleObjOpcyclesSelfIso_inv_naturality_assoc, instPreservesFiniteColimitsSingle, quasiIso_opFunctor_map_iff, AlgebraicTopology.alternatingCofaceMapComplex_map, Homotopy.comp_hom, CochainComplex.mappingCone.triangleRotateShortComplex_g, CategoryTheory.Idempotents.DoldKan.equivalence_functor, CochainComplex.shiftFunctor_obj_d', CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_obj, biprod_inl_desc_f, CochainComplex.instHasMapBifunctorObjIntShiftFunctor, singleObjHomologySelfIso_inv_naturality, CochainComplex.ÎčTruncLE_naturality, AlgebraicTopology.DoldKan.Nâ_obj_X_d, CochainComplex.HomComplex.Cocycle.equivHom_apply, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, restrictionToTruncGE'_naturality, instIsIsoÎčTruncLEOfIsStrictlySupported, CategoryTheory.Abelian.DoldKan.equivalence_functor, CochainComplex.mappingCone.inr_descShortComplex, DerivedCategory.instAdditiveCochainComplexIntQ, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom_assoc, CochainComplex.HomComplex.Cocycle.fromSingleMk_precomp, ComplexShape.Embedding.restrictionToTruncGE'NatTrans_app, CochainComplex.Îč_mapBifunctorShiftâIso_hom_f_assoc, groupCohomology.isoShortComplexH2_hom, CategoryTheory.ProjectiveResolution.exactâ, CochainComplex.triangleOfDegreewiseSplit_morâ, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, Rep.standardComplex.forgetâToModuleCatHomotopyEquiv_f_0_eq, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_inv_f_f, CochainComplex.fromSingleâEquiv_symm_apply_f_zero, evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, homologicalComplexToDGO_obj_obj, stupidTruncMap_comp_assoc, CochainComplex.HomComplex.Cochain.leftShift_units_smul, homotopyCofiber.desc_f, HomotopyCategory.homologyShiftIso_hom_app, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, ChainComplex.augmentTruncate_inv_f_zero, CochainComplex.shiftFunctorAdd_hom_app_f, Îč_mapBifunctorFlipIso_hom, CochainComplex.truncateAugment_hom_f, AlgebraicTopology.DoldKan.homotopyPToId_eventually_constant, truncLE'Map_comp, biprod_inr_desc_f_assoc, CategoryTheory.Idempotents.DoldKan.Î_map_app, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, CochainComplex.HomComplex.ÎŽ_map, CategoryTheory.Functor.mapâHomologicalComplex_obj_map, HomologicalComplexâ.totalShiftâIso_hom_naturality_assoc, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, CochainComplex.mapBifunctorShiftâIso_trans_mapBifunctorShiftâIso, shortComplexFunctor'_map_Ïâ, unopInverse_obj, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CochainComplex.mappingCone.inl_v_descShortComplex_f, opEquivalence_inverse, truncLE'Map_comp_assoc, CochainComplex.isIso_ÎčTruncLE_iff, HomologicalComplexâ.Îč_Dâ, opcyclesFunctor_obj, HomologicalComplexâ.flipEquivalenceCounitIso_inv_app_f_f, natTransHomologyÎč_app, homologyFunctorIso_hom_app, CochainComplex.HomComplex.Cochain.toSingleMk_postcomp, CochainComplex.HomComplex.Cochain.ofHom_add, ComplexShape.Embedding.restrictionFunctor_obj, HomologicalComplexâ.toGradedObjectFunctor_map, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, CochainComplex.mappingCone.inr_f_descShortComplex_f, asFunctor_map_f, ChainComplex.alternatingConst_exactAt, CochainComplex.toSingleâEquiv_apply, CochainComplex.HomComplex.Cochain.id_comp, singleObjCyclesSelfIso_hom_naturality_assoc, ComplexShape.Embedding.truncLE'ToRestrictionNatTrans_app, CategoryTheory.ProjectiveResolution.instQuasiIsoIntÏ', groupHomology.chainsMap_zero, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f, mkHomFromSingle_f, DerivedCategory.exists_iso_Q_obj_