Documentation Verification Report

HomologicalComplex

📁 Source: Mathlib/Algebra/Homology/HomologicalComplex.lean

Statistics

MetricCount
DefinitionsChainComplex, mk, mk', mk'XIso, mkAux, mkHom, mkHomAux, mkXIso, of, ofHom, mk, mk', mkAux, mkHom, mkHomAux, of, ofHom, f, isoApp, isoOfComponents, next, prev, sqFrom, sqTo, X, XIsoOfEq, comp, d, dFrom, dTo, eval, forget, forgetEval, id, instCategory, instHasZeroMorphisms, instInhabitedHom, instInhabitedOfHasZeroObject, instZeroHom, xNext, xNextIso, xNextIsoSelf, xPrev, xPrevIso, xPrevIsoSelf, zero
46
Theoremsmk'_X_0, mk'_X_1, mk'_congr_succ'_d, mk'_d, mk'_d_1_0, mkAux_eq_shortComplex_mk_d_comp_d, mkHom_f_0, mkHom_f_1, mkHom_f_succ_succ, mk_X_0, mk_X_1, mk_X_2, mk_congr_succ_X₃, mk_congr_succ_d₂, mk_d, mk_d_1_0, mk_d_2_1, next, next_nat_succ, next_nat_zero, ofHom_f, of_d, of_d_ne, of_x, prev, mk'_X_0, mk'_X_1, mk'_d_1_0, mkHom_f_0, mkHom_f_1, mkHom_f_succ_succ, mk_X_0, mk_X_1, mk_X_2, mk_d_1_0, mk_d_2_0, next, ofHom_f, of_d, of_d_ne, of_x, prev, prev_nat_succ, prev_nat_zero, comm, comm', comm_assoc, comm_from, comm_from_apply, comm_from_assoc, comm_to, comm_to_apply, comm_to_assoc, ext, ext_iff, isIso_of_components, isoApp_hom, isoApp_inv, isoOfComponents_app, isoOfComponents_hom_f, isoOfComponents_inv_f, next_eq, prev_eq, sqFrom_comp, sqFrom_id, sqFrom_left, sqFrom_right, sqTo_left, sqTo_right, XIsoOfEq_hom_comp_XIsoOfEq_hom, XIsoOfEq_hom_comp_XIsoOfEq_hom_assoc, XIsoOfEq_hom_comp_XIsoOfEq_inv, XIsoOfEq_hom_comp_XIsoOfEq_inv_assoc, XIsoOfEq_hom_comp_d, XIsoOfEq_hom_comp_d_assoc, XIsoOfEq_hom_naturality, XIsoOfEq_hom_naturality_assoc, XIsoOfEq_inv_comp_XIsoOfEq_hom, XIsoOfEq_inv_comp_XIsoOfEq_hom_assoc, XIsoOfEq_inv_comp_XIsoOfEq_inv, XIsoOfEq_inv_comp_XIsoOfEq_inv_assoc, XIsoOfEq_inv_comp_d, XIsoOfEq_inv_comp_d_assoc, XIsoOfEq_inv_naturality, XIsoOfEq_inv_naturality_assoc, XIsoOfEq_rfl, comp_f, comp_f_assoc, congr_hom, dFrom_comp_xNextIso, dFrom_comp_xNextIsoSelf, dFrom_comp_xNextIsoSelf_assoc, dFrom_comp_xNextIso_assoc, dFrom_eq, dFrom_eq_zero, dTo_comp_dFrom, dTo_eq, dTo_eq_zero, d_comp_XIsoOfEq_hom, d_comp_XIsoOfEq_hom_assoc, d_comp_XIsoOfEq_inv, d_comp_XIsoOfEq_inv_assoc, d_comp_d, d_comp_d', d_comp_d_assoc, d_comp_eqToHom, epi_of_epi_f, eqToHom_comp_d, eqToHom_f, eval_map, eval_obj, ext, forgetEval_hom_app, forgetEval_inv_app, forget_map, forget_obj, hom_ext, hom_ext_iff, hom_f_injective, id_f, image_eq_image, image_to_eq_image, instFaithfulGradedObjectForget, instHasZeroObject, instPreservesZeroMorphismsEval, isZero_zero, kernel_eq_kernel, kernel_from_eq_kernel, mono_of_mono_f, shape, xPrevIsoSelf_comp_dTo, xPrevIsoSelf_comp_dTo_assoc, xPrevIso_comp_dTo, xPrevIso_comp_dTo_assoc, zero_f
135
Total181

ChainComplex

Definitions

NameCategoryTheorems
mk 📖CompOp—
mk' 📖CompOp
4 mathmath: mk'_X_0, mk'_d, mk'_X_1, mk'_d_1_0
mk'XIso 📖CompOp
1 mathmath: mk'_d
mkAux 📖CompOp
1 mathmath: mkAux_eq_shortComplex_mk_d_comp_d
mkHom 📖CompOp
3 mathmath: mkHom_f_0, mkHom_f_1, mkHom_f_succ_succ
mkHomAux 📖CompOp—
mkXIso 📖CompOp
1 mathmath: mk_d
of 📖CompOp
5 mathmath: ofHom_f, of_x, of_d, of_d_ne, map_chain_complex_of
ofHom 📖CompOp
1 mathmath: ofHom_f

Theorems

NameKindAssumesProvesValidatesDepends On
mk'_X_0 📖mathematical—HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
mk'
—AddRightCancelSemigroup.toIsRightCancelAdd
mk'_X_1 📖mathematical—HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
mk'
—AddRightCancelSemigroup.toIsRightCancelAdd
mk'_congr_succ'_d 📖mathematical—Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.eqToHom
—CategoryTheory.Category.id_comp
mk'_d 📖mathematical—HomologicalComplex.d
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
mk'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.hom
mk'XIso
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_d_2_1
mk'_congr_succ'_d
mk_d_1_0
mk_d
mk'_d_1_0 📖mathematical—HomologicalComplex.d
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
mk'
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
mkAux_eq_shortComplex_mk_d_comp_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
mkAux
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
HomologicalComplex.d_comp_d
—AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
CategoryTheory.ShortComplex.zero
CategoryTheory.Category.id_comp
mkHom_f_0 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
HomologicalComplex.Hom.f
mkHom
—AddRightCancelSemigroup.toIsRightCancelAdd
mkHom_f_1 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
HomologicalComplex.Hom.f
mkHom
—AddRightCancelSemigroup.toIsRightCancelAdd
mkHom_f_succ_succ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
HomologicalComplex.Hom.f
mkHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.Hom.comm
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_X_0 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_X_1 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_X_2 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_congr_succ_X₃ 📖mathematical—Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.HasZeroMorphisms.zero
——
mk_congr_succ_d₂ 📖mathematical—Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.eqToHom
—CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mk_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.X
CategoryTheory.ShortComplex.X₁
HomologicalComplex.d_comp_d
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.Iso.hom
mkXIso
—AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.d_comp_d
mkAux_eq_shortComplex_mk_d_comp_d
mk_congr_succ_d₂
CategoryTheory.eqToHom_refl
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
mk_d_1_0 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
mk_d_2_1 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
next 📖mathematical—ComplexShape.next
ComplexShape.down
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
SubNegMonoid.toSub
—ComplexShape.next_eq'
AddRightCancelSemigroup.toIsRightCancelAdd
sub_add_cancel
next_nat_succ 📖mathematical—ComplexShape.next
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
—ComplexShape.next_eq'
AddRightCancelSemigroup.toIsRightCancelAdd
next_nat_zero 📖mathematical—ComplexShape.next
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
ofHom_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.Hom.f
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
of
ofHom
—AddRightCancelSemigroup.toIsRightCancelAdd
of_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
of
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
of_d_ne 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
of
HomologicalComplex.X
—AddRightCancelSemigroup.toIsRightCancelAdd
of_x 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.X
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
of
—AddRightCancelSemigroup.toIsRightCancelAdd
prev 📖mathematical—ComplexShape.prev
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
—ComplexShape.prev_eq'
AddRightCancelSemigroup.toIsRightCancelAdd

CochainComplex

Definitions

NameCategoryTheorems
mk 📖CompOp—
mk' 📖CompOp
3 mathmath: mk'_X_0, mk'_X_1, mk'_d_1_0
mkAux 📖CompOp—
mkHom 📖CompOp
3 mathmath: mkHom_f_succ_succ, mkHom_f_1, mkHom_f_0
mkHomAux 📖CompOp—
of 📖CompOp
4 mathmath: of_d, of_d_ne, of_x, ofHom_f
ofHom 📖CompOp
1 mathmath: ofHom_f

Theorems

NameKindAssumesProvesValidatesDepends On
mk'_X_0 📖mathematical—HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
mk'
—AddRightCancelSemigroup.toIsRightCancelAdd
mk'_X_1 📖mathematical—HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
mk'
—AddRightCancelSemigroup.toIsRightCancelAdd
mk'_d_1_0 📖mathematical—HomologicalComplex.d
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
mk'
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
mkHom_f_0 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
HomologicalComplex.Hom.f
mkHom
—AddRightCancelSemigroup.toIsRightCancelAdd
mkHom_f_1 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
HomologicalComplex.Hom.f
mkHom
—AddRightCancelSemigroup.toIsRightCancelAdd
mkHom_f_succ_succ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
HomologicalComplex.Hom.f
mkHom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.Hom.comm
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_X_0 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_X_1 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_X_2 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
mk_d_1_0 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
mk_d_2_0 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
next 📖mathematical—ComplexShape.next
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
—ComplexShape.next_eq'
AddRightCancelSemigroup.toIsRightCancelAdd
ofHom_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.Hom.f
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
of
ofHom
—AddRightCancelSemigroup.toIsRightCancelAdd
of_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
of
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
of_d_ne 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.d
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
of
HomologicalComplex.X
—AddRightCancelSemigroup.toIsRightCancelAdd
of_x 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.X
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
of
—AddRightCancelSemigroup.toIsRightCancelAdd
prev 📖mathematical—ComplexShape.prev
ComplexShape.up
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
SubNegMonoid.toSub
—ComplexShape.prev_eq'
AddRightCancelSemigroup.toIsRightCancelAdd
sub_add_cancel
prev_nat_succ 📖mathematical—ComplexShape.prev
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
—ComplexShape.prev_eq'
AddRightCancelSemigroup.toIsRightCancelAdd
prev_nat_zero 📖mathematical—ComplexShape.prev
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
—AddRightCancelSemigroup.toIsRightCancelAdd