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, cyclesOpNatIso_hom_app, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, shortComplexFunctor_map_Ïâ, instPreservesFiniteColimitsEvalOfHasFiniteColimits, CochainComplex.shiftFunctorAdd'_hom_app_f, CochainComplex.HomComplex.Cochain.ofHom_zero, CochainComplex.g_shortComplexTruncLEXâToTruncGE_assoc, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, CochainComplex.mappingCone.inr_f_triangle_morâ_f_assoc, Homotopy.compLeft_hom, shortComplexFunctor_obj_g, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, groupHomology.isoShortComplexH2_inv, HomologicalComplexâ.Îč_totalShiftâIso_hom_f, AlgebraicTopology.DoldKan.NâÎâ_inv_app, exactAt_single_obj, shortComplexTruncLE_Xâ, HomologicalComplexâ.instHasTotalIntObjUpShiftFunctorâ, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero_assoc, hasExactColimitsOfShape, CochainComplex.HomComplex.Cochain.map_ofHom, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, extendMap_comp, quasiIso_unopFunctor_map_iff, CochainComplex.shiftFunctorComm_hom_app_f, ComplexShape.QFactorsThroughHomotopy.areEqualizedByLocalization, instPreservesBinaryBiproductEval, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_counitIso, groupCohomology.map_cochainsFunctor_shortExact, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f, HomologicalComplexâ.XXIsoOfEq_hom_ÎčTotal, CochainComplex.HomComplex.Cochain.leftShiftAddEquiv_symm_apply, Homotopy.nullHomotopy_hom, CochainComplex.HomComplex.Cochain.rightShift_neg, HomologySequence.composableArrowsâFunctor_map, HomologicalComplexâ.totalShiftâIso_hom_naturality, Hom.isoApp_inv, CochainComplex.mappingConeCompTriangle_morâ_naturality_assoc, HomotopyCategory.quotient_obj_singleFunctors_obj, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoNâ_inv_app_f_f, CategoryTheory.InjectiveResolution.instMonoFNatÎč, CochainComplex.mappingCone.triangleMapOfHomotopy_commâ, HomologicalComplexâ.dâ_eq', DerivedCategory.instEssSurjCochainComplexIntQ, CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero, dgoEquivHomologicalComplex_inverse, DerivedCategory.singleFunctorsPostcompQIso_hom_hom, ComplexShape.quotient_isLocalization, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp, quasiIso_iff_comp_right, CategoryTheory.Functor.mapCochainComplexShiftIso_hom_app_f, CochainComplex.shiftEval_inv_app, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, unopEquivalence_inverse, CochainComplex.mapBifunctorShiftâIso_hom_naturalityâ, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_Îč_assoc, AlgebraicTopology.DoldKan.Îâ_obj_X_obj, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic, homotopyCofiber.inlX_desc_f, AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc, HomotopyCategory.instAdditiveHomologicalComplexQuotient, HomotopyCategory.quotient_map_out, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_Îč, HomologicalComplexâ.dâ_eq', CochainComplex.HomComplex.Cocycle.rightShiftAddEquiv_apply, truncLE'ToRestriction_naturality, AlgebraicTopology.DoldKan.Îâ_map_f_app, CochainComplex.HomComplex.Cocycle.fromSingleMk_mem_coboundaries_iff, groupCohomology.cochainsFunctor_map, instPreservesFiniteLimitsSingle, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_hom, extendMap_zero, quasiIsoAt_iff, CategoryTheory.InjectiveResolution.exactâ, quasiIsoAt_map_of_preservesHomology, instAdditiveSingle, shortComplexFunctor'_obj_f, CochainComplex.HomComplex.Cocycle.equivHomShift_comp_shift, HomotopyCategory.homologyFunctor_shiftMap, CochainComplex.HomComplex.Cochain.rightShiftLinearEquiv_symm_apply, HomologySequence.composableArrowsâFunctor_obj, HomologicalComplexâ.toGradedObjectMap_apply, CochainComplex.shiftShortComplexFunctor'_inv_app_Ïâ, HomologicalComplexâ.