HomologicalComplex

Definitions

NameCategoryTheorems
X 📖CompOp
1141 mathmath: CategoryTheory.InjectiveResolution.injective, CategoryTheory.InjectiveResolution.Hom.hom'_f, pOpcycles_restrictionOpcyclesIso_hom_assoc, eqToHom_f, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, extendSingleIso_inv_f, restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, AlgebraicTopology.DoldKan.P_f_0_eq, singleMapHomologicalComplex_hom_app_ne, ChainComplex.truncate_map_f, AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f, CategoryTheory.NatIso.mapHomologicalComplex_inv_app_f, dFrom_comp_xNextIsoSelf, CochainComplex.HomComplex.Cochain.fromSingleMk_neg, ComplexShape.Embedding.isIso_liftExtend_f_iff, CochainComplex.mappingCone.inl_v_descCochain_v_assoc, rightUnitor'_inv, CategoryTheory.Functor.mapHomologicalComplexIdIso_hom_app_f, groupCohomology.toCocycles_comp_isoCocycles₁_hom, mapBifunctor.Îč_D₂, mapBifunctor₁₂.Îč_D₃_assoc, isZero_single_obj_X, HomologicalComplex₂.totalFlipIso_hom_f_D₁, singleMapHomologicalComplex_hom_app_self, double_d_eq_zero₀, truncGE.rightHomologyMapData_φQ, mapBifunctor₁₂.d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, AlgebraicTopology.DoldKan.σ_comp_PInfty_assoc, XIsoOfEq_hom_comp_XIsoOfEq_hom, dFrom_eq_zero, alternatingConst_iCycles_odd_comp_assoc, CochainComplex.mappingCone.inr_f_d_assoc, pOpcycles_opcyclesToCycles_iCycles_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, Hom.comm_from_apply, CochainComplex.HomComplex.Cochain.ÎŽ_single, pOpcycles_opcyclesIsoSc'_hom, groupCohomology.π_comp_H0IsoOfIsTrivial_hom_assoc, pOpcycles_singleObjOpcyclesSelfIso_inv, prevD_comp_left, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, opcyclesIsoSc'_inv_fromOpcycles, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_comp_assoc, singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_iCycles, groupCohomology.cocyclesIso₀_hom_comp_f, CategoryTheory.InjectiveResolution.Îč'_f_zero, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CochainComplex.mappingCone.liftCochain_v_snd_v_assoc, extend.d_comp_eq_zero_iff, CochainComplex.augmentTruncate_inv_f_zero, groupCohomology.eq_d₀₁_comp_inv, ChainComplex.mkAux_eq_shortComplex_mk_d_comp_d, CochainComplex.mappingCone.inr_f_fst_v, CochainComplex.isStrictlyLE_iff, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, homotopyCofiber.inlX_fstX, mapBifunctor.Îč_D₂_assoc, op_d, homotopyCofiber.inrX_fstX_assoc, CochainComplex.HomComplex.Cochain.fromSingleEquiv_fromSingleMk, opSymm_d, groupCohomology.eq_d₁₂_comp_inv, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀', Homotopy.nullHomotopicMap_comp, toCycles_i, shortComplexFunctor'_obj_X₁, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, groupHomology.eq_d₃₂_comp_inv, HomologicalComplex₂.shiftFunctor₂XXIso_refl, AlgebraicTopology.DoldKan.HigherFacesVanish.of_P, CochainComplex.mappingCone.liftCochain_v_snd_v, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₂, mapBifunctor.Îč_D₁_assoc, leftUnitor'_inv_comm, SimplicialObject.Splitting.PInfty_comp_πSummand_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₃, ComplexShape.Embedding.liftExtend.comm_assoc, dTo_eq_zero, HomologicalComplex₂.comm_f, isZero_stupidTrunc_X, ChainComplex.mk'_X_0, CochainComplex.mk'_X_0, mapBifunctor₂₃.Îč_D₃, CochainComplex.mappingCone.homologySequenceÎŽ_triangleh, CategoryTheory.Functor.mapHomologicalComplex_obj_d, restriction.sc'Iso_inv_τ₃, mapBifunctor₂₃.d₂_eq, Hom.comm_to_apply, opcyclesIsoSc'_inv_fromOpcycles_assoc, groupHomology.comp_d₂₁_eq, instMonoICycles, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, CategoryTheory.Functor.mapHomologicalComplex_map_f, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, Homotopy.nullHomotopicMap_f_eq_zero, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_succ, HomologicalComplex₂.totalAux.d₂_eq, CochainComplex.mappingCone.d_snd_v, p_fromOpcycles, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, CochainComplex.HomComplex.Cochain.ÎŽ_fromSingleMk, CochainComplex.HomComplex.Cochain.map_v, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, CochainComplex.truncate_obj_X, HomologicalComplex₂.d_f_comp_d_f, add_f_apply, extend_op_d_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, ChainComplex.mk_X_2, groupCohomology.comp_d₁₂_eq, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d, HomologicalComplex₂.d₁_eq_zero', CategoryTheory.InjectiveResolution.of_def, Homotopy.extend_hom_eq, homotopyCofiber.inrX_sndX_assoc, CategoryTheory.ProjectiveResolution.cochainComplex_d, CochainComplex.HomComplex.Cochain.toSingleMk_neg, CochainComplex.HomComplex.Cochain.ofHom_v_comp_d, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂_assoc, unopInverse_map, Hom.next_eq, CategoryTheory.NatTrans.mapHomologicalComplex_app_f, CochainComplex.cm5b.fac, groupCohomology.dArrowIso₀₁_inv_right, mapBifunctor₂₃.d₃_eq, natIsoSc'_inv_app_τ₂, CochainComplex.HomComplex.Cochain.toSingleMk_v, groupCohomology.eq_d₂₃_comp_inv_assoc, CategoryTheory.InjectiveResolution.complex_d_comp, restrictionCyclesIso_hom_iCycles, CochainComplex.ConnectData.cochainComplex_X, homotopyCofiber.desc_f', single_obj_d, Rep.standardComplex.d_eq, CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, XIsoOfEq_hom_comp_d_assoc, truncLE'_d_eq_toCycles, Homotopy.prevD_succ_cochainComplex, d_toCycles_assoc, HomologicalComplex₂.ÎčTotalOrZero_map_assoc, asFunctor_obj_X, CochainComplex.Îč_mapBifunctorShift₂Iso_hom_f_assoc, HomologicalComplex₂.ÎčTotal_map, xPrevIsoSelf_comp_dTo, CochainComplex.homotopyUnop_hom_eq, CochainComplex.HomComplex.Cochain.toSingleMk_add, HomologicalComplex₂.Îč_totalShift₁Iso_hom_f_assoc, Îč_mapBifunctorAssociatorX_hom, mapBifunctor₁₂.Îč_D₁_assoc, CochainComplex.mappingCone.inr_f_d, instHasMapProdObjGradedObjectFunctorMapBifunctorXπ, HomologicalComplex₂.Îč_D₁_assoc, groupHomology.chainsMap_id_f_map_mono, CochainComplex.HomComplex.ÎŽ_v, d_comp_d_assoc, CochainComplex.HomComplex.Cochain.comp_v, forgetEval_hom_app, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv_assoc, CochainComplex.fromSingle₀Equiv_apply_coe, instEpiFπTruncGE, CochainComplex.HomComplex.Cochain.comp_zero_cochain_v, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, CochainComplex.HomComplex.Cochain.neg_v, shortComplexFunctor'_map_τ₂, CochainComplex.HomComplex.Cochain.sub_v, groupHomology.d₁₀ArrowIso_hom_left, XIsoOfEq_inv_naturality_assoc, CochainComplex.mappingCone.liftCochain_v_descCochain_v, Homotopy.nullHomotopicMap'_f_eq_zero, CochainComplex.mappingCone.lift_f_fst_v, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand_assoc, CochainComplex.mappingCone.inl_v_triangle_mor₃_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, HomologicalComplex₂.d₂_eq_zero, AlgebraicTopology.DoldKan.PInfty_f_naturality_assoc, mapBifunctorMapHomotopy.comm₁, HomologicalComplex₂.Îč_totalShift₁Iso_inv_f, extendSingleIso_inv_f_assoc, natIsoSc'_inv_app_τ₃, XIsoOfEq_inv_comp_XIsoOfEq_inv, homotopyCofiber_X, HomologicalComplex₂.Îč_totalDesc_assoc, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc, instHasTensorXTensorUnit_1, CochainComplex.mappingCone.inr_triangleÎŽ, CochainComplex.HomComplex.Cochain.ofHoms_comp, groupCohomology.cocyclesIso₀_inv_comp_iCocycles, XIsoOfEq_inv_naturality, XIsoOfEq_rfl, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d, fromOpcycles_d_assoc, restriction_d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, dTo_eq, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, AlgebraicTopology.DoldKan.comp_P_eq_self_iff, natIsoSc'_hom_app_τ₃, CochainComplex.mappingCone.id_X, CategoryTheory.ProjectiveResolution.instProjectiveXNatOfComplex, CochainComplex.HomComplex.Cochain.single_zero, CochainComplex.mappingCone.inr_descShortComplex_assoc, groupHomology.chainsMap_f_3_comp_chainsIso₃, instEpiFOfHasFiniteColimits, instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported, ChainComplex.single₀ObjXSelf, groupHomology.eq_d₂₁_comp_inv, mapBifunctor₁₂.hom_ext_iff, mapBifunctor₂₃.Îč_mapBifunctor₂₃Desc, CochainComplex.mappingConeCompHomotopyEquiv_comm₂_assoc, Hom.sqFrom_comp, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, groupCohomology.dArrowIso₀₁_hom_right, shortComplexFunctor_obj_X₂, extendCyclesIso_inv_iCycles_assoc, groupCohomology.toCocycles_comp_isoCocycles₂_hom, mapBifunctor₁₂.Îč_mapBifunctor₁₂Desc, mapBifunctor₁₂.Îč_D₂_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_postcomp, mapBifunctor₂₃.ÎčOrZero_eq_zero, homotopyCofiber.inrX_d_assoc, mapBifunctor.hom_ext_iff, sub_f_apply, CochainComplex.mappingCone.d_snd_v'_assoc, Îč_mapBifunctorDesc, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, Homotopy.map_nullHomotopicMap', AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, d_pOpcycles, HomologicalComplex₂.flipEquivalenceUnitIso_hom_app_f_f, CochainComplex.shiftFunctorZero_inv_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d_assoc, fromOpcycles_eq_zero, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f_assoc, ChainComplex.toSingle₀Equiv_apply_coe, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, extendMap_f, HomologicalComplex₂.Îč_totalShift₂Iso_inv_f_assoc, AlgebraicTopology.DoldKan.P_f_idem_assoc, HomologicalComplex₂.d_comm, pOpcycles_restrictionOpcyclesIso_inv, extend.mapX_some, IsStrictlySupported.isZero, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero_assoc, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d_assoc, restriction.sc'Iso_inv_τ₁, CochainComplex.HomComplex.Cochain.zero_cochain_comp_v, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id_assoc, homotopyCofiber.inrCompHomotopy_hom_desc_hom, HomologicalComplex₂.d_f_comp_d_f_assoc, homotopyCofiber.inlX_sndX_assoc, Hom.isoOfComponents_inv_f, CochainComplex.of_d_ne, mapBifunctorAssociatorX_hom_D₂, homologyÎč_comp_fromOpcycles, groupCohomology.comp_d₂₃_eq, restriction_X, CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero, HomologicalComplex₂.Îč_D₂, AlgebraicTopology.DoldKan.QInfty_f_0, isZero_double_X, CategoryTheory.InjectiveResolution.Îč_f_succ, prevD_eq_toPrev_dTo, CochainComplex.isStrictlyGE_iff, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, Homotopy.nullHomotopicMap'_comp, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, instMonoFÎčTruncLE, HomologicalComplex₂.total.mapAux.d₁_mapMap, CochainComplex.mappingCone.lift_f_fst_v_assoc, cyclesIsoSc'_inv_iCycles_assoc, mapBifunctorMapHomotopy.zero₁, Homotopy.dNext_zero_chainComplex, mapBifunctor₂₃.d₃_eq_zero, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d_assoc, groupHomology.chainsMap_f_single, HomologicalComplex₂.d₁_eq, groupCohomology.π_comp_H0IsoOfIsTrivial_hom, opcyclesToCycles_iCycles_assoc, Homotopy.prevD_chainComplex, groupCohomology.cochainsMap_f_map_epi, groupCohomology.comp_d₀₁_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, single_obj_X_self, CochainComplex.HomComplex.Cochain.zero_v, AlgebraicTopology.DoldKan.map_Hσ, instMonoFTruncLE'ToRestriction, id_f, singleMapHomologicalComplex_inv_app_self, restrictionMap_f'_assoc, CochainComplex.isZero_of_isStrictlyLE, mapBifunctor₁₂.d₂_eq_zero, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_1, HomologicalComplex₂.XXIsoOfEq_hom_ÎčTotal_assoc, extendSingleIso_hom_f_assoc, restrictionToTruncGE'.comm_assoc, iCycles_d, mapBifunctor₁₂.ÎčOrZero_eq_zero, prevD_nat, CategoryTheory.InjectiveResolution.extMk_zero, dTo_comp_dFrom, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f, CochainComplex.shiftFunctor_obj_X, CochainComplex.mappingConeCompHomotopyEquiv_comm₁, groupCohomology.dArrowIso₀₁_inv_left, CategoryTheory.Functor.mapHomologicalComplex_obj_X, d_comp_eqToHom, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₂, CochainComplex.mk'_X_1, restrictionToTruncGE'.comm, CochainComplex.HomComplex.Cochain.fromSingleMk_v, instHasMapProdObjGradedObjectFunctorMapBifunctorXMapBifunctorMapObjπ, CochainComplex.HomComplex.Cochain.fromSingleMk_add, HomologicalComplex₂.totalFlipIsoX_hom_D₂_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq_zero, XIsoOfEq_hom_comp_d, CategoryTheory.ProjectiveResolution.Hom.hom'_f_assoc, HomologicalComplex₂.XXIsoOfEq_rfl, dgoToHomologicalComplex_obj_X, CochainComplex.mappingCone.ext_from_iff, ChainComplex.augmentTruncate_inv_f_succ, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₁, HomologicalComplex₂.Îč_D₂_assoc, CochainComplex.HomComplex.Cocycle.toSingleMk_zero, units_smul_f_apply, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, p_opcyclesMap, AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, homotopyCofiber.inrX_fstX, CochainComplex.HomComplex.Cochain.leftUnshift_v, CategoryTheory.NatIso.mapHomologicalComplex_hom_app_f, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_X, CochainComplex.mappingConeCompHomotopyEquiv_comm₁_assoc, coconeOfHasColimitEval_pt_X, restriction.sc'Iso_hom_τ₂, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, mapBifunctor₂₃.Îč_D₁, leftUnitor'_inv_comm_assoc, SimplicialObject.Splitting.cofan_inj_comp_PInfty_eq_zero, opcyclesOpIso_hom_toCycles_op, mapBifunctor₂₃.Îč_mapBifunctor₂₃Desc_assoc, SimplicialObject.Splitting.ÎčSummand_comp_d_comp_πSummand_eq_zero, groupHomology.chainsMap_f_map_epi, Homotopy.nullHomotopicMap_f, d_toCycles, mapBifunctorAssociatorX_hom_D₃_assoc, unop_X, opFunctor_map_f, groupCohomology.isoCocycles₂_hom_comp_i, cyclesIsoSc'_inv_iCycles, CochainComplex.mappingCone.inr_f_snd_v, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, CochainComplex.mappingConeCompTriangle_mor₃_naturality, groupHomology.comp_d₁₀_eq, d_pOpcycles_assoc, CategoryTheory.ProjectiveResolution.of_def, HomologicalComplex₂.totalAux.d₂_eq', Homotopy.zero, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, truncLE'Map_f_eq_cyclesMap, CategoryTheory.ProjectiveResolution.π_f_succ, HomologicalComplex₂.totalAux.d₁_eq, groupCohomology.dArrowIso₀₁_hom_left, HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, homotopyCofiber.sndX_inrX_assoc, HomologicalComplex₂.shiftFunctor₁XXIso_refl, xPrevIso_comp_dTo, Homotopy.extend.hom_eq_zero₁, ComplexShape.Embedding.epi_liftExtend_f_iff, prevD_eq, mapBifunctor.d₂_eq, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, AlgebraicTopology.DoldKan.P_f_idem, HomologicalComplex₂.Îč_totalDesc, CochainComplex.mappingCone.ext_to_iff, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀, HomologicalComplex₂.total.mapAux.d₂_mapMap_assoc, CochainComplex.ConnectData.restrictionLEIso_inv_f, Îč_mapBifunctorFlipIso_inv_assoc, extend_single_d, CochainComplex.mappingCone.inr_f_desc_f, mapBifunctor.d₁_eq_zero, groupCohomology.cocyclesIso₀_inv_comp_iCocycles_assoc, Homotopy.map_nullHomotopicMap, HomologicalComplex₂.d₁_eq_zero, zsmul_f_apply, HomologicalComplex₂.flip_X_X, cyclesMap_i_assoc, CategoryTheory.ProjectiveResolution.Hom.hom'_f, CochainComplex.singleFunctor_obj_d, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', mapBifunctor₂₃.Îč_D₂, AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, Hom.isoOfComponents_hom_f, CochainComplex.HomComplex.Cochain.rightUnshift_v, SimplicialObject.Splitting.nondegComplex_X, extend_d_to_eq_zero, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero_assoc, CochainComplex.mappingCone.inl_v_desc_f_assoc, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₂, nsmul_f_apply, CochainComplex.shiftFunctorAdd'_inv_app_f', groupHomology.d₁₀ArrowIso_inv_right, truncGE'_d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_0, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, prevD_eq_zero, AlgebraicTopology.DoldKan.QInfty_f_naturality_assoc, fromOpcycles_op_cyclesOpIso_inv_assoc, CategoryTheory.Functor.mapCochainComplexShiftIso_inv_app_f, CochainComplex.shiftFunctorAdd'_inv_app_f, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, Homotopy.extend.homAux_eq, ChainComplex.mk_X_0, CochainComplex.mappingCone.liftCochain_v_fst_v, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d, groupHomology.chainsMap_id_f_map_epi, isZero_extend_X, mapBifunctor₁₂.Îč_D₁, homotopyCofiber.inlX_desc_f_assoc, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, CochainComplex.HomComplex.Cochain.fromSingleMk_zero, CochainComplex.mappingCone.decomp_from, CochainComplex.mappingCone.inl_v_triangle_mor₃_f_assoc, AlgebraicTopology.DoldKan.map_PInfty_f, unopSymm_X, eval_obj, homotopyCofiber.d_fstX, CochainComplex.ConnectData.X_zero, groupCohomology.cochainsMap_id_f_map_mono, shortComplexFunctor_map_τ₁, CochainComplex.mappingCone.inr_triangleÎŽ_assoc, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, CochainComplex.of_x, comp_f, CochainComplex.mappingCone.inl_v_snd_v_assoc, XIsoOfEq_hom_comp_XIsoOfEq_inv_assoc, Îč_mapBifunctorAssociatorX_hom_assoc, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_comp, CategoryTheory.Functor.mapHomotopy_hom, ÎčOrZero_mapBifunctorAssociatorX_hom, extend.rightHomologyData.d_comp_desc_eq_zero_iff, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, shortComplexFunctor'_obj_X₂, CochainComplex.HomComplex.Cochain.ofHoms_v_comp_d, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id, CategoryTheory.Functor.mapHomologicalComplexIdIso_inv_app_f, homotopyCofiber.inrX_desc_f, Homotopy.compRight_hom, CochainComplex.cm5b.fac_assoc, AlgebraicTopology.DoldKan.Hσ_eq_zero, CochainComplex.ConnectData.d₀_comp, tensor_unit_d₂, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_hom_f_f, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_inv, CochainComplex.shiftFunctorZero'_hom_app_f, HomologicalComplex₂.flipEquivalenceUnitIso_inv_app_f_f, CategoryTheory.ProjectiveResolution.lift_commutes_zero, groupCohomology.isoCocycles₁_inv_comp_iCocycles, mapBifunctorAssociatorX_hom_D₂_assoc, homologyÎč_comp_fromOpcycles_assoc, groupHomology.eq_d₂₁_comp_inv_assoc, HomologicalComplex₂.d₂_eq_zero', shortComplexFunctor_map_τ₃, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp, HomologicalComplex₂.