ÎčTotalOrZero_eq_zero, CochainComplex.shiftShortComplexFunctorIso_zero_add_hom_app, CochainComplex.isKProjective_shift_iff, opFunctor_additive, instPreservesZeroMorphismsCyclesFunctor, instQuasiIsoShortComplexTruncLEXâToTruncGE, eval_additive, CochainComplex.instIsStrictlyLEObjIntSingleFunctor, CochainComplex.mappingCone.triangle_objâ, CochainComplex.instIsStrictlyGEObjIntSingleFunctor, HomologicalComplexâ.flip_d_f, CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_inv, CochainComplex.mappingConeCompTriangle_morâ, AlgebraicTopology.DoldKan.ÎâNâ_inv, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, CochainComplex.HomComplex.Cochain.rightShift_v, CochainComplex.HomComplex.Cochain.rightUnshift_zero, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatNâ, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, CochainComplex.mappingConeCompTriangleh_commâ, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_extMk, CochainComplex.HomComplex.Cocycle.toSingleMk_postcomp, AlgebraicTopology.DoldKan.Q_zero, CochainComplex.HomComplex.Cocycle.leftShift_coe, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_Îč_assoc, opcyclesMap_zero, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, instEpiÏTruncGE, instHasBinaryBiproductObjEval, ChainComplex.truncate_obj_X, groupCohomology.isoShortComplexH1_inv, AlgebraicTopology.DoldKan.identity_Nâ_objectwise, CochainComplex.singleâ_obj_zero, shortExact_iff_degreewise_shortExact, shortComplexTruncLE_shortExact_ÎŽ_eq_zero, CochainComplex.HomComplex.Cochain.shift_v', CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, AlgebraicTopology.inclusionOfMooreComplexMap_f, CategoryTheory.Idempotents.DoldKan.hη, CochainComplex.cm5b.instInjectiveXIntMappingConeIdI, biprod_lift_snd_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, biprod_inr_fst_f_assoc, AlgebraicTopology.DoldKan.NâÎâ_inv_app_f_f, ComplexShape.Embedding.extendFunctor_obj, AlgebraicTopology.alternatingFaceMapComplex_obj_X, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, DerivedCategory.mem_distTriang_iff, SimplicialObject.Splitting.toKaroubiNondegComplexIsoNâ_hom_f_f, CategoryTheory.Functor.instCommShiftCochainComplexIntMapMapâCochainComplex, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, CochainComplex.isKInjective_iff_rightOrthogonal, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex_assoc, CochainComplex.HomComplex.Cochain.rightShift_add, CochainComplex.ShiftSequence.shiftIso_inv_app, neg_f_apply, CategoryTheory.ProjectiveResolution.instEpiFNatÏ, CategoryTheory.ProjectiveResolution.complex_d_comp_Ï_f_zero_assoc, groupCohomology.cochainsMap_id_comp_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, truncGEMap_comp, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_map, dgoEquivHomologicalComplexUnitIso_inv_app_f, unopFunctor_map_f, homologyOp_hom_naturality, locallySmall, DerivedCategory.instIsLEObjCochainComplexIntQOfIsLE, AlgebraicTopology.DoldKan.P_idem_assoc, AlgebraicTopology.DoldKan.PInfty_comp_QInfty_assoc, CategoryTheory.Functor.instCommShiftCochainComplexIntMapFlipMapâCochainComplex, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, HomologicalComplexâ.flipEquivalenceCounitIso_hom_app_f_f, homologyFunctor_inverts_quasiIso, CochainComplex.HomComplex.Cochain.toSingleEquiv_toSingleMk, instHasColimitDiscreteWalkingPairCompPairEval, CochainComplex.isGE_shift, instPreservesZeroMorphismsSingle, AlgebraicTopology.DoldKan.Nâ_map_f_f, CochainComplex.truncate_obj_d, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, DerivedCategory.Q_map_eq_of_homotopy, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_hom_app, singleObjCyclesSelfIso_hom, CochainComplex.mappingCone.triangleRotateShortComplex_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_postcomp, quasiIsoAt_opFunctor_map_iff, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt, CochainComplex.HomComplex.Cocycle.rightUnshift_coe, HomologicalComplexâ.d_comm_assoc, CategoryTheory.Functor.mapHomotopyEquiv_hom, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, CategoryTheory.Equivalence.mapHomologicalComplex_inverse, ComplexShape.Embedding.truncGEFunctor_map, CochainComplex.HomComplex.Cochain.ÎŽ_leftShift, HomologicalComplexâ.totalAux.dâ_eq', DerivedCategory.isIso_Q_map_iff_quasiIso, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, cylinder.Îčâ_desc, Îč_mapBifunctorFlipIso_hom_assoc, CochainComplex.HomComplex.Cocycle.toSingleMk_precomp, extendSingleIso_hom_f, CochainComplex.HomComplex.CohomologyClass.toHom_mk, AlgebraicTopology.DoldKan.NâÎâ_app, HomologicalComplexâ.total.hom_ext_iff, groupCohomology.isoShortComplexH2_inv, CochainComplex.ÏTruncGE_naturality_assoc, instFullSingle, CochainComplex.HomComplex.Cocycle.leftShiftAddEquiv_apply, HomotopyCategory.quotient_map_mem_quasiIso_iff, CochainComplex.instIsMultiplicativeIntDegreewiseEpiWithInjectiveKernel, biprod_inl_snd_f, CochainComplex.toSingleâEquiv_symm_apply_f_zero, DerivedCategory.left_fac_of_isStrictlyGE, CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f, homologyFunctorIso_inv_app, CochainComplex.augmentTruncate_hom_f_zero, comp_f_assoc, unopFunctor_additive, ChainComplex.alternatingConst_map_f, instHasZeroObject, CategoryTheory.Idempotents.DoldKan.N_map, ChainComplex.singleâ_obj_zero, instIsNormalMonoCategory, g_shortComplexTruncLEXâToTruncGE_assoc, CategoryTheory.InjectiveResolution.quasiIso, ChainComplex.fromSingleâEquiv_symm_apply_f_succ, instFaithfulSingle, unopEquivalence_counitIso, ComplexShape.Embedding.homRestrict_comp_extendMap, truncGEMap_id, opInverse_map, CochainComplex.HomComplex.Cochain.leftShift_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, HomologicalComplexâ.flipFunctor_map_f_f, singleObjHomologySelfIso_inv_homologyÎč, homologyFunctor_obj, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, HomotopyCategory.isoOfHomotopyEquiv_inv, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, CochainComplex.HomComplex.Cochain.toSingleMk_sub, shortComplexTruncLE_Xâ_isSupportedOutside, biprod_inl_desc_f_assoc, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, CategoryTheory.InjectiveResolution.Hom.Îč_comp_hom, extendMap_id, Hom.isoApp_hom, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, homologyFunctorSingleIso_hom_app, CochainComplex.HomComplex.Cocycle.equivHomShift_apply, ComplexShape.Embedding.AreComplementary.hom_ext', CochainComplex.shiftShortComplexFunctorIso_inv_app_Ïâ, singleObjOpcyclesSelfIso_hom_assoc, homologyMap_comp_assoc, ChainComplex.singleâ_map_f_zero, ChainComplex.alternatingConst_obj, CochainComplex.HomComplex.Cochain.leftUnshift_neg, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, isZero_single_comp_eval, CategoryTheory.instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex, CochainComplex.isLE_shift, CochainComplex.mappingCone.triangle_objâ, cylinder.Îčâ_desc_assoc, dgoEquivHomologicalComplexCounitIso_inv_app_f, Homotopy.nullHomotopy'_hom, Hom.isIso_of_components, AlgebraicTopology.DoldKan.