Îč_totalShift₁Iso_inv_f_assoc, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom_assoc, d_comp_d', zero_f, groupHomology.cyclesIso₀_inv_comp_iCycles, HomologicalComplex₂.XXIsoOfEq_inv_ÎčTotal_assoc, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id, homotopyCofiber.inrCompHomotopy_hom_eq_zero, CochainComplex.mappingCone.d_snd_v_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, CochainComplex.shiftFunctor_map_f, isIso_truncLE'ToRestriction, CochainComplex.mappingCone.d_snd_v', extend_op_d, ComplexShape.Embedding.mono_liftExtend_f_iff, AlgebraicTopology.DoldKan.Γ₀_map_app, extend.rightHomologyData_p, Hom.comm_to, shortComplexFunctor'_obj_X₃, AlgebraicTopology.DoldKan.Q_f_0_eq, complexOfFunctorsToFunctorToComplex_map_app_f, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, mapBifunctor.d_eq, unopSymm_d, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, stupidTruncMap_stupidTruncXIso_hom_assoc, XIsoOfEq_inv_comp_XIsoOfEq_hom_assoc, CochainComplex.ConnectData.X_ofNat, Homotopy.nullHomotopicMap_f_of_not_rel_right, CochainComplex.homotopyOp_hom_eq, CochainComplex.mappingCone.inr_f_descCochain_v_assoc, AlgebraicTopology.DoldKan.QInfty_f_naturality, natIsoSc'_hom_app_τ₂, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc, Homotopy.ofEq_hom, CochainComplex.mappingCone.d_fst_v_assoc, CochainComplex.shiftFunctorAdd_inv_app_f, CochainComplex.truncate_map_f, HomologicalComplex₂.Îč_totalShift₂Iso_hom_f_assoc, ChainComplex.augmentTruncate_hom_f_succ, CochainComplex.mappingCone.map_id, groupHomology.chainsMap_id_f_hom_eq_mapRange, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₁, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₂, XIsoOfEq_hom_naturality_assoc, groupHomology.toCycles_comp_isoCycles₂_hom, ComplexShape.Embedding.liftExtend.comm, CategoryTheory.ProjectiveResolution.exact_succ, alternatingConst_iCycles_odd_comp, homotopyCofiber.inlX_sndX, CategoryTheory.ProjectiveResolution.π'_f_zero, Homotopy.ofExtend_hom, leftUnitor'_inv, HomologicalComplex₂.totalFlipIso_hom_f_D₂, dNext_comp_left, AlgebraicTopology.DoldKan.P_f_naturality_assoc, CochainComplex.mappingCone.inl_v_fst_v, forget_obj, AlgebraicTopology.DoldKan.map_P, xPrevIso_comp_dTo_assoc, homotopyCofiber.inlX_d, mapBifunctor₂₃.d₁_eq, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, Homotopy.comp_nullHomotopicMap, groupHomology.chainsMap_f_map_mono, extend.rightHomologyData_g', single_map_f_self_assoc, groupHomology.eq_d₁₀_comp_inv, Îč_mapBifunctorMap_assoc, homologicalComplexToDGO_map_f, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, ÎčMapBifunctorOrZero_eq_zero, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, extend.homologyData'_right_p, extendCyclesIso_hom_iCycles, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc, IsStrictlySupportedOutside.isZero, groupHomology.eq_d₁₀_comp_inv_assoc, CochainComplex.ConnectData.restrictionLEIso_hom_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d, Homotopy.symm_hom, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, extend.homologyData'_left_i, truncGE'_d_eq_fromOpcycles, CochainComplex.mappingCone.inr_f_descCochain_v, CochainComplex.Îč_mapBifunctorShift₂Iso_hom_f, CochainComplex.cm5b.instQuasiIsoIntP, XIsoOfEq_hom_comp_XIsoOfEq_hom_assoc, HomologicalComplex₂.D₁_totalShift₁XIso_hom, groupCohomology.cocyclesIso₀_hom_comp_f_assoc, groupHomology.lsingle_comp_chainsMap_f, HomologicalComplex₂.D₂_totalShift₁XIso_hom, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, ComplexShape.Embedding.homRestrict.comm_assoc, HasHomotopyCofiber.hasBinaryBiproduct, HomologicalComplex₂.comm_f_assoc, d_comp_XIsoOfEq_inv_assoc, mapBifunctor₂₃.Îč_eq, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₂_assoc, CochainComplex.mappingCone.isZero_X_iff, CochainComplex.mappingCone.quasiIso_descShortComplex, HomologicalComplex₂.totalFlipIso_hom_f_D₁_assoc, Homotopy.comp_nullHomotopicMap', XIsoOfEq_inv_comp_d, CategoryTheory.ProjectiveResolution.complex_d_succ_comp, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.Γ₀.map_app, Homotopy.dNext_succ_chainComplex, XIsoOfEq_inv_comp_d_assoc, HomologicalComplex₂.XXIsoOfEq_inv_ÎčTotal, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp_assoc, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, CochainComplex.mappingConeCompHomotopyEquiv_comm₂, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_hom_assoc, groupCohomology.cocyclesMk₁_eq, mapBifunctor₁₂.Îč_D₃, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_X, CochainComplex.HomComplex.ÎŽ_zero_cochain_v, CochainComplex.HomComplex.Cochain.units_smul_v, CochainComplex.HomComplex.Cochain.ÎŽ_toSingleMk, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, smul_f_apply, CochainComplex.cm5b.instMonoFIntI, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂, mapBifunctorAssociatorX_hom_D₁, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_precomp, AlgebraicTopology.DoldKan.Q_f_naturality_assoc, mapBifunctor₂₃.Îč_D₁_assoc, HomologicalComplex₂.ofGradedObject_X_d, singleObjCyclesSelfIso_inv_iCycles_assoc, Homotopy.compLeftId_hom, CochainComplex.HomComplex.Cocycle.fromSingleMk_zero, zero_f_apply, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃_assoc, CategoryTheory.ProjectiveResolution.extMk_zero, alternatingConst_iCycles_even_comp, d_comp_XIsoOfEq_hom_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_hom, pOpcycles_extendOpcyclesIso_hom_assoc, toCycles_eq_zero, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self, homotopyCofiber.inlX_d'_assoc, CochainComplex.mappingCone.inr_f_fst_v_assoc, CategoryTheory.ProjectiveResolution.instProjectiveXIntCochainComplex, Homotopy.add_hom, CategoryTheory.InjectiveResolution.Îč'_f_zero_assoc, HomologicalComplex₂.totalFlipIsoX_hom_D₁, CochainComplex.mappingCone.inl_v_d_assoc, CochainComplex.shiftFunctorZero'_inv_app_f, CochainComplex.mappingCone.inl_v_desc_f, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, SimplicialObject.Splitting.PInfty_comp_πSummand_id_assoc, truncLE'_d_eq, ChainComplex.mk'_d, singleMapHomologicalComplex_inv_app_ne, pOpcycles_extendOpcyclesIso_inv, CochainComplex.isZero_of_isStrictlyGE, groupHomology.eq_d₃₂_comp_inv_assoc, shortComplexFunctor'_map_τ₁, Îč_mapBifunctorDesc_assoc, homology_π_Îč_assoc, instMonoFOfHasFiniteLimits, HomologicalComplex₂.ofGradedObject_X_X, CochainComplex.mappingCone.map_comp_assoc, Rep.standardComplex.d_comp_Δ, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, single_map_f_self, ChainComplex.fromSingle₀Equiv_symm_apply_f_zero, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, toCycles_comp_homologyπ, Homotopy.compRightId_hom, CochainComplex.HomComplex.Cochain.smul_v, homotopyCofiber.d_sndX, CochainComplex.ConnectData.X_negOne, CategoryTheory.InjectiveResolution.Hom.hom'_f_assoc, xPrevIsoSelf_comp_dTo_assoc, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₃, mapBifunctor₁₂.d₃_eq_zero, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_sub, CochainComplex.toSingle₀Equiv_symm_apply_f_succ, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, singleCompEvalIsoSelf_inv_app, toCycles_cyclesIsoSc'_hom_assoc, asFunctor_obj_d, ChainComplex.augmentTruncate_hom_f_zero, shortComplexFunctor_obj_X₁, HomologicalComplex₂.ÎčTotalOrZero_map, truncGE'Map_f_eq_opcyclesMap, kernel_from_eq_kernel, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, CochainComplex.cm5b.instInjectiveXIntI, CochainComplex.cm5b.instMonoIntI, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_eq_zero, groupHomology.cyclesMk₂_eq, groupHomology.chainsMap_f_1_comp_chainsIso₁, CochainComplex.ConnectData.X_negSucc, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_naturality, isZero_extend_X', groupHomology.isoCycles₁_inv_comp_iCycles_assoc, AlgebraicTopology.DoldKan.hσ'_eq, HomologicalComplex₂.d₂_eq, groupHomology.chainsMap_f_2_comp_chainsIso₂, extend_d_from_eq_zero, groupHomology.pOpcycles_comp_opcyclesIso_hom, Homotopy.extend.hom_eq_zero₂, Homotopy.nullHomotopicMap'_f_of_not_rel_left, homotopyCofiber.inlX_d', AlgebraicTopology.DoldKan.PInfty_f_0, Homotopy.nullHomotopicMap_f_of_not_rel_left, groupCohomology.eq_d₂₃_comp_inv, toCycles_comp_homologyπ_assoc, groupCohomology.cochainsMap_f_map_mono, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, CochainComplex.mappingCone.map_comp, AlgebraicTopology.DoldKan.PInfty_f_naturality, CategoryTheory.InjectiveResolution.cochainComplex_d_assoc, AlgebraicTopology.DoldKan.hσ'_eq_zero, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand, HomologicalComplex₂.shape_f, AlgebraicTopology.DoldKan.PInfty_f_idem_assoc, ComplexShape.Embedding.liftExtend_f, groupCohomology.isoCocycles₂_inv_comp_iCocycles, homotopyCofiber.inlX_fstX_assoc, image_eq_image, CochainComplex.cm5b.i_f_comp, ComplexShape.Embedding.homRestrict.comm, CochainComplex.mappingCone.decomp_to, extend.leftHomologyData_i, inhomogeneousCochains.d_eq, image_to_eq_image, extend.comp_d_eq_zero_iff, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne_assoc, restrictionCyclesIso_inv_iCycles_assoc, groupCohomology.cocyclesMk₂_eq, Homotopy.trans_hom, ComplexShape.Embedding.liftExtend.f_eq, CochainComplex.mappingCone.liftCochain_v_fst_v_assoc, groupCohomology.cochainsMap_id_f_map_epi, dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem_assoc, CochainComplex.mappingCone.lift_desc_f, CochainComplex.ConnectData.restrictionGEIso_inv_f, AlgebraicTopology.DoldKan.map_Q, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀_assoc, HomologicalComplex₂.Îč_totalShift₂Iso_inv_f, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, AlgebraicTopology.DoldKan.PInfty_f_idem, pOpcycles_opcyclesIsoSc'_hom_assoc, Hom.sqTo_right, eqToHom_comp_d, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, CochainComplex.HomComplex.Cochain.leftShift_v, CochainComplex.mappingCone.desc_f, groupHomology.cyclesMk₁_eq, CochainComplex.mappingCone.d_fst_v'_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp_assoc, AlgebraicTopology.DoldKan.σ_comp_PInfty, CochainComplex.HomComplex.Cochain.toSingleMk_zero, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, groupCohomology.isoCocycles₁_hom_comp_i, dNext_eq_dFrom_fromNext, CochainComplex.augmentTruncate_inv_f_succ, double_d, CochainComplex.mappingCone.inl_v_d, AlgebraicTopology.NormalizedMooreComplex.obj_X, CochainComplex.shiftFunctor_obj_X', Hom.sqFrom_left, CochainComplex.HomComplex.Cochain.shift_v, CochainComplex.shiftFunctorZero_hom_app_f, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, AlgebraicTopology.DoldKan.N₂_obj_X_X, CochainComplex.mappingCone.inr_f_snd_v_assoc, mapBifunctorMapHomotopy.comm₁_aux, ChainComplex.linearYonedaObj_d, Hom.comm_assoc, CochainComplex.mk_X_2, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, Homotopy.smul_hom, Rep.standardComplex.x_projective, Homotopy.prevD_zero_cochainComplex, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported, mapBifunctor.Îč_D₁, HomologicalComplex₂.total.mapAux.d₂_mapMap, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, restrictionMap_f', homotopyCofiber.inrX_d, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom, CochainComplex.ConnectData.d₀_comp_assoc, ChainComplex.fromSingle₀Equiv_apply, CochainComplex.mappingCone.d_fst_v', CategoryTheory.InjectiveResolution.desc_commutes_zero, singleObjCyclesSelfIso_hom_assoc, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, CochainComplex.shiftFunctorAdd'_hom_app_f', CochainComplex.mappingCone.inl_v_descCochain_v, d_comp_XIsoOfEq_hom, Homotopy.comm, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, mapBifunctor.d₁_eq', Hom.comm_from, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃_assoc, CochainComplex.augmentTruncate_hom_f_succ, CochainComplex.shiftEval_hom_app, d_comp_d, singleCompEvalIsoSelf_hom_app, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, HomologicalComplex₂.flip_X_d, op_X, XIsoOfEq_inv_comp_XIsoOfEq_hom, mapBifunctor.d₂_eq_zero, ChainComplex.chainComplex_d_succ_succ_zero, CochainComplex.cm5b.i_f_comp_assoc, CochainComplex.HomComplex_X, d_eqToHom_assoc, coneOfHasLimitEval_pt_X, Homotopy.comp_hom, dNext_eq, CochainComplex.shiftFunctor_obj_d', Hom.sqFrom_right, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, groupHomology.isoCycles₁_hom_comp_i_assoc, mapBifunctor₂₃.d_eq, CochainComplex.mappingCone.inr_descShortComplex, CochainComplex.Îč_mapBifunctorShift₁Iso_hom_f_assoc, CochainComplex.cm5b.I_d, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne, CategoryTheory.ProjectiveResolution.exact₀, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, homotopyCofiber.inlX_d_assoc, pOpcycles_extendOpcyclesIso_hom, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_inv_f_f, CochainComplex.HomComplex.Cochain.d_comp_ofHom_v, AlgebraicTopology.DoldKan.karoubi_PInfty_f, mapBifunctorAssociatorX_hom_D₃, homologicalComplexToDGO_obj_obj, homotopyCofiber.desc_f, extendCyclesIso_inv_iCycles, CochainComplex.ConnectData.comp_d₀, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, ChainComplex.augmentTruncate_inv_f_zero, CochainComplex.shiftFunctorAdd_hom_app_f, restrictionCyclesIso_hom_iCycles_assoc, restriction.sc'Iso_inv_τ₂, Îč_mapBifunctorFlipIso_hom, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, homology_π_Îč, ChainComplex.of_x, CategoryTheory.Idempotents.DoldKan.Γ_map_app, CategoryTheory.ProjectiveResolution.projective, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, shortComplexFunctor'_map_τ₃, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CochainComplex.mappingCone.inl_v_descShortComplex_f, homotopyCofiber.sndX_inrX, instHasMapProdObjGradedObjectFunctorMapBifunctorMapBifunctorMapObjπX, HomologicalComplex₂.Îč_D₁, HomologicalComplex₂.flipEquivalenceCounitIso_inv_app_f_f, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty, mapBifunctor₁₂.d₁_eq_zero, CochainComplex.HomComplex.Cochain.d_comp_ofHoms_v, CochainComplex.HomComplex.Cochain.toSingleMk_postcomp, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, extendCyclesIso_hom_iCycles_assoc, mapBifunctor.d₂_eq_zero', Hom.sqTo_left, CochainComplex.mappingCone.inr_f_descShortComplex_f, asFunctor_map_f, Hom.comm_from_assoc, CochainComplex.toSingle₀Equiv_apply, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp, ComplexShape.Embedding.homRestrict_f, groupHomology.isoCycles₁_inv_comp_iCycles, CochainComplex.HomComplex.Cochain.single_v_eq_zero', CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f, extend.d_eq, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₃, shortComplexFunctor_map_τ₂, CochainComplex.shiftFunctorAdd'_hom_app_f, mapBifunctor.d₂_eq', CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, Homotopy.compLeft_hom, isIso_restrictionToTruncGE', CochainComplex.cochainComplex_d_succ_succ_zero, truncLE'Map_f_eq, groupHomology.toCycles_comp_isoCycles₁_hom, prevD_comp_right, Hom.comm', HomologicalComplex₂.Îč_totalShift₂Iso_hom_f, dFrom_comp_xNextIso_assoc, toCycles_cyclesIsoSc'_hom, fromOpcycles_op_cyclesOpIso_inv, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero_assoc, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, pOpcycles_opcyclesToCycles_iCycles, extend_d_eq, AlgebraicTopology.DoldKan.QInfty_f_idem_assoc, mapBifunctor.d₁_eq_zero', CochainComplex.shiftFunctorComm_hom_app_f, groupCohomology.iCocycles_mk, ComplexShape.Embedding.homRestrict.f_eq, AlgebraicTopology.DoldKan.QInfty_f_idem, groupHomology.isoCycles₂_hom_comp_i, restrictionToTruncGE'.f_eq_iso_hom_iso_inv, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0, CochainComplex.mappingCone.inl_v_snd_v, p_fromOpcycles_assoc, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, groupHomology.isoCycles₂_inv_comp_iCycles, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f, unit_tensor_d₁, HomologicalComplex₂.XXIsoOfEq_hom_ÎčTotal, ChainComplex.mk'_X_1, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, Hom.isoApp_inv, CochainComplex.mappingConeCompTriangle_mor₃_naturality_assoc, CategoryTheory.InjectiveResolution.exact_succ, ChainComplex.mk_d, HomologicalComplex₂.total.mapAux.d₁_mapMap_assoc, CategoryTheory.ProjectiveResolution.liftFOne_zero_comm, CochainComplex.ConnectData.comp_d₀_assoc, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f, CategoryTheory.InjectiveResolution.instMonoFNatÎč, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃, HomologicalComplex₂.d₂_eq', CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero, CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero, isZero_X_of_isStrictlySupported, AlgebraicTopology.DoldKan.Γ₀.Obj.mapMono_on_summand_id_assoc, groupHomology.d₁₀ArrowIso_hom_right, Homotopy.dNext_cochainComplex, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₂, Homotopy.nullHomotopicMap'_f, CategoryTheory.Functor.mapCochainComplexShiftIso_hom_app_f, HomologicalComplex₂.totalFlipIsoX_hom_D₂, extend.leftHomologyData.lift_d_comp_eq_zero_iff, CochainComplex.shiftEval_inv_app, mapBifunctor₂₃.Îč_D₃_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, pOpcycles_opcyclesToCycles, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_id, Homotopy.nullHomotopicMap'_f_of_not_rel_right, dNext_comp_right, homotopyCofiber.inlX_desc_f, fromOpcycles_d, iCycles_d_assoc, HomologicalComplex₂.d₁_eq', instHasTensorXTensorUnit, groupHomology.inhomogeneousChains.d_eq, cyclesMap_i, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CochainComplex.HomComplex.Cochain.equivHomotopy_symm_apply_hom, AlgebraicTopology.DoldKan.decomposition_Q, extendMap_f_eq_zero, CategoryTheory.InjectiveResolution.exact₀, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_succ_succ, groupHomology.cyclesMk₀_eq, groupHomology.isoCycles₁_hom_comp_i, AlgebraicTopology.DoldKan.