Îâ'_map_f, singleObjOpcyclesSelfIso_hom_naturality, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, HomologicalComplexUpToQuasiIso.isIso_Q_map_iff_mem_quasiIso, CochainComplex.cm5b, homologyMapIso_inv, Rep.FiniteCyclicGroup.resolution.Ï_f, natIsoSc'_inv_app_Ïâ, instHasFiniteLimits, exact_iff_degreewise_exact, groupCohomology.cochainsFunctor_obj, CategoryTheory.InjectiveResolution.rightDerived_app_eq, instHasHomologyObjOppositeSymmUnopFunctorOp, CategoryTheory.InjectiveResolution.Hom.Îč'_comp_hom', CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, Hom.fAddMonoidHom_apply, epi_of_epi_f, CochainComplex.shiftFunctor_obj_d, HomologicalComplexâ.total.map_id, CochainComplex.HomComplex.Cochain.toSingleMk_precomp, HomotopyCategory.instLinearHomologicalComplexQuotient, CochainComplex.HomComplex.Cocycle.rightShift_coe, CochainComplex.singleâObjXSelf, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, HomologicalComplexâ.total.forget_map, AlgebraicTopology.DoldKan.ÎâNâ_inv, HomologicalComplexâ.totalFunctor_map, natIsoSc'_hom_app_Ïâ, instPreservesZeroMorphismsOpcyclesFunctor, extendMap_id_f, CochainComplex.HomComplex.Cochain.leftUnshift_zero, ComplexShape.Embedding.stupidTruncFunctor_obj, DerivedCategory.left_fac, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, AlgebraicTopology.normalizedMooreComplex_obj, CochainComplex.mappingCone.triangle_objâ, cyclesMapIso_hom, AlgebraicTopology.DoldKan.natTransQ_app, CochainComplex.HomComplex.Cochain.map_neg, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, HomologicalComplexâ.ÎčTotal_map_assoc, CochainComplex.instFaithfulIntSingleFunctor, AlgebraicTopology.DoldKan.ÎâNâ.natTrans_app_f_app, Îč_mapBifunctorFlipIso_inv, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, CochainComplex.mappingConeCompTriangle_objâ, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_hom, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.Idempotents.DoldKan.equivalence_unitIso, cylinder.ÏCompÎčâHomotopy.inlX_nullHomotopy_f, ChainComplex.map_chain_complex_of, HomologicalComplexâ.totalFlipIso_hom_f_Dâ_assoc, CochainComplex.instAdditiveHomologicalComplexIntUpShiftFunctor, HomologicalComplexâ.Îč_totalShiftâIso_hom_f, forgetEval_inv_app, CategoryTheory.instIsIsoFromLeftDerivedZero', ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, HomologicalComplexâ.instFaithfulGradedObjectProdToGradedObjectFunctor, ComplexShape.Embedding.truncGEFunctor_obj, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, CochainComplex.Îč_mapBifunctorShiftâIso_hom_f, shortComplexFunctor_obj_Xâ, AlgebraicTopology.DoldKan.PInfty_add_QInfty, CochainComplex.ShiftSequence.shiftIso_hom_app, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg, groupCohomology.cochainsMap_id, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, CochainComplex.mappingCone.map_ÎŽ, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_inv, CochainComplex.HomComplex.Cochain.ofHom_comp, CochainComplex.ConnectData.restrictionGEIso_hom_f, quasiIsoAt_map_iff_of_preservesHomology, Hom.sqFrom_id
|
instHasZeroMorphisms đ | CompOp | 220 mathmath: CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoXâCochainComplexMapSingleFunctorOfNatXâ, CochainComplex.triangleOfDegreewiseSplit_objâ, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, HomologicalComplexâ.totalShiftâIso_hom_naturality_assoc, biprod_inr_desc_f, biprod_lift_fst_f_assoc, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, HomologicalComplexâ.shiftFunctorâXXIso_refl, HomologicalComplexâ.comm_f, HomologicalComplexâ.total.mapIso_hom, inl_biprodXIso_inv_assoc, biprod_inr_snd_f_assoc, biprod_inl_snd_f_assoc, HomologicalComplexâ.totalAux.dâ_eq, instIsNormalEpiCategory, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, biprodXIso_hom_fst, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.d_f_comp_d_f, HomologicalComplexâ.flipEquivalence_unitIso, HomologicalComplexâ.dâ_eq_zero', CochainComplex.cm5b.fac, biprod_lift_fst_f, HomologicalComplexâ.toGradedObjectFunctor_obj, HomologicalComplexâ.ÎčTotalOrZero_map_assoc, HomologicalComplexâ.ÎčTotal_map, HomologicalComplexâ.Îč_totalShiftâIso_hom_f_assoc, HomologicalComplexâ.Îč_Dâ_assoc, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_inv_assoc, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, HomologicalComplexâ.dâ_eq_zero, HomologicalComplexâ.Îč_totalShiftâIso_inv_f, HomologicalComplexâ.Îč_totalDesc_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, CochainComplex.mappingCone.inr_descShortComplex_assoc, instEpiGShortComplexTruncLE, HomologicalComplexâ.flipEquivalenceUnitIso_hom_app_f_f, HomologicalComplexâ.Îč_totalShiftâIso_inv_f_assoc, HomologicalComplexâ.d_comm, CochainComplex.triangleOfDegreewiseSplit_objâ, inr_biprodXIso_inv, CochainComplex.g_shortComplexTruncLEXâToTruncGE, HomologicalComplexâ.d_f_comp_d_f_assoc, HomologicalComplexâ.Îč_Dâ, HomologicalComplexâ.total.mapAux.dâ_mapMap, HomologicalComplexâ.dâ_eq, HomologicalComplexâ.instHasTotalIntObjUpShiftFunctorâ, biprod_inr_snd_f, HomologicalComplexâ.XXIsoOfEq_hom_ÎčTotal_assoc, groupHomology.map_chainsFunctor_shortExact, instMonoFShortComplexTruncLE, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, HomologicalComplexâ.instHasTotalIntObjUpCompShiftFunctorâShiftFunctorâ, HomologicalComplexâ.XXIsoOfEq_rfl, HomologicalComplexâ.Îč_Dâ_assoc, isIso_homologyMap_shortComplexTruncLE_g, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_X, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, HomologicalComplexâ.totalFunctor_obj, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom, HomologicalComplexâ.flipFunctor_obj, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplexâ.totalAux.dâ_eq, instPreservesZeroMorphismsEval, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, HomologicalComplexâ.shiftFunctorâXXIso_refl, CochainComplex.mappingCone.triangleRotateShortComplex_Xâ, HomologicalComplexâ.Îč_totalDesc, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, HomologicalComplexâ.dâ_eq_zero, HomologicalComplexâ.flip_X_X, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, biprod_lift_snd_f, biprod_inl_fst_f_assoc, g_shortComplexTruncLEXâToTruncGE, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_inv_f_f, inl_biprodXIso_inv, mono_homologyMap_shortComplexTruncLE_g, HomologicalComplexâ.Dâ_totalShiftâXIso_hom_assoc, cylinder.inrX_Ï_assoc, biprod_inl_fst_f, HomologicalComplexâ.instHasTotalIntObjUpCompShiftFunctorâShiftFunctorâ, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, CochainComplex.triangleOfDegreewiseSplit_morâ, biprod_inr_fst_f, CochainComplex.cm5b.fac_assoc, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_hom_f_f, biprodXIso_hom_fst_assoc, CochainComplex.triangleOfDegreewiseSplit_objâ, HomologicalComplexâ.flipEquivalenceUnitIso_inv_app_f_f, quasiIsoAt_shortComplexTruncLE_g, HomologicalComplexâ.dâ_eq_zero', HomologicalComplexâ.Îč_totalShiftâIso_inv_f_assoc, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_hom_assoc, HomologicalComplexâ.XXIsoOfEq_inv_ÎčTotal_assoc, HomologicalComplexâ.total.mapIso_inv, shortComplexTruncLE_f, biprodXIso_hom_snd, CochainComplex.homOfDegreewiseSplit_f, HomologicalComplexâ.flipEquivalence_counitIso, HomologicalComplexâ.