σ_comp_P_eq_zero, mapBifunctor₁₂.Îč_eq, HomologicalComplex₂.toGradedObjectMap_apply, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₁, CochainComplex.mappingCone.lift_f_snd_v, HomologicalComplex₂.ÎčTotalOrZero_eq_zero, double_d_eq_zero₁, unop_d, XIsoOfEq_hom_comp_XIsoOfEq_inv, truncGE'.homologyÎč_truncGE'XIsoOpcycles_inv_d, HomologicalComplex₂.flip_d_f, truncGE'Map_f_eq, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₃, dFrom_eq, AlgebraicTopology.AlternatingFaceMapComplex.obj_X, AlgebraicTopology.DoldKan.Q_f_idem_assoc, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0_assoc, HomologicalComplex₂.D₁_totalShift₂XIso_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, CochainComplex.HomComplex.Cochain.rightShift_v, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, groupCohomology.cocyclesMk₀_eq, CochainComplex.mappingConeCompTriangleh_comm₁, AlgebraicTopology.DoldKan.Q_f_naturality, mapBifunctor₁₂.d₁_eq, groupHomology.lsingle_comp_chainsMap_f_assoc, HomologicalComplex₂.D₂_totalShift₂XIso_hom, d_comp_XIsoOfEq_inv, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f_assoc, ChainComplex.truncate_obj_X, CochainComplex.single₀_obj_zero, alternatingConst_X, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, restrictionToTruncGE'_f_eq_iso_hom_iso_inv, instEpiPOpcycles, groupHomology.cyclesIso₀_inv_comp_iCycles_assoc, CochainComplex.cm5b.instInjectiveXIntMappingConeIdI, stupidTruncMap_stupidTruncXIso_hom, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, mapBifunctor₁₂.d₃_eq, AlgebraicTopology.alternatingFaceMapComplex_obj_X, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, Homotopy.extend.hom_eq, mapBifunctor₁₂.Îč_D₂, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand', CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_inv_assoc, homotopyCofiber.d_sndX_assoc, mapBifunctor₁₂.Îč_mapBifunctor₁₂Desc_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, dNext_nat, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, neg_f_apply, CategoryTheory.ProjectiveResolution.instEpiFNatπ, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, pOpcycles_restrictionOpcyclesIso_inv_assoc, unopFunctor_map_f, Hom.comm, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, shape, HomologicalComplex₂.flipEquivalenceCounitIso_hom_app_f_f, AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty_assoc, Homotopy.refl_hom, CochainComplex.HomComplex.Cochain.toSingleEquiv_toSingleMk, pOpcycles_extendOpcyclesIso_inv_assoc, AlgebraicTopology.DoldKan.map_hσ', CochainComplex.HomComplex.Cochain.ofHoms_zero, dFrom_comp_xNextIso, mapBifunctor₁₂.d₂_eq, groupCohomology.eq_d₁₂_comp_inv_assoc, pOpcycles_opcyclesToCycles_assoc, opcyclesOpIso_hom_toCycles_op_assoc, singleObjCyclesSelfIso_hom, restriction_d_eq_assoc, mapBifunctor₂₃.d₁_eq_zero, HomologicalComplex₂.d_comm_assoc, AlgebraicTopology.DoldKan.P_f_naturality, alternatingConst_iCycles_even_comp_assoc, dNext_eq_zero, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃, CochainComplex.mappingCone.lift_f, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, groupHomology.d₁₀ArrowIso_inv_left, XIsoOfEq_hom_naturality, homotopyCofiber.inrX_sndX, AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty, HomologicalComplex₂.totalAux.d₁_eq', Hom.comm_to_assoc, opcyclesToCycles_iCycles, Îč_mapBifunctorFlipIso_hom_assoc, extendSingleIso_hom_f, restriction.sc'Iso_hom_τ₃, HomologicalComplex₂.total.hom_ext_iff, XIsoOfEq_inv_comp_XIsoOfEq_inv_assoc, CochainComplex.HomComplex.Cochain.add_v, d_eqToHom, CochainComplex.toSingle₀Equiv_symm_apply_f_zero, CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f, groupCohomology.isoCocycles₂_hom_comp_i_assoc, CochainComplex.augmentTruncate_hom_f_zero, CochainComplex.mappingCone.inl_v_fst_v_assoc, comp_f_assoc, ChainComplex.single₀_obj_zero, CategoryTheory.ProjectiveResolution.cochainComplex_d_assoc, ChainComplex.of_d_ne, ChainComplex.fromSingle₀Equiv_symm_apply_f_succ, rightUnitor'_inv_comm, AlgebraicTopology.DoldKan.hσ'_naturality, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_naturality_assoc, AlgebraicTopology.DoldKan.P_add_Q_f, opInverse_map, HomologicalComplex₂.flipFunctor_map_f_f, groupCohomology.eq_d₀₁_comp_inv_assoc, dFrom_comp_xNextIsoSelf_assoc, mapBifunctorAssociatorX_hom_D₁_assoc, AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty, CochainComplex.HomComplex.Cochain.toSingleMk_sub, Hom.isoApp_hom, groupCohomology.isoCocycles₁_hom_comp_i_assoc, CategoryTheory.InjectiveResolution.descFOne_zero_comm, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₁, singleObjOpcyclesSelfIso_hom_assoc, mapBifunctor.d₁_eq, mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂_assoc, HomologicalComplex₂.totalFlipIsoX_hom_D₁_assoc, dgoEquivHomologicalComplexCounitIso_inv_app_f, Homotopy.nullHomotopy'_hom, AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand'_assoc, CochainComplex.mappingCone.lift_f_snd_v_assoc, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, Rep.FiniteCyclicGroup.resolution.π_f, natIsoSc'_inv_app_τ₁, restriction.sc'Iso_hom_τ₁, kernel_eq_kernel, homotopyCofiber.d_fstX_assoc, opSymm_X, CochainComplex.mappingCone.inr_f_desc_f_assoc, Hom.fAddMonoidHom_apply, CategoryTheory.InjectiveResolution.instInjectiveXIntCochainComplex, toCycles_i_assoc, CochainComplex.shiftFunctor_obj_d, CochainComplex.HomComplex.Cochain.toSingleMk_precomp, Îč_mapBifunctorMap, CochainComplex.mappingCone.d_fst_v, CochainComplex.single₀ObjXSelf, CategoryTheory.InjectiveResolution.instInjectiveXNatOfCocomplex, mapBifunctor₂₃.d₂_eq_zero, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, ÎčOrZero_mapBifunctorAssociatorX_hom_assoc, homotopyCofiber.inrX_desc_f_assoc, natIsoSc'_hom_app_τ₁, extendMap_id_f, p_opcyclesMap_assoc, groupHomology.isoCycles₂_hom_comp_i_assoc, CochainComplex.mk_X_0, groupHomology.comp_d₃₂_eq, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, groupHomology.chainsMap_f_0_comp_chainsIso₀, restrictionCyclesIso_inv_iCycles, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, HomologicalComplex₂.ÎčTotal_map_assoc, Îč_mapBifunctorFlipIso_inv, CochainComplex.cm5b.I_X, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, HomologicalComplex₂.totalFlipIso_hom_f_D₂_assoc, pOpcycles_restrictionOpcyclesIso_hom, HomologicalComplex₂.Îč_totalShift₁Iso_hom_f, instEpiFRestrictionToTruncGE', forgetEval_inv_app, ChainComplex.mk_X_1, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, CochainComplex.mk_X_1, mapBifunctor₂₃.Îč_D₂_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, CochainComplex.Îč_mapBifunctorShift₁Iso_hom_f, shortComplexFunctor_obj_X₃, AlgebraicTopology.DoldKan.Q_f_idem, CochainComplex.HomComplex.Cochain.single_v_eq_zero, Hom.prev_eq, CategoryTheory.InjectiveResolution.cochainComplex_d, CochainComplex.mappingCone.map_ÎŽ, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv, ChainComplex.linearYonedaObj_X, CochainComplex.ConnectData.restrictionGEIso_hom_f, Hom.sqFrom_id
XIsoOfEq 📖CompOp
58 mathmath: XIsoOfEq_hom_comp_XIsoOfEq_hom, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₂, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₃, XIsoOfEq_hom_comp_d_assoc, CochainComplex.homotopyUnop_hom_eq, XIsoOfEq_inv_naturality_assoc, CochainComplex.XIsoOfEq_shift, natIsoSc'_inv_app_τ₃, XIsoOfEq_inv_comp_XIsoOfEq_inv, XIsoOfEq_inv_naturality, XIsoOfEq_rfl, natIsoSc'_hom_app_τ₃, CochainComplex.shiftFunctorZero_inv_app_f, XIsoOfEq_hom_comp_d, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₁, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₂, CochainComplex.shiftFunctorAdd'_inv_app_f', CochainComplex.shiftFunctorAdd'_inv_app_f, XIsoOfEq_hom_comp_XIsoOfEq_inv_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_inv, CochainComplex.shiftFunctorZero'_hom_app_f, XIsoOfEq_inv_comp_XIsoOfEq_hom_assoc, CochainComplex.homotopyOp_hom_eq, CochainComplex.shiftFunctorAdd_inv_app_f, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₁, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₂, XIsoOfEq_hom_naturality_assoc, XIsoOfEq_hom_comp_XIsoOfEq_hom_assoc, d_comp_XIsoOfEq_inv_assoc, XIsoOfEq_inv_comp_d, XIsoOfEq_inv_comp_d_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_hom_assoc, d_comp_XIsoOfEq_hom_assoc, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_hom, CochainComplex.shiftFunctorZero'_inv_app_f, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₃, CochainComplex.shiftFunctorZero_hom_app_f, CochainComplex.shiftFunctorAdd'_hom_app_f', d_comp_XIsoOfEq_hom, CochainComplex.shiftEval_hom_app, XIsoOfEq_inv_comp_XIsoOfEq_hom, CochainComplex.shiftFunctorAdd_hom_app_f, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₃, CochainComplex.shiftFunctorAdd'_hom_app_f, CochainComplex.shiftFunctorComm_hom_app_f, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₂, CochainComplex.shiftEval_inv_app, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₁, XIsoOfEq_hom_comp_XIsoOfEq_inv, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₃, d_comp_XIsoOfEq_inv, CochainComplex.HomComplex.Cochain.v_comp_XIsoOfEq_inv_assoc, XIsoOfEq_hom_naturality, XIsoOfEq_inv_comp_XIsoOfEq_inv_assoc, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₁, Rep.FiniteCyclicGroup.resolution.π_f, natIsoSc'_inv_app_τ₁, natIsoSc'_hom_app_τ₁
comp 📖CompOp—
d 📖CompOp
325 mathmath: ChainComplex.truncate_map_f, double_d_eq_zero₀, mapBifunctor₁₂.d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, CochainComplex.mappingCone.inr_f_d_assoc, AlgebraicTopology.NormalizedMooreComplex.obj_d, pOpcycles_opcyclesToCycles_iCycles_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, CochainComplex.HomComplex.Cochain.ÎŽ_single, groupCohomology.inhomogeneousCochains.d_def, extend.d_comp_eq_zero_iff, CochainComplex.augmentTruncate_inv_f_zero, groupCohomology.eq_d₀₁_comp_inv, ChainComplex.mkAux_eq_shortComplex_mk_d_comp_d, coneOfHasLimitEval_pt_d, op_d, opSymm_d, groupCohomology.eq_d₁₂_comp_inv, toCycles_i, groupHomology.eq_d₃₂_comp_inv, leftUnitor'_inv_comm, Rep.barComplex.d_def, ComplexShape.Embedding.liftExtend.comm_assoc, HomologicalComplex₂.comm_f, CategoryTheory.ProjectiveResolution.ofComplex_d_1_0, CategoryTheory.Functor.mapHomologicalComplex_obj_d, mapBifunctor₂₃.d₂_eq, groupHomology.comp_d₂₁_eq, CochainComplex.ConnectData.d_ofNat, CategoryTheory.Functor.mapHomologicalComplex_map_f, HomologicalComplex₂.totalAux.d₂_eq, CochainComplex.mappingCone.d_snd_v, p_fromOpcycles, CochainComplex.HomComplex.Cochain.ÎŽ_fromSingleMk, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, HomologicalComplex₂.d_f_comp_d_f, extend_op_d_assoc, groupCohomology.comp_d₁₂_eq, CategoryTheory.InjectiveResolution.of_def, CategoryTheory.ProjectiveResolution.cochainComplex_d, CochainComplex.HomComplex.Cochain.ofHom_v_comp_d, groupCohomology.dArrowIso₀₁_inv_right, mapBifunctor₂₃.d₃_eq, CochainComplex.ConnectData.d_zero_one, groupCohomology.eq_d₂₃_comp_inv_assoc, groupCohomology.eq_d₂₃_comp_inv_apply, CategoryTheory.InjectiveResolution.complex_d_comp, groupCohomology.eq_d₁₂_comp_inv_apply, single_obj_d, Rep.standardComplex.d_eq, AlgebraicTopology.alternatingFaceMapComplex_obj_d, XIsoOfEq_hom_comp_d_assoc, truncLE'_d_eq_toCycles, Homotopy.prevD_succ_cochainComplex, d_toCycles_assoc, CochainComplex.mappingCone.inr_f_d, CochainComplex.HomComplex.ÎŽ_v, d_comp_d_assoc, CochainComplex.fromSingle₀Equiv_apply_coe, dgoToHomologicalComplex_obj_d, shortComplexFunctor'_map_τ₂, groupHomology.d₁₀ArrowIso_hom_left, CochainComplex.of_d, mapBifunctorMapHomotopy.comm₁, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d, fromOpcycles_d_assoc, restriction_d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, dTo_eq, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, groupHomology.eq_d₂₁_comp_inv, groupCohomology.dArrowIso₀₁_hom_right, coconeOfHasColimitEval_pt_d, homotopyCofiber.inrX_d_assoc, CochainComplex.mappingCone.d_snd_v'_assoc, AlgebraicTopology.karoubi_alternatingFaceMapComplex_d, d_pOpcycles, ChainComplex.toSingle₀Equiv_apply_coe, SimplicialObject.Splitting.nondegComplex_d, HomologicalComplex₂.d_comm, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero_assoc, groupHomology.inhomogeneousChains.d_def, HomologicalComplex₂.d_f_comp_d_f_assoc, ChainComplex.mk_d_1_0, CochainComplex.of_d_ne, groupCohomology.comp_d₂₃_eq, CochainComplex.ConnectData.d_negSucc, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d_assoc, HomologicalComplex₂.d₁_eq, Homotopy.prevD_chainComplex, groupCohomology.comp_d₀₁_eq, CochainComplex.mk_d_2_0, restrictionToTruncGE'.comm_assoc, iCycles_d, prevD_nat, groupCohomology.dArrowIso₀₁_inv_left, d_comp_eqToHom, restriction_d, restrictionToTruncGE'.comm, groupHomology.eq_d₃₂_comp_inv_apply, XIsoOfEq_hom_comp_d, ChainComplex.augmentTruncate_inv_f_succ, leftUnitor'_inv_comm_assoc, SimplicialObject.Splitting.ÎčSummand_comp_d_comp_πSummand_eq_zero, CochainComplex.ConnectData.d_sub_two_sub_one, Homotopy.nullHomotopicMap_f, d_toCycles, groupHomology.comp_d₁₀_eq, d_pOpcycles_assoc, CategoryTheory.ProjectiveResolution.of_def, HomologicalComplex₂.totalAux.d₂_eq', CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, CategoryTheory.InjectiveResolution.ofCocomplex_d_0_1, HomologicalComplex₂.totalAux.d₁_eq, groupCohomology.dArrowIso₀₁_hom_left, xPrevIso_comp_dTo, prevD_eq, mapBifunctor.d₂_eq, groupCohomology.eq_d₀₁_comp_inv_apply, extend_single_d, CochainComplex.singleFunctor_obj_d, extend_d_to_eq_zero, groupHomology.d₁₀ArrowIso_inv_right, truncGE'_d_eq, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_ή₀', CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d, truncGE'.homologyData_right_g', homotopyCofiber.d_fstX, shortComplexFunctor_map_τ₁, extend.rightHomologyData.d_comp_desc_eq_zero_iff, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, CochainComplex.HomComplex.Cochain.ofHoms_v_comp_d, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, CochainComplex.ConnectData.d₀_comp, AlgebraicTopology.AlternatingFaceMapComplex.obj_d_eq, AlgebraicTopology.normalizedMooreComplex_objD, groupHomology.eq_d₂₁_comp_inv_assoc, shortComplexFunctor_map_τ₃, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp, d_comp_d', shortComplexFunctor_obj_f, CochainComplex.mappingCone.d_snd_v_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, CochainComplex.shiftFunctor_map_f, CochainComplex.mappingCone.d_snd_v', extend_op_d, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, mapBifunctor.d_eq, unopSymm_d, Homotopy.nullHomotopicMap_f_of_not_rel_right, shortComplexFunctor'_obj_g, CochainComplex.mappingCone.d_fst_v_assoc, CochainComplex.truncate_map_f, ChainComplex.augmentTruncate_hom_f_succ, ComplexShape.Embedding.liftExtend.comm, CategoryTheory.ProjectiveResolution.exact_succ, xPrevIso_comp_dTo_assoc, CochainComplex.ConnectData.cochainComplex_d, homotopyCofiber.inlX_d, mapBifunctor₂₃.d₁_eq, groupHomology.eq_d₁₀_comp_inv, homologicalComplexToDGO_map_f, groupHomology.eq_d₁₀_comp_inv_assoc, truncGE'_d_eq_fromOpcycles, ComplexShape.Embedding.homRestrict.comm_assoc, HomologicalComplex₂.comm_f_assoc, d_comp_XIsoOfEq_inv_assoc, XIsoOfEq_inv_comp_d, CategoryTheory.ProjectiveResolution.complex_d_succ_comp, Homotopy.dNext_succ_chainComplex, XIsoOfEq_inv_comp_d_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp_assoc, CochainComplex.HomComplex.ÎŽ_zero_cochain_v, CochainComplex.HomComplex.Cochain.ÎŽ_toSingleMk, HomologicalComplex₂.ofGradedObject_X_d, d_comp_XIsoOfEq_hom_assoc, CochainComplex.mappingCone.inl_v_d_assoc, truncLE'_d_eq, ChainComplex.mk'_d, groupHomology.eq_d₃₂_comp_inv_assoc, shortComplexFunctor'_map_τ₁, Rep.standardComplex.d_comp_Δ, homotopyCofiber.d_sndX, alternatingConst_d, asFunctor_obj_d, ChainComplex.augmentTruncate_hom_f_zero, kernel_from_eq_kernel, HomologicalComplex₂.d₂_eq, extend_d_from_eq_zero, Homotopy.nullHomotopicMap'_f_of_not_rel_left, coconeOfHasColimitEval_Îč_app_f, Homotopy.nullHomotopicMap_f_of_not_rel_left, groupCohomology.eq_d₂₃_comp_inv, CategoryTheory.InjectiveResolution.cochainComplex_d_assoc, HomologicalComplex₂.shape_f, image_eq_image, ComplexShape.Embedding.homRestrict.comm, ChainComplex.truncate_obj_d, inhomogeneousCochains.d_eq, image_to_eq_image, extend.comp_d_eq_zero_iff, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne_assoc, HomologicalComplex₂.ofGradedObject_d_f, eqToHom_comp_d, CochainComplex.mappingCone.d_fst_v'_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp_assoc, CochainComplex.augmentTruncate_inv_f_succ, double_d, CochainComplex.mappingCone.inl_v_d, ChainComplex.linearYonedaObj_d, Hom.comm_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, homotopyCofiber.inrX_d, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CochainComplex.ConnectData.d₀_comp_assoc, CochainComplex.mappingCone.d_fst_v', d_comp_XIsoOfEq_hom, mapBifunctor.d₁_eq', CochainComplex.augmentTruncate_hom_f_succ, d_comp_d, homologicalComplexToDGO_obj_d, HomologicalComplex₂.flip_X_d, ChainComplex.chainComplex_d_succ_succ_zero, d_eqToHom_assoc, dNext_eq, CochainComplex.shiftFunctor_obj_d', AlgebraicTopology.DoldKan.N₂_obj_X_d, coneOfHasLimitEval_π_app_f, mapBifunctor₂₃.d_eq, CochainComplex.cm5b.I_d, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne, CategoryTheory.ProjectiveResolution.exact₀, homotopyCofiber.inlX_d_assoc, homotopyCofiber_d, CochainComplex.HomComplex.Cochain.d_comp_ofHom_v, CochainComplex.ConnectData.comp_d₀, ChainComplex.augmentTruncate_inv_f_zero, shortComplexFunctor'_map_τ₃, CochainComplex.HomComplex.Cochain.d_comp_ofHoms_v, asFunctor_map_f, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp, extend.d_eq, shortComplexFunctor_map_τ₂, mapBifunctor.d₂_eq', shortComplexFunctor_obj_g, CochainComplex.cochainComplex_d_succ_succ_zero, Hom.comm', dFrom_comp_xNextIso_assoc, HomologicalComplex₂.total_d, pOpcycles_opcyclesToCycles_iCycles, extend_d_eq, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0, p_fromOpcycles_assoc, CategoryTheory.InjectiveResolution.exact_succ, ChainComplex.mk_d, CategoryTheory.ProjectiveResolution.liftFOne_zero_comm, CochainComplex.ConnectData.comp_d₀_assoc, HomologicalComplex₂.d₂_eq', CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero, groupHomology.d₁₀ArrowIso_hom_right, Homotopy.dNext_cochainComplex, Homotopy.nullHomotopicMap'_f, CochainComplex.mk'_d_1_0, extend.leftHomologyData.lift_d_comp_eq_zero_iff, Homotopy.nullHomotopicMap'_f_of_not_rel_right, ChainComplex.mk'_d_1_0, fromOpcycles_d, iCycles_d_assoc, HomologicalComplex₂.d₁_eq', groupHomology.inhomogeneousChains.d_eq, groupHomology.eq_d₂₁_comp_inv_apply, CategoryTheory.InjectiveResolution.exact₀, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_succ_succ, shortComplexFunctor'_obj_f, double_d_eq_zero₁, unop_d, truncGE'.homologyÎč_truncGE'XIsoOpcycles_inv_d, HomologicalComplex₂.flip_d_f, dFrom_eq, CategoryTheory.Abelian.LeftResolution.map_chainComplex_d_1_0_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, mapBifunctor₁₂.d₁_eq, d_comp_XIsoOfEq_inv, ChainComplex.of_d, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, mapBifunctor₁₂.d₃_eq, homotopyCofiber.d_sndX_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, dNext_nat, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, CochainComplex.HomComplex.Cochain.diff_v, Hom.comm, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, shape, CochainComplex.truncate_obj_d, dFrom_comp_xNextIso, mapBifunctor₁₂.d₂_eq, groupCohomology.eq_d₁₂_comp_inv_assoc, restriction_d_eq_assoc, HomologicalComplex₂.d_comm_assoc, Rep.barComplex.d_comp_diagonalSuccIsoFree_inv_eq, groupHomology.d₁₀ArrowIso_inv_left, HomologicalComplex₂.totalAux.d₁_eq', d_eqToHom, CochainComplex.augmentTruncate_hom_f_zero, groupHomology.eq_d₁₀_comp_inv_apply, CategoryTheory.ProjectiveResolution.cochainComplex_d_assoc, ChainComplex.of_d_ne, CochainComplex.mk_d_1_0, rightUnitor'_inv_comm, groupCohomology.eq_d₀₁_comp_inv_assoc, CategoryTheory.InjectiveResolution.descFOne_zero_comm, mapBifunctor.d₁_eq, ChainComplex.mk_d_2_1, kernel_eq_kernel, homotopyCofiber.d_fstX_assoc, toCycles_i_assoc, CochainComplex.shiftFunctor_obj_d, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_ή₀, CochainComplex.mappingCone.d_fst_v, groupHomology.comp_d₃₂_eq, CochainComplex.HomComplex_d_hom_apply, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, CategoryTheory.InjectiveResolution.cochainComplex_d
dFrom 📖CompOp
22 mathmath: dFrom_comp_xNextIsoSelf, dFrom_eq_zero, Hom.comm_from_apply, Homotopy.mkInductiveAux₃, Hom.sqFrom_comp, dTo_comp_dFrom, Homotopy.mkCoinductiveAux₂_add_one, Homotopy.mkCoinductiveAux₂_zero, kernel_from_eq_kernel, Homotopy.mkCoinductiveAux₃, dNext_eq_dFrom_fromNext, Hom.sqFrom_left, Hom.comm_from, Hom.sqFrom_right, Hom.comm_from_assoc, dFrom_comp_xNextIso_assoc, dFrom_eq, dFrom_comp_xNextIso, Homotopy.mkInductiveAux₂_zero, dFrom_comp_xNextIsoSelf_assoc, Homotopy.mkInductiveAux₂_add_one, Hom.sqFrom_id
dTo 📖CompOp
20 mathmath: Homotopy.mkInductiveAux₃, dTo_eq_zero, Hom.comm_to_apply, xPrevIsoSelf_comp_dTo, dTo_eq, prevD_eq_toPrev_dTo, dTo_comp_dFrom, xPrevIso_comp_dTo, Hom.comm_to, Homotopy.mkCoinductiveAux₂_add_one, xPrevIso_comp_dTo_assoc, Homotopy.mkCoinductiveAux₂_zero, xPrevIsoSelf_comp_dTo_assoc, Homotopy.mkCoinductiveAux₃, image_to_eq_image, Hom.sqTo_right, Hom.sqTo_left, Hom.comm_to_assoc, Homotopy.mkInductiveAux₂_zero, Homotopy.mkInductiveAux₂_add_one
eval 📖CompOp
30 mathmath: evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, instPreservesFiniteLimitsEvalOfHasFiniteLimits, eval_map, forgetEval_hom_app, instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, isSeparator_coproduct_separatingFamily, instPreservesZeroMorphismsEval, instHasLimitDiscreteWalkingPairCompPairEval, eval_obj, instPreservesColimitsOfShapeEvalOfHasColimitsOfShape, AlgebraicTopology.DoldKan.natTransPInfty_f_app, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_r, singleCompEvalIsoSelf_inv_app, instPreservesLimitsOfShapeEvalOfHasLimitsOfShape, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CochainComplex.shiftEval_hom_app, singleCompEvalIsoSelf_hom_app, evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, instPreservesFiniteColimitsEvalOfHasFiniteColimits, instPreservesBinaryBiproductEval, CochainComplex.shiftEval_inv_app, eval_additive, instHasBinaryBiproductObjEval, shortExact_iff_degreewise_shortExact, instHasColimitDiscreteWalkingPairCompPairEval, isZero_single_comp_eval, exact_iff_degreewise_exact, forgetEval_inv_app
forget 📖CompOp
6 mathmath: instFaithfulGradedObjectForget, forget_map, forgetEval_hom_app, forget_obj, HomologicalComplex₂.total.forget_map, forgetEval_inv_app
forgetEval 📖CompOp
2 mathmath: forgetEval_hom_app, forgetEval_inv_app
id 📖CompOp—
instCategory 📖CompOp
1377 mathmath: AlgebraicTopology.DoldKan.natTransPInfty_app, HomotopyCategory.spectralObjectMappingCone_ÎŽ'_app, DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp, CochainComplex.acyclic_op, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex, eqToHom_f, CochainComplex.triangleOfDegreewiseSplit_obj₁, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, extendSingleIso_inv_f, CochainComplex.HomComplex.Cochain.rightShiftAddEquiv_symm_apply, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, singleMapHomologicalComplex_hom_app_ne, homotopyEquivalences_le_quasiIso, ChainComplex.truncate_map_f, CategoryTheory.NatIso.mapHomologicalComplex_inv_app_f, instPreservesLimitsOfShapeSingle, CochainComplex.HomComplex.Cochain.fromSingleMk_neg, CochainComplex.mappingCone.ÎŽ_inl, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, rightUnitor'_inv, ComplexShape.Embedding.truncLEFunctor_obj, CategoryTheory.Functor.mapHomologicalComplexIdIso_hom_app_f, HomotopyCategory.quotient_map_out_comp_out, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, DerivedCategory.right_fac, isZero_single_obj_X, CochainComplex.HomComplex.Cocycle.fromSingleMk_add, HomologicalComplex₂.totalFlipIso_hom_f_D₁, singleMapHomologicalComplex_hom_app_self, πTruncGE_naturality_assoc, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, truncGE.rightHomologyMapData_φQ, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, CochainComplex.HomComplex.Cocycle.leftShiftAddEquiv_symm_apply, opcyclesMap_comp, truncLEMap_comp_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, instPreservesColimitsOfShapeSingle, CochainComplex.mappingConeCompTriangle_obj₂, pOpcycles_singleObjOpcyclesSelfIso_inv, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_Îč, quasiIsoAt_iff_comp_right, isZero_single_obj_homology, AlgebraicTopology.DoldKan.N₁_map_f, cyclesFunctor_map, CochainComplex.HomComplex.Cocycle.equivHom_symm_apply, CochainComplex.isStrictlyGE_shift, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, CochainComplex.mappingCone.id, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_iCycles, CochainComplex.shiftFunctorZero_eq, instIsStrictlySupportedOfNat, HomologicalComplex₂.totalShift₂Iso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.Îč'_f_zero, CategoryTheory.ProjectiveResolution.quasiIso, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, opcyclesMapIso_inv, CochainComplex.augmentTruncate_inv_f_zero, AlgebraicTopology.singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace, biprod_inr_desc_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, CochainComplex.HomComplex.Cochain.leftShift_smul, biprod_lift_fst_f_assoc, homologyÎč_singleObjOpcyclesSelfIso_inv_assoc, CochainComplex.HomComplex.Cochain.fromSingleEquiv_fromSingleMk, ComplexShape.Embedding.truncGE'Functor_obj, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_inv_f, Homotopy.nullHomotopicMap_comp, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, shortComplexFunctor'_obj_X₁, CochainComplex.mappingCone.triangle_mor₁, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, AlgebraicTopology.DoldKan.identity_N₂, HomologicalComplex₂.shiftFunctor₂XXIso_refl, AlgebraicTopology.DoldKan.PInfty_comp_QInfty, CochainComplex.IsKInjective.nonempty_homotopy_zero, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₂, unopFunctor_obj, CategoryTheory.Abelian.LeftResolution.chainComplexMap_zero, groupHomology.chainsMap_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₃, CochainComplex.instIsStrictlyLEObjHomologicalComplexIntUpSingle, CategoryTheory.InjectiveResolution.self_Îč, HomologicalComplex₂.comm_f, CochainComplex.exactAt_op, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.Abelian.LeftResolution.chainComplexMap_comp, CategoryTheory.Functor.mapHomologicalComplex_linear, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π_assoc, HomotopyCategory.isZero_quotient_obj_iff, CategoryTheory.Abelian.LeftResolution.chainComplexMap_id, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_functor, restrictionMap_comp, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_postcomp, CategoryTheory.Functor.mapHomotopyEquiv_inv, AlgebraicTopology.DoldKan.PInfty_idem, AlgebraicTopology.DoldKan.homotopyPInftyToId_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, CategoryTheory.Functor.mapHomologicalComplex_obj_d, HomologicalComplex₂.total.mapIso_hom, instPreservesFiniteLimitsEvalOfHasFiniteLimits, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, opcyclesOpIso_inv_naturality_assoc, CochainComplex.instLinearIntFunctorSingleFunctors, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, inl_biprodXIso_inv_assoc, cyclesMap_comp_assoc, CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂_assoc, instIsStableUnderRetractsQuasiIso, biprod_inr_snd_f_assoc, CategoryTheory.Functor.mapHomologicalComplex_map_f, CochainComplex.IsKProjective.homotopyZero_def, biprod_inl_snd_f_assoc, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_succ, HomologicalComplex₂.totalAux.d₂_eq, CochainComplex.HomComplex.Cochain.rightUnshift_neg, instIsNormalEpiCategory, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, CochainComplex.HomComplex.Cochain.ÎŽ_fromSingleMk, CategoryTheory.Functor.mapHomotopyEquiv_homotopyHomInvId, eval_map, map_isStrictlySupported, AlgebraicTopology.DoldKan.QInfty_idem, stupidTruncMap_comp, to_single_hom_ext_iff, CochainComplex.HomComplex.Cochain.map_v, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, biprodXIso_hom_fst, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, CochainComplex.truncate_obj_X, HomologicalComplex₂.d_f_comp_d_f, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, HomologicalComplex₂.flipEquivalence_unitIso, add_f_apply, extend_op_d_assoc, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_hom_app, CochainComplex.ConnectData.map_comp_map, groupCohomology.cochainsMap_comp, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, CategoryTheory.Functor.map_homogical_complex_additive, CochainComplex.mappingConeCompTriangle_mor₃, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d, HomologicalComplex₂.d₁_eq_zero', CochainComplex.HomComplex.Cochain.shift_add, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, CategoryTheory.InjectiveResolution.of_def, CochainComplex.HomComplex.Cochain.comp_id, CategoryTheory.Preadditive.DoldKan.equivalence_functor, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.self_π, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, singleObjCyclesSelfIso_inv_homologyπ, CochainComplex.HomComplex.Cochain.toSingleMk_neg, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂_assoc, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁_assoc, unopInverse_map, CategoryTheory.NatTrans.mapHomologicalComplex_app_f, CochainComplex.shiftShortComplexFunctorIso_add'_hom_app, CochainComplex.HomComplex.Cochain.map_zero, CochainComplex.cm5b.fac, natIsoSc'_inv_app_τ₂, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, CochainComplex.instIsCompatibleWithShiftHomologicalComplexIntUpQuasiIso, CochainComplex.HomComplex.Cochain.toSingleMk_v, unopEquivalence_functor, CochainComplex.IsKInjective.rightOrthogonal, single_obj_d, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, HomotopyCategory.quotient_inverts_homotopyEquivalences, CochainComplex.IsKInjective.Qh_map_bijective, CochainComplex.HomComplex.Cochain.leftShiftLinearEquiv_apply, AlgebraicTopology.alternatingFaceMapComplex_obj_d, CochainComplex.HomComplex.Cochain.shift_neg, CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, instFaithfulGradedObjectForget, biprod_lift_fst_f, DerivedCategory.subsingleton_hom_of_isStrictlyLE_of_isStrictlyGE, ÎčTruncLE_naturality, CochainComplex.instIsIsoIntπTruncGEOfIsStrictlyGE, HomologicalComplex₂.toGradedObjectFunctor_obj, forget_map, CategoryTheory.NatTrans.mapHomologicalComplex_id, HomologicalComplex₂.ÎčTotalOrZero_map_assoc, asFunctor_obj_X, CochainComplex.Îč_mapBifunctorShift₂Iso_hom_f_assoc, HomologicalComplex₂.ÎčTotal_map, CochainComplex.homotopyUnop_hom_eq, CochainComplex.HomComplex.Cochain.toSingleMk_add, CategoryTheory.NatTrans.mapHomotopyCategory_app, HomologicalComplex₂.Îč_totalShift₁Iso_hom_f_assoc, CategoryTheory.Functor.mapProjectiveResolution_π, cyclesMap_id, complexOfFunctorsToFunctorToComplex_obj, opcyclesOpIso_inv_naturality, CategoryTheory.instIsIsoToRightDerivedZero', HomologicalComplex₂.Îč_D₁_assoc, opEquivalence_unitIso, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, CochainComplex.instIsStrictlyGEObjHomologicalComplexIntUpSingle, forgetEval_hom_app, homologyÎč_singleObjOpcyclesSelfIso_inv, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv_assoc, CochainComplex.fromSingle₀Equiv_apply_coe, dgoToHomologicalComplex_obj_d, HomotopyCategory.quotient_map_eq_zero_iff, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, CochainComplex.HomComplex.Cocycle.equivHomShift'_symm_apply, shortComplexFunctor'_map_τ₂, isZero_zero, CategoryTheory.Abelian.LeftResolution.exactAt_map_chainComplex_succ, CochainComplex.mappingCone.inl_v_triangle_mor₃_f, HomotopyCategory.instFullHomologicalComplexQuotient, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, HomologicalComplex₂.d₂_eq_zero, CochainComplex.XIsoOfEq_shift, HomologicalComplex₂.Îč_totalShift₁Iso_inv_f, extendSingleIso_inv_f_assoc, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, natIsoSc'_inv_app_τ₃, CochainComplex.ÎčTruncLE_naturality_assoc, HomologicalComplex₂.Îč_totalDesc_assoc, truncGEMap_comp_assoc, HomotopyCategory.isoOfHomotopyEquiv_hom, CochainComplex.HomComplex.Cochain.rightUnshift_comp, CochainComplex.HomComplex.Cochain.rightUnshift_units_smul, AlgebraicTopology.DoldKan.N₁_obj_p, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc, dgoEquivHomologicalComplex_unitIso, CochainComplex.mappingCone.inr_triangleÎŽ, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_map_f, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_eq, mapBifunctorFlipIso_hom_naturality_assoc, homotopyCofiber.inrCompHomotopy_hom, CategoryTheory.Equivalence.mapHomologicalComplex_unitIso, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, opFunctor_obj, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, natIsoSc'_hom_app_τ₃, instQuasiIsoAtMapOppositeSymmUnopFunctorOp, CochainComplex.πTruncGE_naturality, truncGE'Map_comp, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CochainComplex.mappingCone.inr_descShortComplex_assoc, CategoryTheory.Idempotents.instIsIdempotentCompleteHomologicalComplex, ChainComplex.single₀ObjXSelf, instEpiGShortComplexTruncLE, ComplexShape.Embedding.restrictionFunctor_map, cyclesOpIso_inv_naturality_assoc, AlgebraicTopology.DoldKan.QInfty_idem_assoc, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, CochainComplex.mappingConeCompHomotopyEquiv_comm₂_assoc, Hom.sqFrom_comp, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id, HomologicalComplexUpToQuasiIso.Q_inverts_homotopyEquivalences, shortComplexFunctor_obj_X₂, singleObjCyclesSelfIso_hom_naturality, cylinder.πCompÎč₀Homotopy.nullHomotopicMap_eq, CochainComplex.HomComplex.Cochain.fromSingleMk_postcomp, singleObjCyclesSelfIso_inv_naturality_assoc, sub_f_apply, instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences, HomotopyCategory.eq_of_homotopy, homotopyCofiber.descSigma_ext_iff, instRespectsIsoQuasiIso, Homotopy.map_nullHomotopicMap', CochainComplex.HomComplex.Cochain.shift_zero, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_unitIso, HomologicalComplex₂.flipEquivalenceUnitIso_hom_app_f_f, CochainComplex.shiftFunctorZero_inv_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d_assoc, ChainComplex.toSingle₀Equiv_apply_coe, opcyclesMap_id, CategoryTheory.Functor.mapProjectiveResolution_complex, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_inverse, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, HomologicalComplex₂.Îč_totalShift₂Iso_inv_f_assoc, AlgebraicTopology.alternatingFaceMapComplex_map_f, CochainComplex.HomComplex.Cochain.leftShift_comp, HomologicalComplex₂.d_comm, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, CochainComplex.triangleOfDegreewiseSplit_obj₂, Rep.standardComplex.ΔToSingle₀_comp_eq, AlgebraicTopology.DoldKan.