Îč_totalShiftâIso_hom_f_assoc, biprodXIso_hom_snd_assoc, instPreservesZeroMorphismsHomologyFunctor, CochainComplex.cm5b.instQuasiIsoIntP, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, HomologicalComplexâ.comm_f_assoc, cylinder.inrX_Ï, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, HomologicalComplexâ.XXIsoOfEq_inv_ÎčTotal, cylinder.ÏCompÎčâHomotopy.inrX_nullHomotopy_f, HomologicalComplexâ.total.map_comp, CochainComplex.cm5b.instMonoFIntI, HomologicalComplexâ.ofGradedObject_X_d, HomologicalComplexâ.flipEquivalence_functor, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, inr_biprodXIso_inv_assoc, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexExtendFunctor, HomologicalComplexâ.ofGradedObject_X_X, HomologicalComplexâ.flipEquivalence_inverse, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ_assoc, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_r, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, shortComplexTruncLE_shortExact, HomologicalComplexâ.ÎčTotalOrZero_map, HomologicalComplexâ.totalShiftâIso_trans_totalShiftâIso, CochainComplex.cm5b.instMonoIntI, shortComplexTruncLE_Xâ, HomologicalComplexâ.dâ_eq, HomologicalComplexâ.total.map_comp_assoc, HomologicalComplexâ.shape_f, CochainComplex.shortComplexTruncLE_shortExact, CochainComplex.cm5b.i_f_comp, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, instHasBinaryBiproduct, HomologicalComplexâ.ofGradedObject_d_f, HomologicalComplexâ.Îč_totalShiftâIso_inv_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_hom_f_f, HomologicalComplexâ.totalShiftâIso_hom_naturality, mapBifunctorMapHomotopy.commâ_aux, epi_homologyMap_shortComplexTruncLE_g, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, HomologicalComplexâ.total.mapAux.dâ_mapMap, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_hom, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ, HomologicalComplexâ.flip_X_d, CochainComplex.cm5b.i_f_comp_assoc, CochainComplex.mappingCone.triangleRotateShortComplex_g, biprod_inl_desc_f, CochainComplex.mappingCone.inr_descShortComplex, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom_assoc, CochainComplex.triangleOfDegreewiseSplit_morâ, CochainComplex.mapBifunctorHomologicalComplexShiftâIso_inv_f_f, biprod_inr_desc_f_assoc, HomologicalComplexâ.totalShiftâIso_hom_naturality_assoc, CochainComplex.mappingCone.inl_v_descShortComplex_f, HomologicalComplexâ.Îč_Dâ, HomologicalComplexâ.flipEquivalenceCounitIso_inv_app_f_f, HomologicalComplexâ.toGradedObjectFunctor_map, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, CochainComplex.mappingCone.inr_f_descShortComplex_f, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CochainComplex.g_shortComplexTruncLEXâToTruncGE_assoc, HomologicalComplexâ.Îč_totalShiftâIso_hom_f, shortComplexTruncLE_Xâ, HomologicalComplexâ.instHasTotalIntObjUpShiftFunctorâ, instPreservesBinaryBiproductEval, groupCohomology.map_cochainsFunctor_shortExact, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f, HomologicalComplexâ.XXIsoOfEq_hom_ÎčTotal, HomologicalComplexâ.totalShiftâIso_hom_naturality, HomologicalComplexâ.total.mapAux.dâ_mapMap_assoc, HomologicalComplexâ.dâ_eq', HomologicalComplexâ.dâ_eq', HomologicalComplexâ.toGradedObjectMap_apply, HomologicalComplexâ.