Γ₀'_obj, inr_biprodXIso_inv, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d_assoc, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id_assoc, ChainComplex.exactAt_succ_single_obj, stupidTruncMap_id, homotopyCofiber.inrCompHomotopy_hom_desc_hom, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE, HomologicalComplex₂.d_f_comp_d_f_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_inv, instHasFilteredColimitsOfSize, Hom.isoOfComponents_inv_f, CochainComplex.homologyFunctor_shift, CategoryTheory.Idempotents.DoldKan.hΔ, cyclesOpNatIso_inv_app, opcyclesFunctor_map, ChainComplex.truncateAugment_inv_f, CochainComplex.HomComplex.Cochain.toSingleMk_v_eq_zero, gradedHomologyFunctor_map, quasiIso_iff_evaluation, quasiIsoAt_comp, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, HomologicalComplex₂.Îč_D₂, homologyMap_neg, isZero_stupidTrunc_iff, CategoryTheory.InjectiveResolution.Hom.Îč_comp_hom_assoc, CategoryTheory.InjectiveResolution.Îč_f_succ, CochainComplex.isKInjective_shift_iff, from_single_hom_ext_iff, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, Homotopy.nullHomotopicMap'_comp, natTransHomologyπ_app, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, CochainComplex.HomComplex.Cochain.leftShift_rightShift_eq_negOnePow_rightShift_leftShift, HomologicalComplex₂.total.mapAux.d₁_mapMap, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, dgoEquivHomologicalComplexUnitIso_hom_app_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.NatTrans.mapHomologicalComplex_comp, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d_assoc, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, opcyclesMapIso_hom, CategoryTheory.InjectiveResolution.instIsIsoToRightDerivedZero'Self, HomologicalComplex₂.d₁_eq, DerivedCategory.right_fac_of_isStrictlyLE_of_isStrictlyGE, CategoryTheory.ProjectiveResolution.Hom.hom_comp_π_assoc, CochainComplex.HomComplex.Cochain.leftShift_rightShift, cyclesMap_comp, CochainComplex.HomComplex.Cochain.ofHom_neg, CochainComplex.isSplitEpi_to_singleFunctor_obj_of_projective, CochainComplex.HomComplex.Cocycle.toSingleMk_add, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, homologyπ_singleObjHomologySelfIso_hom_assoc, HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₂, instQuasiIsoMapOppositeSymmUnopFunctorOp, single_obj_X_self, biprod_inr_snd_f, id_f, DerivedCategory.instLinearCochainComplexIntQ, singleMapHomologicalComplex_inv_app_self, dgoEquivHomologicalComplex_functor, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, ComplexShape.Embedding.instFaithfulHomologicalComplexExtendFunctor, HomologicalComplex₂.XXIsoOfEq_hom_ÎčTotal_assoc, extendSingleIso_hom_f_assoc, homologyMapIso_hom, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_hom_f, instHasHomologyObjSingle, AlgebraicTopology.DoldKan.Γ₀_obj_map, groupCohomology.cochainsMap_zero, CochainComplex.instAdditiveIntFunctorSingleFunctors, CochainComplex.shiftFunctor_obj_X, CochainComplex.mappingConeCompHomotopyEquiv_comm₁, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, instIsCorepresentableCompEvalObjOppositeFunctorTypeCoyonedaOp, CochainComplex.exactAt_succ_single_obj, CategoryTheory.Functor.mapHomologicalComplex_obj_X, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂, CochainComplex.HomComplex.Cocycle.toSingleMk_mem_coboundaries_iff, groupHomology.map_chainsFunctor_shortExact, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, ÎčTruncLE_naturality_assoc, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₂, instMonoFShortComplexTruncLE, CochainComplex.HomComplex.Cochain.map_add, CochainComplex.homologySequenceÎŽ_quotient_mapTriangle_obj_assoc, CategoryTheory.ProjectiveResolution.extMk_hom, CochainComplex.mappingCone.triangleRotateShortComplex_X₂, CochainComplex.HomComplex.Cochain.fromSingleMk_v, CategoryTheory.Idempotents.DoldKan.equivalence_counitIso, CategoryTheory.Functor.mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, CochainComplex.HomComplex.Cochain.fromSingleMk_add, CochainComplex.single₀_map_f_zero, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_hom_app, CochainComplex.HomComplex.Cochain.shift_smul, CategoryTheory.Functor.mapHomologicalComplex_reflects_iso, CategoryTheory.Abelian.LeftResolution.chainComplexMap_comp_assoc, CochainComplex.HomComplex.Cochain.leftShiftAddEquiv_apply, HomologicalComplex₂.instHasTotalIntObjUpCompShiftFunctor₁ShiftFunctor₂, opcyclesOpIso_hom_naturality_assoc, HomologicalComplex₂.XXIsoOfEq_rfl, CochainComplex.IsKInjective.homotopyZero_def, dgoToHomologicalComplex_obj_X, ChainComplex.augmentTruncate_inv_f_succ, HomotopyCategory.instEssSurjHomologicalComplexQuotient, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₁, HomotopyCategory.quasiIso_eq_quasiIso_map_quotient, extendMap_comp_assoc, groupCohomology.cochainsMap_id_comp, restrictionMap_id, DerivedCategory.instIsIsoMapCochainComplexIntQ, HomologicalComplex₂.Îč_D₂_assoc, ComplexShape.Embedding.AreComplementary.hom_ext, isIso_homologyMap_shortComplexTruncLE_g, HomotopyCategory.quot_mk_eq_quotient_map, CochainComplex.HomComplex.Cocycle.toSingleMk_zero, CochainComplex.HomComplex.Cochain.rightShiftAddEquiv_apply, units_smul_f_apply, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, quasiIsoAt_unopFunctor_map_iff, CochainComplex.isIso_πTruncGE_iff, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, CochainComplex.HomComplex.Cochain.leftUnshift_v, CategoryTheory.NatIso.mapHomologicalComplex_hom_app_f, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_X, CochainComplex.mappingConeCompHomotopyEquiv_comm₁_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, ChainComplex.quasiIsoAt₀_iff, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, groupCohomology.cochainsMap_comp_assoc, CochainComplex.mappingCone.triangleRotateShortComplex_X₃, HomologicalComplex₂.totalFunctor_obj, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_map, CochainComplex.HomComplex.Cochain.rightShift_leftShift, mono_of_mono_f, groupHomology.isoShortComplexH1_hom, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_zero, isSeparator_coproduct_separatingFamily, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom, CochainComplex.HomComplex.Cochain.ofHom_sub, CochainComplex.instLinearHomologicalComplexIntUpShiftFunctor, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π, opFunctor_map_f, instIsMultiplicativeQuasiIso, instIsIsoπTruncGEOfIsStrictlySupported, CategoryTheory.ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self, HomologicalComplex₂.flipFunctor_obj, CochainComplex.HomComplex.Cochain.leftUnshift_smul, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, CochainComplex.instIsKInjectiveObjIntShiftFunctor, CochainComplex.mappingConeCompTriangle_mor₃_naturality, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, CochainComplex.HomComplex.Cochain.shiftLinearMap_apply, CategoryTheory.ProjectiveResolution.of_def, HomologicalComplex₂.totalAux.d₂_eq', CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, CategoryTheory.ProjectiveResolution.π_f_succ, HomologicalComplex₂.totalAux.d₁_eq, ComplexShape.Embedding.homRestrict_precomp, instPreservesZeroMorphismsEval, HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, CochainComplex.HomComplex.Cocycle.toSingleMk_coe, HomologicalComplex₂.shiftFunctor₁XXIso_refl, AlgebraicTopology.inclusionOfMooreComplex_app, homologyMap_id, AlgebraicTopology.DoldKan.Γ₂_obj_X_map, CochainComplex.mappingCone.triangleRotateShortComplex_X₁, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, instHasLimitDiscreteWalkingPairCompPairEval, instQuasiIsoAtOppositeMapSymmOpFunctorOp, DerivedCategory.left_fac_of_isStrictlyLE_of_isStrictlyGE, CochainComplex.shiftFunctor_map_f', HomologicalComplex₂.Îč_totalDesc, ComplexShape.Embedding.extendFunctor_map, AlgebraicTopology.DoldKan.PInfty_idem_assoc, HomologicalComplexUpToQuasiIso.Q_map_eq_of_homotopy, HomologicalComplex₂.total.mapAux.d₂_mapMap_assoc, CochainComplex.ConnectData.restrictionLEIso_inv_f, Îč_mapBifunctorFlipIso_inv_assoc, extend_single_d, ComplexShape.Embedding.stupidTruncFunctor_map, singleObjHomologySelfIso_inv_homologyÎč_assoc, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_π', CochainComplex.HomComplex.Cochain.rightShift_zero, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_obj, Homotopy.map_nullHomotopicMap, HomologicalComplex₂.d₁_eq_zero, groupHomology.chainsFunctor_obj, zsmul_f_apply, HomologicalComplex₂.flip_X_X, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.Idempotents.DoldKan.equivalence_inverse, HomotopyCategory.instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, CochainComplex.singleFunctor_obj_d, biprod_lift_snd_f, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, homologyMap_add, Hom.isoOfComponents_hom_f, CochainComplex.quasiIso_shift_iff, cylinder.Îč₁_π, CochainComplex.HomComplex.Cochain.rightUnshift_v, HomotopyCategory.composableArrowsFunctor_obj, singleObjCyclesSelfIso_inv_homologyπ_assoc, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty, biprod_inl_fst_f_assoc, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero_assoc, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₂, CategoryTheory.Functor.map₂HomologicalComplex_map_app, unopEquivalence_unitIso, nsmul_f_apply, g_shortComplexTruncLEX₃ToTruncGE, CochainComplex.shiftFunctorAdd'_inv_app_f', homotopyCofiber.inr_desc, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, instHasLimitsOfShape, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, opEquivalence_counitIso, HomotopyCategory.quotient_obj_surjective, inl_biprodXIso_inv, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, CochainComplex.mappingCone.map_inr, CategoryTheory.Functor.mapCochainComplexShiftIso_inv_app_f, homotopyCofiber.inr_desc_assoc, CochainComplex.shiftFunctorAdd'_eq, mapBifunctorFlipIso_hom_naturality, mono_homologyMap_shortComplexTruncLE_g, CochainComplex.shiftFunctorAdd'_inv_app_f, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, truncLEMap_comp, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d, cylinder.inrX_π_assoc, CochainComplex.truncateAugment_inv_f, CochainComplex.mapBifunctorShift₂Iso_hom_naturality₂, homologyOp_hom_naturality_assoc, homologyMap_comp, homotopyCofiber.inlX_desc_f_assoc, biprod_inl_fst_f, CochainComplex.HomComplex.Cochain.fromSingleMk_zero, CochainComplex.mappingCone.inl_v_triangle_mor₃_f_assoc, instAdditiveHomologyFunctor, AlgebraicTopology.DoldKan.P_succ, eval_obj, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, ab5OfSize, shortComplexFunctor_map_τ₁, HomologicalComplex₂.instHasTotalIntObjUpCompShiftFunctor₂ShiftFunctor₁, CochainComplex.mappingConeCompTriangle_mor₁, CochainComplex.mappingCone.inr_triangleÎŽ_assoc, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, groupHomology.chainsMap_id_comp, CochainComplex.HomComplex.Cochain.leftShift_zero, comp_f, cylinder.Îč₀_π, CategoryTheory.Functor.mapHomotopy_hom, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_π'_assoc, singleObjOpcyclesSelfIso_inv_naturality, CochainComplex.instLinearIntShiftFunctor, isIso_ÎčTruncLE_iff, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, cyclesOpIso_inv_naturality, AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀, SimplicialObject.Split.nondegComplexFunctor_map_f, CochainComplex.triangleOfDegreewiseSplit_mor₂, AlgebraicTopology.DoldKan.Γ₀'_map_F, quasiIso_iff_comp_left, biprod_inr_fst_f, shortComplexFunctor'_obj_X₂, opcyclesOpIso_hom_naturality, dgoEquivHomologicalComplex_counitIso, homotopyCofiber.eq_desc, truncLE'Map_id, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_d, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_coe, CategoryTheory.Functor.mapHomologicalComplexIdIso_inv_app_f, DerivedCategory.isLE_Q_obj_iff, Homotopy.compRight_hom, CochainComplex.cm5b.fac_assoc, ComplexShape.Embedding.homRestrict_comp_extendMap_assoc, AlgebraicTopology.normalizedMooreComplex_objD, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_hom_f_f, CochainComplex.IsKProjective.nonempty_homotopy_zero, instHasHomologyOppositeObjSymmOpFunctorOp, biprodXIso_hom_fst_assoc, CochainComplex.triangleOfDegreewiseSplit_obj₃, CochainComplex.shiftFunctorZero'_hom_app_f, CategoryTheory.InjectiveResolution.self_cocomplex, HomologicalComplex₂.flipEquivalenceUnitIso_inv_app_f_f, CategoryTheory.ProjectiveResolution.lift_commutes_zero, AlgebraicTopology.DoldKan.QInfty_comp_PInfty, AlgebraicTopology.DoldKan.Q_idem, opcyclesMap_comp_assoc, quasiIsoAt_shortComplexTruncLE_g, HomotopyCategory.instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom, HomologicalComplex₂.d₂_eq_zero', CategoryTheory.ProjectiveResolution.leftDerived_app_eq, CochainComplex.mappingCone.triangle_mor₂, shortComplexFunctor_map_τ₃, HomologicalComplex₂.Îč_totalShift₁Iso_inv_f_assoc, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom_assoc, CochainComplex.HomComplex.Cocycle.leftUnshift_coe, shortComplexFunctor_obj_f, zero_f, AlgebraicTopology.normalizedMooreComplex_map, CategoryTheory.ProjectiveResolution.lift_commutes, HomologicalComplex₂.XXIsoOfEq_inv_ÎčTotal_assoc, CochainComplex.MappingConeCompHomotopyEquiv.hom_inv_id, cylinder.Îč₀_π_assoc, homotopyCofiber.inrCompHomotopy_hom_eq_zero, AlgebraicTopology.DoldKan.Q_idem_assoc, CochainComplex.instAdditiveIntShiftFunctor, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_d, homologyFunctor_map, cylinder.Îč₁_π_assoc, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, CochainComplex.shiftFunctor_map_f, CochainComplex.quasiIsoAt_shift_iff, HomologicalComplex₂.total.mapIso_inv, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_apply, shortComplexTruncLE_f, CochainComplex.instIsKProjectiveObjIntShiftFunctor, extend_op_d, AlgebraicTopology.DoldKan.Γ₀_map_app, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π_assoc, shortComplexFunctor'_obj_X₃, CategoryTheory.Idempotents.DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, CochainComplex.HomComplex.Cochain.rightShift_smul, complexOfFunctorsToFunctorToComplex_map_app_f, CochainComplex.HomComplex.Cochain.map_comp, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, cylinder.Îč₀_desc, opInverse_obj, CategoryTheory.ProjectiveResolution.Hom.hom_comp_π, isGrothendieckAbelian, mkHomToSingle_f, biprodXIso_hom_snd, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, CochainComplex.homotopyOp_hom_eq, CochainComplex.HomComplex.Cochain.map_sub, ComplexShape.Embedding.ÎčTruncLENatTrans_app, shortComplexFunctor'_obj_g, natIsoSc'_hom_app_τ₂, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor, CochainComplex.IsKProjective.Qh_map_bijective, CategoryTheory.Equivalence.mapHomologicalComplex_functor, CochainComplex.homOfDegreewiseSplit_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_hom, cyclesOpIso_hom_naturality_assoc, HomologicalComplex₂.flipEquivalence_counitIso, CochainComplex.shiftFunctorAdd_inv_app_f, DerivedCategory.isGE_Q_obj_iff, CochainComplex.truncate_map_f, HomologicalComplex₂.Îč_totalShift₂Iso_hom_f_assoc, CategoryTheory.NatTrans.mapHomologicalComplex_naturality, ChainComplex.augmentTruncate_hom_f_succ, CochainComplex.mappingCone.map_id, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₁, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₂, biprodXIso_hom_snd_assoc, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_inv_app, quasiIso_comp, CochainComplex.mappingConeCompTriangle_obj₃, instPreservesZeroMorphismsHomologyFunctor, CategoryTheory.ProjectiveResolution.π'_f_zero, leftUnitor'_inv, HomologicalComplex₂.totalFlipIso_hom_f_D₂, forget_obj, QuasiIsoAt.quasiIso, CategoryTheory.InjectiveResolution.desc_commutes, isSeparating_separatingFamily, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_neg, Homotopy.comp_nullHomotopicMap, CategoryTheory.InjectiveResolution.desc_commutes_assoc, single_map_f_self_assoc, isIso_πTruncGE_iff, homologicalComplexToDGO_map_f, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, ComplexShape.Embedding.instFullHomologicalComplexExtendFunctor, CochainComplex.exists_iso_single, groupHomology.isoShortComplexH1_inv, CochainComplex.HomComplex.Cocycle.rightShiftAddEquiv_symm_apply, CochainComplex.HomComplex.Cochain.shift_units_smul, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_inv_app, CochainComplex.ConnectData.restrictionLEIso_hom_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d, CochainComplex.shiftFunctorAdd_eq, CochainComplex.HomComplex.Cochain.leftShiftLinearEquiv_symm_apply, CochainComplex.Îč_mapBifunctorShift₂Iso_hom_f, CochainComplex.cm5b.instQuasiIsoIntP, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, HomologicalComplex₂.D₁_totalShift₁XIso_hom, πTruncGE_naturality, HomologicalComplex₂.D₂_totalShift₁XIso_hom, AlgebraicTopology.DoldKan.P_idem, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, ComplexShape.Embedding.instAdditiveHomologicalComplexRestrictionFunctor, ComplexShape.Embedding.homEquiv_symm_apply, HomologicalComplex₂.comm_f_assoc, cylinder.inrX_π, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₂_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, homologyMap_sub, HomologicalComplex₂.totalFlipIso_hom_f_D₁_assoc, Homotopy.comp_nullHomotopicMap', instPreservesColimitsOfShapeEvalOfHasColimitsOfShape, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, ComplexShape.Embedding.homEquiv_apply_coe, groupHomology.chainsMap_comp, HomologicalComplex₂.XXIsoOfEq_inv_ÎčTotal, AlgebraicTopology.DoldKan.natTransP_app, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero, DerivedCategory.instIsGEObjCochainComplexIntQOfIsGE, cylinder.πCompÎč₀Homotopy.inrX_nullHomotopy_f, homologyπ_singleObjHomologySelfIso_hom, CategoryTheory.Functor.mapHomotopyEquiv_homotopyInvHomId, HomologicalComplex₂.total.map_comp, SimplicialObject.Split.nondegComplexFunctor_obj, cyclesOpIso_hom_naturality, CochainComplex.mappingConeCompHomotopyEquiv_comm₂, AlgebraicTopology.DoldKan.N₁_obj_X, CategoryTheory.Functor.map₂HomologicalComplex_obj_obj, instHasColimitsOfShape, AlgebraicTopology.map_alternatingFaceMapComplex, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_obj_X, CochainComplex.HomComplex.Cochain.ÎŽ_toSingleMk, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, smul_f_apply, CochainComplex.cm5b.instMonoFIntI, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, AlgebraicTopology.DoldKan.Γ₀_obj_obj, CochainComplex.HomComplex.Cochain.fromSingleMk_precomp, HomologicalComplex₂.ofGradedObject_X_d, singleObjCyclesSelfIso_inv_iCycles_assoc, CochainComplex.HomComplex.Cochain.leftUnshift_add, HomologicalComplex₂.flipEquivalence_functor, Homotopy.compLeftId_hom, singleObjOpcyclesSelfIso_hom_naturality_assoc, CochainComplex.HomComplex.Cocycle.fromSingleMk_zero, zero_f_apply, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃_assoc, HomotopyCategory.instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic, CochainComplex.instIsIsoIntÎčTruncLEOfIsStrictlyLE, natTransOpCyclesToCycles_app, CategoryTheory.Idempotents.DoldKan.Γ_obj_map, Homotopy.add_hom, CategoryTheory.InjectiveResolution.Îč'_f_zero_assoc, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, instMonoÎčTruncLE, CochainComplex.shiftFunctorZero'_inv_app_f, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, inr_biprodXIso_inv_assoc, singleMapHomologicalComplex_inv_app_ne, CochainComplex.HomComplex.Cochain.rightShift_units_smul, CategoryTheory.ProjectiveResolution.self_complex, AlgebraicTopology.alternatingCofaceMapComplex_obj, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, truncLE'ToRestriction_naturality_assoc, dgoToHomologicalComplex_map_f, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexExtendFunctor, DerivedCategory.exists_iso_Q_obj_of_isGE_of_isLE, ChainComplex.truncateAugment_hom_f, shortComplexFunctor'_map_τ₁, CochainComplex.HomComplex.Cochain.rightUnshift_smul, HomotopyCategory.composableArrowsFunctor_map, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, HomologicalComplex₂.ofGradedObject_X_X, AlgebraicTopology.DoldKan.Q_succ, AlgebraicTopology.DoldKan.natTransPInfty_f_app, instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences, cyclesMap_zero, CategoryTheory.Idempotents.DoldKan.Γ_obj_obj, HomologicalComplex₂.flipEquivalence_inverse, single_map_f_self, ChainComplex.fromSingle₀Equiv_symm_apply_f_zero, CochainComplex.HomComplex.Cocycle.equivHomShift'_apply, CochainComplex.instQuasiIsoIntMapHomologicalComplexUpShiftFunctor, CategoryTheory.InjectiveResolution.Hom.Îč'_comp_hom'_assoc, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, homologyMap_zero, mapBifunctorFlipIso_flip, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.Equivalence.mapHomologicalComplex_counitIso, Homotopy.compRightId_hom, CochainComplex.isSplitMono_from_singleFunctor_obj_of_injective, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_r, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, extendMap_add, CategoryTheory.Abelian.DoldKan.equivalence_inverse, cyclesFunctor_obj, CochainComplex.HomComplex.Cochain.ÎŽ_shift, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₃, CochainComplex.HomComplex.Cochain.fromSingleMk_sub, CochainComplex.toSingle₀Equiv_symm_apply_f_succ, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, groupHomology.isoShortComplexH2_hom, shortComplexTruncLE_shortExact, CochainComplex.IsKProjective.leftOrthogonal, instHasTwoOutOfThreePropertyQuasiIso, singleCompEvalIsoSelf_inv_app, asFunctor_obj_d, ComplexShape.Embedding.truncLE'Functor_map, ChainComplex.augmentTruncate_hom_f_zero, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.ProjectiveResolution.lift_commutes_assoc, shortComplexFunctor_obj_X₁, HomologicalComplex₂.ÎčTotalOrZero_map, restrictionMap_comp_assoc, HomotopyCategory.quotient_obj_as, HomologicalComplex₂.totalShift₁Iso_trans_totalShift₂Iso, DerivedCategory.exists_iso_Q_obj_of_isGE, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_inv_app, CochainComplex.cm5b.instMonoIntI, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, AlgebraicTopology.DoldKan.P_add_Q, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁, shortComplexTruncLE_X₂, HomologicalComplex₂.d₂_eq, ChainComplex.toSingle₀Equiv_symm_apply_f_zero, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, ChainComplex.instHasHomologyNatObjAlternatingConst, CochainComplex.HomComplex.Cocycle.toSingleMk_sub, truncLEMap_id, ComplexShape.Embedding.πTruncGENatTrans_app, instHasFiniteColimits, ComplexShape.Embedding.truncLEFunctor_map, CochainComplex.isKProjective_iff_leftOrthogonal, HomologicalComplex₂.flip_totalFlipIso, quasiIsoAt_iff_evaluation, truncGE.rightHomologyMapData_φH, CategoryTheory.InjectiveResolution.extMk_hom, groupCohomology.isoShortComplexH1_hom, HomologicalComplex₂.total.map_comp_assoc, quasiIsoAt_iff', CochainComplex.HomComplex.Cocycle.fromSingleMk_sub, homologyFunctorSingleIso_inv_app, instPreservesLimitsOfShapeEvalOfHasLimitsOfShape, HomologicalComplex₂.shape_f, homotopy_congruence, ComplexShape.Embedding.truncLE'Functor_obj, CochainComplex.shortComplexTruncLE_shortExact, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CochainComplex.cm5b.i_f_comp, CochainComplex.HomComplex.Cochain.ÎŽ_rightUnshift, CochainComplex.mappingCone.inr_snd, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, ChainComplex.truncate_obj_d, HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, CochainComplex.HomComplex.Cochain.leftUnshift_units_smul, CochainComplex.mappingCone.inl_fst, CochainComplex.quasiIsoAt₀_iff, Rep.FiniteCyclicGroup.resolution_complex, CochainComplex.HomComplex.Cochain.rightShiftLinearEquiv_apply, singleObjHomologySelfIso_hom_naturality, gradedHomologyFunctor_obj, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₃, groupHomology.chainsFunctor_map, CochainComplex.HomComplex.Cocycle.shift_coe, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, cylinder.Îč₁_desc_assoc, dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem_assoc, CochainComplex.isStrictlyLE_shift, instQuasiIsoOppositeMapSymmOpFunctorOp, CochainComplex.ConnectData.restrictionGEIso_inv_f, restrictionToTruncGE'_naturality_assoc, singleObjHomologySelfIso_hom_naturality_assoc, CategoryTheory.NatTrans.mapHomologicalComplex_naturality_assoc, singleObjHomologySelfIso_inv_naturality_assoc, instHasBinaryBiproduct, CochainComplex.instFullIntSingleFunctor, HomologicalComplex₂.ofGradedObject_d_f, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₁, CochainComplex.HomComplex.Cochain.ÎŽ_rightShift, DerivedCategory.right_fac_of_isStrictlyLE, HomologicalComplex₂.Îč_totalShift₂Iso_inv_f, CochainComplex.ConnectData.map_id, AlgebraicTopology.DoldKan.N₂_obj_p_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_X_X, CochainComplex.HomComplex.Cochain.leftShift_v, CochainComplex.HomComplex.Cochain.rightUnshift_add, CochainComplex.HomComplex.Cochain.toSingleMk_zero, CochainComplex.homologySequenceÎŽ_quotient_mapTriangle_obj, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, HomotopyCategory.homologyFunctor_shiftMap_assoc, CochainComplex.augmentTruncate_inv_f_succ, HomologicalComplex₂.totalShift₂Iso_hom_naturality, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, CategoryTheory.Functor.mapHomotopyCategory_map, CochainComplex.shiftFunctor_obj_X', CochainComplex.HomComplex.Cochain.shift_v, CochainComplex.shiftFunctorZero_hom_app_f, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, AlgebraicTopology.DoldKan.N₂_obj_X_X, truncGE'Map_comp_assoc, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, mapBifunctorMapHomotopy.comm₁_aux, ComplexShape.Embedding.instAdditiveHomologicalComplexExtendFunctor, Rep.standardComplex.instQuasiIsoNatΔToSingle₀, epi_homologyMap_shortComplexTruncLE_g, truncGE'Map_id, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, Homotopy.smul_hom, CochainComplex.triangleOfDegreewiseSplit_mor₃, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_extMk, CochainComplex.HomComplex.Cochain.shiftAddHom_apply, groupCohomology.instAdditiveRepCochainComplexModuleCatNatCochainsFunctor, HomologicalComplex₂.total.mapAux.d₂_mapMap, CategoryTheory.InjectiveResolution.instQuasiIsoIntÎč', isZero_iff_isStrictlySupported_and_isStrictlySupportedOutside, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₂, evalCompCoyonedaCorepresentableByDoubleId_homEquiv_symm_apply, CochainComplex.HomComplex.Cochain.ÎŽ_leftUnshift, HomotopyCategory.spectralObjectMappingCone_ω₁, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom, CochainComplex.HomComplex.Cocycle.toSingleMk_neg, ChainComplex.fromSingle₀Equiv_apply, CategoryTheory.InjectiveResolution.desc_commutes_zero, Rep.FiniteCyclicGroup.resolution_quasiIso, cyclesMapIso_inv, singleObjCyclesSelfIso_hom_assoc, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, CochainComplex.shiftFunctorAdd'_hom_app_f', ComplexShape.Embedding.truncGE'Functor_map, CategoryTheory.Functor.mapHomotopyCategory_obj, AlgebraicTopology.DoldKan.P_zero, CochainComplex.HomComplex.Cochain.leftShift_add, ComplexShape.Embedding.homRestrict_precomp_assoc, CochainComplex.HomComplex.Cochain.leftShift_comp_zero_cochain, singleObjCyclesSelfIso_inv_naturality, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, quasiIsoAt_iff_comp_left, opEquivalence_functor, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃_assoc, CochainComplex.augmentTruncate_hom_f_succ, CochainComplex.shiftEval_hom_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_inv, singleCompEvalIsoSelf_hom_app, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, homologicalComplexToDGO_obj_d, HomologicalComplex₂.flip_X_d, CochainComplex.instHasMapBifunctorObjIntShiftFunctor_1, CochainComplex.HomComplex.Cocycle.equivHomShift_comp, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality, instHasSeparator, CochainComplex.cm5b.i_f_comp_assoc, singleObjOpcyclesSelfIso_inv_naturality_assoc, instPreservesFiniteColimitsSingle, quasiIso_opFunctor_map_iff, AlgebraicTopology.alternatingCofaceMapComplex_map, Homotopy.comp_hom, CochainComplex.mappingCone.triangleRotateShortComplex_g, CategoryTheory.Idempotents.DoldKan.equivalence_functor, CochainComplex.shiftFunctor_obj_d', CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.inverse_obj, biprod_inl_desc_f, CochainComplex.instHasMapBifunctorObjIntShiftFunctor, singleObjHomologySelfIso_inv_naturality, CochainComplex.ÎčTruncLE_naturality, AlgebraicTopology.DoldKan.N₂_obj_X_d, CochainComplex.HomComplex.Cocycle.equivHom_apply, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, restrictionToTruncGE'_naturality, instIsIsoÎčTruncLEOfIsStrictlySupported, CategoryTheory.Abelian.DoldKan.equivalence_functor, CochainComplex.mappingCone.inr_descShortComplex, DerivedCategory.instAdditiveCochainComplexIntQ, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom_assoc, CochainComplex.HomComplex.Cocycle.fromSingleMk_precomp, ComplexShape.Embedding.restrictionToTruncGE'NatTrans_app, CochainComplex.Îč_mapBifunctorShift₁Iso_hom_f_assoc, groupCohomology.isoShortComplexH2_hom, CategoryTheory.ProjectiveResolution.exact₀, CochainComplex.triangleOfDegreewiseSplit_mor₁, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_inv_f_f, CochainComplex.fromSingle₀Equiv_symm_apply_f_zero, evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, homologicalComplexToDGO_obj_obj, stupidTruncMap_comp_assoc, CochainComplex.HomComplex.Cochain.leftShift_units_smul, homotopyCofiber.desc_f, HomotopyCategory.homologyShiftIso_hom_app, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, ChainComplex.augmentTruncate_inv_f_zero, CochainComplex.shiftFunctorAdd_hom_app_f, Îč_mapBifunctorFlipIso_hom, CochainComplex.truncateAugment_hom_f, AlgebraicTopology.DoldKan.homotopyPToId_eventually_constant, truncLE'Map_comp, biprod_inr_desc_f_assoc, CategoryTheory.Idempotents.DoldKan.Γ_map_app, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, CochainComplex.HomComplex.ÎŽ_map, CategoryTheory.Functor.map₂HomologicalComplex_obj_map, HomologicalComplex₂.totalShift₁Iso_hom_naturality_assoc, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, CochainComplex.mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso, shortComplexFunctor'_map_τ₃, unopInverse_obj, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_X, CochainComplex.mappingCone.inl_v_descShortComplex_f, opEquivalence_inverse, truncLE'Map_comp_assoc, CochainComplex.isIso_ÎčTruncLE_iff, HomologicalComplex₂.Îč_D₁, opcyclesFunctor_obj, HomologicalComplex₂.flipEquivalenceCounitIso_inv_app_f_f, natTransHomologyÎč_app, homologyFunctorIso_hom_app, CochainComplex.HomComplex.Cochain.toSingleMk_postcomp, CochainComplex.HomComplex.Cochain.ofHom_add, ComplexShape.Embedding.restrictionFunctor_obj, HomologicalComplex₂.toGradedObjectFunctor_map, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, CochainComplex.mappingCone.inr_f_descShortComplex_f, asFunctor_map_f, ChainComplex.alternatingConst_exactAt, CochainComplex.toSingle₀Equiv_apply, CochainComplex.HomComplex.Cochain.id_comp, singleObjCyclesSelfIso_hom_naturality_assoc, ComplexShape.Embedding.truncLE'ToRestrictionNatTrans_app, CategoryTheory.ProjectiveResolution.instQuasiIsoIntπ', groupHomology.chainsMap_zero, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f, mkHomFromSingle_f, DerivedCategory.exists_iso_Q_obj_of_isLE, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, cyclesOpNatIso_hom_app, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₃, shortComplexFunctor_map_τ₂, instPreservesFiniteColimitsEvalOfHasFiniteColimits, CochainComplex.shiftFunctorAdd'_hom_app_f, CochainComplex.HomComplex.Cochain.ofHom_zero, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE_assoc, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, Homotopy.compLeft_hom, shortComplexFunctor_obj_g, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, groupHomology.isoShortComplexH2_inv, HomologicalComplex₂.Îč_totalShift₂Iso_hom_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, exactAt_single_obj, shortComplexTruncLE_X₁, HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₁, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero_assoc, hasExactColimitsOfShape, CochainComplex.HomComplex.Cochain.map_ofHom, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, extendMap_comp, quasiIso_unopFunctor_map_iff, CochainComplex.shiftFunctorComm_hom_app_f, ComplexShape.QFactorsThroughHomotopy.areEqualizedByLocalization, instPreservesBinaryBiproductEval, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CategoryTheory.Idempotents.karoubiHomologicalComplexEquivalence_counitIso, groupCohomology.map_cochainsFunctor_shortExact, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f, HomologicalComplex₂.XXIsoOfEq_hom_ÎčTotal, CochainComplex.HomComplex.Cochain.leftShiftAddEquiv_symm_apply, Homotopy.nullHomotopy_hom, CochainComplex.HomComplex.Cochain.rightShift_neg, HomologySequence.composableArrows₃Functor_map, HomologicalComplex₂.totalShift₁Iso_hom_naturality, Hom.isoApp_inv, CochainComplex.mappingConeCompTriangle_mor₃_naturality_assoc, HomotopyCategory.quotient_obj_singleFunctors_obj, HomologicalComplex₂.total.mapAux.d₁_mapMap_assoc, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, CategoryTheory.InjectiveResolution.instMonoFNatÎč, CochainComplex.mappingCone.triangleMapOfHomotopy_comm₃, HomologicalComplex₂.d₂_eq', DerivedCategory.instEssSurjCochainComplexIntQ, CochainComplex.HomComplex.Cochain.fromSingleMk_v_eq_zero, dgoEquivHomologicalComplex_inverse, DerivedCategory.singleFunctorsPostcompQIso_hom_hom, ComplexShape.quotient_isLocalization, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₂, CochainComplex.HomComplex.Cocycle.equivHomShift_symm_precomp, quasiIso_iff_comp_right, CategoryTheory.Functor.mapCochainComplexShiftIso_hom_app_f, CochainComplex.shiftEval_inv_app, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, unopEquivalence_inverse, CochainComplex.mapBifunctorShift₁Iso_hom_naturality₁, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_Îč_assoc, AlgebraicTopology.DoldKan.Γ₂_obj_X_obj, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic, homotopyCofiber.inlX_desc_f, AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc, HomotopyCategory.instAdditiveHomologicalComplexQuotient, HomotopyCategory.quotient_map_out, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_Îč, HomologicalComplex₂.d₁_eq', CochainComplex.HomComplex.Cocycle.rightShiftAddEquiv_apply, truncLE'ToRestriction_naturality, AlgebraicTopology.DoldKan.Γ₂_map_f_app, CochainComplex.HomComplex.Cocycle.fromSingleMk_mem_coboundaries_iff, groupCohomology.cochainsFunctor_map, instPreservesFiniteLimitsSingle, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.counitIso_hom, extendMap_zero, quasiIsoAt_iff, CategoryTheory.InjectiveResolution.exact₀, quasiIsoAt_map_of_preservesHomology, instAdditiveSingle, shortComplexFunctor'_obj_f, CochainComplex.HomComplex.Cocycle.equivHomShift_comp_shift, HomotopyCategory.homologyFunctor_shiftMap, CochainComplex.HomComplex.Cochain.rightShiftLinearEquiv_symm_apply, HomologySequence.composableArrows₃Functor_obj, HomologicalComplex₂.toGradedObjectMap_apply, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₁, HomologicalComplex₂.ÎčTotalOrZero_eq_zero, CochainComplex.shiftShortComplexFunctorIso_zero_add_hom_app, CochainComplex.isKProjective_shift_iff, opFunctor_additive, instPreservesZeroMorphismsCyclesFunctor, instQuasiIsoShortComplexTruncLEX₃ToTruncGE, eval_additive, CochainComplex.instIsStrictlyLEObjIntSingleFunctor, CochainComplex.mappingCone.triangle_obj₂, CochainComplex.instIsStrictlyGEObjIntSingleFunctor, HomologicalComplex₂.flip_d_f, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₃, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_counitIso_inv, CochainComplex.mappingConeCompTriangle_mor₂, AlgebraicTopology.DoldKan.