ÎčTotalOrZero_eq_zero, instPreservesZeroMorphismsCyclesFunctor, instQuasiIsoShortComplexTruncLEXâToTruncGE, HomologicalComplexâ.flip_d_f, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, HomologicalComplexâ.Dâ_totalShiftâXIso_hom, shortExact_iff_degreewise_shortExact, shortComplexTruncLE_shortExact_ÎŽ_eq_zero, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, biprod_lift_snd_f_assoc, biprod_inr_fst_f_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, HomologicalComplexâ.flipEquivalenceCounitIso_hom_app_f_f, instPreservesZeroMorphismsSingle, CochainComplex.mappingCone.triangleRotateShortComplex_f, HomologicalComplexâ.d_comm_assoc, HomologicalComplexâ.totalAux.dâ_eq', HomologicalComplexâ.total.hom_ext_iff, biprod_inl_snd_f, CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f, instIsNormalMonoCategory, g_shortComplexTruncLEXâToTruncGE_assoc, HomologicalComplexâ.flipFunctor_map_f_f, shortComplexTruncLE_Xâ_isSupportedOutside, biprod_inl_desc_f_assoc, CategoryTheory.instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex, exact_iff_degreewise_exact, HomologicalComplexâ.total.map_id, HomologicalComplexâ.totalFunctor_map, instPreservesZeroMorphismsOpcyclesFunctor, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, HomologicalComplexâ.ÎčTotal_map_assoc, HomologicalComplexâ.Îč_totalShiftâIso_hom_f, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor, HomologicalComplexâ.instFaithfulGradedObjectProdToGradedObjectFunctor, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, HomologicalComplexâ.ÎčTotal_totalFlipIso_f_inv
|
instInhabitedHom đ | CompOp | â |
instInhabitedOfHasZeroObject đ | CompOp | â |
instZeroHom đ | CompOp | 8 mathmath: CategoryTheory.Abelian.LeftResolution.chainComplexMap_zero, ComplexShape.Embedding.AreComplementary.hom_ext, zero_f, cyclesMap_zero, homologyMap_zero, extendMap_zero, opcyclesMap_zero, ComplexShape.Embedding.AreComplementary.hom_ext'
|
xNext đ | CompOp | 23 mathmath: dFrom_comp_xNextIsoSelf, dFrom_eq_zero, Hom.comm_from_apply, Homotopy.mkInductiveAuxâ, Hom.next_eq, Hom.sqFrom_comp, dTo_comp_dFrom, Homotopy.mkCoinductiveAuxâ_add_one, Homotopy.mkCoinductiveAuxâ_zero, kernel_from_eq_kernel, Homotopy.mkCoinductiveAuxâ, dNext_eq_dFrom_fromNext, Hom.sqFrom_left, Hom.comm_from, Hom.sqFrom_right, Hom.comm_from_assoc, dFrom_comp_xNextIso_assoc, dFrom_eq, dFrom_comp_xNextIso, Homotopy.mkInductiveAuxâ_zero, dFrom_comp_xNextIsoSelf_assoc, Homotopy.mkInductiveAuxâ_add_one, Hom.sqFrom_id
|
xNextIso đ | CompOp | 9 mathmath: Homotopy.mkInductiveAuxâ, Hom.next_eq, Homotopy.mkCoinductiveAuxâ_add_one, Homotopy.mkCoinductiveAuxâ_zero, Homotopy.mkCoinductiveAuxâ, dFrom_comp_xNextIso_assoc, dFrom_eq, dFrom_comp_xNextIso, Homotopy.mkInductiveAuxâ_add_one
|
xNextIsoSelf đ | CompOp | 2 mathmath: dFrom_comp_xNextIsoSelf, dFrom_comp_xNextIsoSelf_assoc
|
xPrev đ | CompOp | 21 mathmath: Homotopy.mkInductiveAuxâ, dTo_eq_zero, Hom.comm_to_apply, xPrevIsoSelf_comp_dTo, dTo_eq, prevD_eq_toPrev_dTo, dTo_comp_dFrom, xPrevIso_comp_dTo, Hom.comm_to, Homotopy.mkCoinductiveAuxâ_add_one, xPrevIso_comp_dTo_assoc, Homotopy.mkCoinductiveAuxâ_zero, xPrevIsoSelf_comp_dTo_assoc, Homotopy.mkCoinductiveAuxâ, image_to_eq_image, Hom.sqTo_right, Hom.sqTo_left, Hom.comm_to_assoc, Homotopy.mkInductiveAuxâ_zero, Hom.prev_eq, Homotopy.mkInductiveAuxâ_add_one
|
xPrevIso đ | CompOp | 9 mathmath: Homotopy.mkInductiveAuxâ, dTo_eq, xPrevIso_comp_dTo, Homotopy.mkCoinductiveAuxâ_add_one, xPrevIso_comp_dTo_assoc, Homotopy.mkCoinductiveAuxâ, Homotopy.mkInductiveAuxâ_zero, Hom.prev_eq, Homotopy.mkInductiveAuxâ_add_one
|
xPrevIsoSelf đ | CompOp | 2 mathmath: xPrevIsoSelf_comp_dTo, xPrevIsoSelf_comp_dTo_assoc
|
zero đ | CompOp | 1 mathmath: isZero_zero
|