Γ₂N₁_inv, HomologicalComplex₂.D₁_totalShift₂XIso_hom, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, CochainComplex.HomComplex.Cochain.rightShift_v, CochainComplex.HomComplex.Cochain.rightUnshift_zero, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_X, CochainComplex.mappingConeCompTriangleh_comm₁, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_extMk, CochainComplex.HomComplex.Cocycle.toSingleMk_postcomp, AlgebraicTopology.DoldKan.Q_zero, CochainComplex.HomComplex.Cocycle.leftShift_coe, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_Îč_assoc, opcyclesMap_zero, HomologicalComplex₂.D₂_totalShift₂XIso_hom, instEpiπTruncGE, instHasBinaryBiproductObjEval, ChainComplex.truncate_obj_X, groupCohomology.isoShortComplexH1_inv, AlgebraicTopology.DoldKan.identity_N₂_objectwise, CochainComplex.single₀_obj_zero, shortExact_iff_degreewise_shortExact, shortComplexTruncLE_shortExact_ÎŽ_eq_zero, CochainComplex.HomComplex.Cochain.shift_v', CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, AlgebraicTopology.inclusionOfMooreComplexMap_f, CategoryTheory.Idempotents.DoldKan.hη, CochainComplex.cm5b.instInjectiveXIntMappingConeIdI, biprod_lift_snd_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, biprod_inr_fst_f_assoc, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, ComplexShape.Embedding.extendFunctor_obj, AlgebraicTopology.alternatingFaceMapComplex_obj_X, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, DerivedCategory.mem_distTriang_iff, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, CategoryTheory.Functor.instCommShiftCochainComplexIntMapMap₂CochainComplex, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, CochainComplex.isKInjective_iff_rightOrthogonal, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex_assoc, CochainComplex.HomComplex.Cochain.rightShift_add, CochainComplex.ShiftSequence.shiftIso_inv_app, neg_f_apply, CategoryTheory.ProjectiveResolution.instEpiFNatπ, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, groupCohomology.cochainsMap_id_comp_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_X, truncGEMap_comp, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.functor_map, dgoEquivHomologicalComplexUnitIso_inv_app_f, unopFunctor_map_f, homologyOp_hom_naturality, locallySmall, DerivedCategory.instIsLEObjCochainComplexIntQOfIsLE, AlgebraicTopology.DoldKan.P_idem_assoc, AlgebraicTopology.DoldKan.PInfty_comp_QInfty_assoc, CategoryTheory.Functor.instCommShiftCochainComplexIntMapFlipMap₂CochainComplex, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_X_d, HomologicalComplex₂.flipEquivalenceCounitIso_hom_app_f_f, homologyFunctor_inverts_quasiIso, CochainComplex.HomComplex.Cochain.toSingleEquiv_toSingleMk, instHasColimitDiscreteWalkingPairCompPairEval, CochainComplex.isGE_shift, instPreservesZeroMorphismsSingle, AlgebraicTopology.DoldKan.N₂_map_f_f, CochainComplex.truncate_obj_d, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, DerivedCategory.Q_map_eq_of_homotopy, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_hom_app, singleObjCyclesSelfIso_hom, CochainComplex.mappingCone.triangleRotateShortComplex_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_postcomp, quasiIsoAt_opFunctor_map_iff, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt, CochainComplex.HomComplex.Cocycle.rightUnshift_coe, HomologicalComplex₂.d_comm_assoc, CategoryTheory.Functor.mapHomotopyEquiv_hom, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₃, CategoryTheory.Equivalence.mapHomologicalComplex_inverse, ComplexShape.Embedding.truncGEFunctor_map, CochainComplex.HomComplex.Cochain.ÎŽ_leftShift, HomologicalComplex₂.totalAux.d₁_eq', DerivedCategory.isIso_Q_map_iff_quasiIso, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, cylinder.Îč₁_desc, Îč_mapBifunctorFlipIso_hom_assoc, CochainComplex.HomComplex.Cocycle.toSingleMk_precomp, extendSingleIso_hom_f, CochainComplex.HomComplex.CohomologyClass.toHom_mk, AlgebraicTopology.DoldKan.N₁Γ₀_app, HomologicalComplex₂.total.hom_ext_iff, groupCohomology.isoShortComplexH2_inv, CochainComplex.πTruncGE_naturality_assoc, instFullSingle, CochainComplex.HomComplex.Cocycle.leftShiftAddEquiv_apply, HomotopyCategory.quotient_map_mem_quasiIso_iff, CochainComplex.instIsMultiplicativeIntDegreewiseEpiWithInjectiveKernel, biprod_inl_snd_f, CochainComplex.toSingle₀Equiv_symm_apply_f_zero, DerivedCategory.left_fac_of_isStrictlyGE, CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f, homologyFunctorIso_inv_app, CochainComplex.augmentTruncate_hom_f_zero, comp_f_assoc, unopFunctor_additive, ChainComplex.alternatingConst_map_f, instHasZeroObject, CategoryTheory.Idempotents.DoldKan.N_map, ChainComplex.single₀_obj_zero, instIsNormalMonoCategory, g_shortComplexTruncLEX₃ToTruncGE_assoc, CategoryTheory.InjectiveResolution.quasiIso, ChainComplex.fromSingle₀Equiv_symm_apply_f_succ, instFaithfulSingle, unopEquivalence_counitIso, ComplexShape.Embedding.homRestrict_comp_extendMap, truncGEMap_id, opInverse_map, CochainComplex.HomComplex.Cochain.leftShift_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, HomologicalComplex₂.flipFunctor_map_f_f, singleObjHomologySelfIso_inv_homologyÎč, homologyFunctor_obj, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, HomotopyCategory.isoOfHomotopyEquiv_inv, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, CochainComplex.HomComplex.Cochain.toSingleMk_sub, shortComplexTruncLE_X₃_isSupportedOutside, biprod_inl_desc_f_assoc, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, CategoryTheory.InjectiveResolution.Hom.Îč_comp_hom, extendMap_id, Hom.isoApp_hom, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, homologyFunctorSingleIso_hom_app, CochainComplex.HomComplex.Cocycle.equivHomShift_apply, ComplexShape.Embedding.AreComplementary.hom_ext', CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₁, singleObjOpcyclesSelfIso_hom_assoc, homologyMap_comp_assoc, ChainComplex.single₀_map_f_zero, ChainComplex.alternatingConst_obj, CochainComplex.HomComplex.Cochain.leftUnshift_neg, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, isZero_single_comp_eval, CategoryTheory.instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex, CochainComplex.isLE_shift, CochainComplex.mappingCone.triangle_obj₁, cylinder.Îč₀_desc_assoc, dgoEquivHomologicalComplexCounitIso_inv_app_f, Homotopy.nullHomotopy'_hom, Hom.isIso_of_components, AlgebraicTopology.DoldKan.Γ₀'_map_f, singleObjOpcyclesSelfIso_hom_naturality, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, HomologicalComplexUpToQuasiIso.isIso_Q_map_iff_mem_quasiIso, CochainComplex.cm5b, homologyMapIso_inv, Rep.FiniteCyclicGroup.resolution.π_f, natIsoSc'_inv_app_τ₁, instHasFiniteLimits, exact_iff_degreewise_exact, groupCohomology.cochainsFunctor_obj, CategoryTheory.InjectiveResolution.rightDerived_app_eq, instHasHomologyObjOppositeSymmUnopFunctorOp, CategoryTheory.InjectiveResolution.Hom.Îč'_comp_hom', CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, Hom.fAddMonoidHom_apply, epi_of_epi_f, CochainComplex.shiftFunctor_obj_d, HomologicalComplex₂.total.map_id, CochainComplex.HomComplex.Cochain.toSingleMk_precomp, HomotopyCategory.instLinearHomologicalComplexQuotient, CochainComplex.HomComplex.Cocycle.rightShift_coe, CochainComplex.single₀ObjXSelf, CochainComplex.mappingConeCompHomotopyEquiv_hom_inv_id_assoc, HomologicalComplex₂.total.forget_map, AlgebraicTopology.DoldKan.Γ₂N₂_inv, HomologicalComplex₂.totalFunctor_map, natIsoSc'_hom_app_τ₁, instPreservesZeroMorphismsOpcyclesFunctor, extendMap_id_f, CochainComplex.HomComplex.Cochain.leftUnshift_zero, ComplexShape.Embedding.stupidTruncFunctor_obj, DerivedCategory.left_fac, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, AlgebraicTopology.normalizedMooreComplex_obj, CochainComplex.mappingCone.triangle_obj₃, cyclesMapIso_hom, AlgebraicTopology.DoldKan.natTransQ_app, CochainComplex.HomComplex.Cochain.map_neg, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, HomologicalComplex₂.ÎčTotal_map_assoc, CochainComplex.instFaithfulIntSingleFunctor, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app, Îč_mapBifunctorFlipIso_inv, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, CochainComplex.mappingConeCompTriangle_obj₁, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_hom, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.Idempotents.DoldKan.equivalence_unitIso, cylinder.πCompÎč₀Homotopy.inlX_nullHomotopy_f, ChainComplex.map_chain_complex_of, HomologicalComplex₂.totalFlipIso_hom_f_D₂_assoc, CochainComplex.instAdditiveHomologicalComplexIntUpShiftFunctor, HomologicalComplex₂.Îč_totalShift₁Iso_hom_f, forgetEval_inv_app, CategoryTheory.instIsIsoFromLeftDerivedZero', ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, HomologicalComplex₂.instFaithfulGradedObjectProdToGradedObjectFunctor, ComplexShape.Embedding.truncGEFunctor_obj, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, CochainComplex.Îč_mapBifunctorShift₁Iso_hom_f, shortComplexFunctor_obj_X₃, AlgebraicTopology.DoldKan.PInfty_add_QInfty, CochainComplex.ShiftSequence.shiftIso_hom_app, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg, groupCohomology.cochainsMap_id, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, CochainComplex.mappingCone.map_ÎŽ, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv, CochainComplex.HomComplex.Cochain.ofHom_comp, CochainComplex.ConnectData.restrictionGEIso_hom_f, quasiIsoAt_map_iff_of_preservesHomology, Hom.sqFrom_id
instHasZeroMorphisms 📖CompOp
220 mathmath: CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁, CochainComplex.triangleOfDegreewiseSplit_obj₁, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, HomologicalComplex₂.totalShift₂Iso_hom_naturality_assoc, biprod_inr_desc_f, biprod_lift_fst_f_assoc, groupCohomology.instPreservesZeroMorphismsRepCochainComplexModuleCatNatCochainsFunctor, HomologicalComplex₂.shiftFunctor₂XXIso_refl, HomologicalComplex₂.comm_f, HomologicalComplex₂.total.mapIso_hom, inl_biprodXIso_inv_assoc, biprod_inr_snd_f_assoc, biprod_inl_snd_f_assoc, HomologicalComplex₂.totalAux.d₂_eq, instIsNormalEpiCategory, HomologicalComplex₂.D₂_totalShift₁XIso_hom_assoc, biprodXIso_hom_fst, HomologicalComplex₂.D₂_totalShift₂XIso_hom_assoc, HomologicalComplex₂.d_f_comp_d_f, HomologicalComplex₂.flipEquivalence_unitIso, HomologicalComplex₂.d₁_eq_zero', CochainComplex.cm5b.fac, biprod_lift_fst_f, HomologicalComplex₂.toGradedObjectFunctor_obj, HomologicalComplex₂.ÎčTotalOrZero_map_assoc, HomologicalComplex₂.ÎčTotal_map, HomologicalComplex₂.Îč_totalShift₁Iso_hom_f_assoc, HomologicalComplex₂.Îč_D₁_assoc, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv_assoc, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, HomologicalComplex₂.d₂_eq_zero, HomologicalComplex₂.Îč_totalShift₁Iso_inv_f, HomologicalComplex₂.Îč_totalDesc_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_d, CochainComplex.mappingCone.inr_descShortComplex_assoc, instEpiGShortComplexTruncLE, HomologicalComplex₂.flipEquivalenceUnitIso_hom_app_f_f, HomologicalComplex₂.Îč_totalShift₂Iso_inv_f_assoc, HomologicalComplex₂.d_comm, CochainComplex.triangleOfDegreewiseSplit_obj₂, inr_biprodXIso_inv, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE, HomologicalComplex₂.d_f_comp_d_f_assoc, HomologicalComplex₂.Îč_D₂, HomologicalComplex₂.total.mapAux.d₁_mapMap, HomologicalComplex₂.d₁_eq, HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₂, biprod_inr_snd_f, HomologicalComplex₂.XXIsoOfEq_hom_ÎčTotal_assoc, groupHomology.map_chainsFunctor_shortExact, instMonoFShortComplexTruncLE, CochainComplex.mappingCone.triangleRotateShortComplex_X₂, HomologicalComplex₂.instHasTotalIntObjUpCompShiftFunctor₁ShiftFunctor₂, HomologicalComplex₂.XXIsoOfEq_rfl, HomologicalComplex₂.Îč_D₂_assoc, isIso_homologyMap_shortComplexTruncLE_g, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_X_X, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CochainComplex.mappingCone.triangleRotateShortComplex_X₃, HomologicalComplex₂.totalFunctor_obj, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom, HomologicalComplex₂.flipFunctor_obj, HomologicalComplex₂.totalAux.d₂_eq', HomologicalComplex₂.totalAux.d₁_eq, instPreservesZeroMorphismsEval, HomologicalComplex₂.D₁_totalShift₂XIso_hom_assoc, HomologicalComplex₂.shiftFunctor₁XXIso_refl, CochainComplex.mappingCone.triangleRotateShortComplex_X₁, HomologicalComplex₂.Îč_totalDesc, HomologicalComplex₂.total.mapAux.d₂_mapMap_assoc, HomologicalComplex₂.d₁_eq_zero, HomologicalComplex₂.flip_X_X, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, biprod_lift_snd_f, biprod_inl_fst_f_assoc, g_shortComplexTruncLEX₃ToTruncGE, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, inl_biprodXIso_inv, mono_homologyMap_shortComplexTruncLE_g, HomologicalComplex₂.D₁_totalShift₁XIso_hom_assoc, cylinder.inrX_π_assoc, biprod_inl_fst_f, HomologicalComplex₂.instHasTotalIntObjUpCompShiftFunctor₂ShiftFunctor₁, CochainComplex.cm5b.instIsStrictlyGEBiprodIntMappingConeIdIOfHAddOfNat, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_d, CochainComplex.triangleOfDegreewiseSplit_mor₂, biprod_inr_fst_f, CochainComplex.cm5b.fac_assoc, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_hom_f_f, biprodXIso_hom_fst_assoc, CochainComplex.triangleOfDegreewiseSplit_obj₃, HomologicalComplex₂.flipEquivalenceUnitIso_inv_app_f_f, quasiIsoAt_shortComplexTruncLE_g, HomologicalComplex₂.d₂_eq_zero', HomologicalComplex₂.Îč_totalShift₁Iso_inv_f_assoc, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom_assoc, HomologicalComplex₂.XXIsoOfEq_inv_ÎčTotal_assoc, HomologicalComplex₂.total.mapIso_inv, shortComplexTruncLE_f, biprodXIso_hom_snd, CochainComplex.homOfDegreewiseSplit_f, HomologicalComplex₂.flipEquivalence_counitIso, HomologicalComplex₂.Îč_totalShift₂Iso_hom_f_assoc, biprodXIso_hom_snd_assoc, instPreservesZeroMorphismsHomologyFunctor, CochainComplex.cm5b.instQuasiIsoIntP, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, HomologicalComplex₂.D₁_totalShift₁XIso_hom, HomologicalComplex₂.D₂_totalShift₁XIso_hom, HomologicalComplex₂.comm_f_assoc, cylinder.inrX_π, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, HomologicalComplex₂.XXIsoOfEq_inv_ÎčTotal, cylinder.πCompÎč₀Homotopy.inrX_nullHomotopy_f, HomologicalComplex₂.total.map_comp, CochainComplex.cm5b.instMonoFIntI, HomologicalComplex₂.ofGradedObject_X_d, HomologicalComplex₂.flipEquivalence_functor, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, inr_biprodXIso_inv_assoc, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexExtendFunctor, HomologicalComplex₂.ofGradedObject_X_X, HomologicalComplex₂.flipEquivalence_inverse, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_r, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, shortComplexTruncLE_shortExact, HomologicalComplex₂.ÎčTotalOrZero_map, HomologicalComplex₂.totalShift₁Iso_trans_totalShift₂Iso, CochainComplex.cm5b.instMonoIntI, shortComplexTruncLE_X₂, HomologicalComplex₂.d₂_eq, HomologicalComplex₂.total.map_comp_assoc, HomologicalComplex₂.shape_f, CochainComplex.shortComplexTruncLE_shortExact, CochainComplex.cm5b.i_f_comp, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, instHasBinaryBiproduct, HomologicalComplex₂.ofGradedObject_d_f, HomologicalComplex₂.Îč_totalShift₂Iso_inv_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_X_X, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, HomologicalComplex₂.totalShift₂Iso_hom_naturality, mapBifunctorMapHomotopy.comm₁_aux, epi_homologyMap_shortComplexTruncLE_g, CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, HomologicalComplex₂.total.mapAux.d₂_mapMap, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, HomologicalComplex₂.flip_X_d, CochainComplex.cm5b.i_f_comp_assoc, CochainComplex.mappingCone.triangleRotateShortComplex_g, biprod_inl_desc_f, CochainComplex.mappingCone.inr_descShortComplex, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom_assoc, CochainComplex.triangleOfDegreewiseSplit_mor₁, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_inv_f_f, biprod_inr_desc_f_assoc, HomologicalComplex₂.totalShift₁Iso_hom_naturality_assoc, CochainComplex.mappingCone.inl_v_descShortComplex_f, HomologicalComplex₂.Îč_D₁, HomologicalComplex₂.flipEquivalenceCounitIso_inv_app_f_f, HomologicalComplex₂.toGradedObjectFunctor_map, CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s, CochainComplex.mappingCone.inr_f_descShortComplex_f, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE_assoc, HomologicalComplex₂.Îč_totalShift₂Iso_hom_f, shortComplexTruncLE_X₁, HomologicalComplex₂.instHasTotalIntObjUpShiftFunctor₁, instPreservesBinaryBiproductEval, groupCohomology.map_cochainsFunctor_shortExact, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f, HomologicalComplex₂.XXIsoOfEq_hom_ÎčTotal, HomologicalComplex₂.totalShift₁Iso_hom_naturality, HomologicalComplex₂.total.mapAux.d₁_mapMap_assoc, HomologicalComplex₂.d₂_eq', HomologicalComplex₂.d₁_eq', HomologicalComplex₂.toGradedObjectMap_apply, HomologicalComplex₂.ÎčTotalOrZero_eq_zero, instPreservesZeroMorphismsCyclesFunctor, instQuasiIsoShortComplexTruncLEX₃ToTruncGE, HomologicalComplex₂.flip_d_f, HomologicalComplex₂.D₁_totalShift₂XIso_hom, CochainComplex.cm5b.degreewiseEpiWithInjectiveKernel_p, HomologicalComplex₂.D₂_totalShift₂XIso_hom, shortExact_iff_degreewise_shortExact, shortComplexTruncLE_shortExact_ÎŽ_eq_zero, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, biprod_lift_snd_f_assoc, biprod_inr_fst_f_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, HomologicalComplex₂.flipEquivalenceCounitIso_hom_app_f_f, instPreservesZeroMorphismsSingle, CochainComplex.mappingCone.triangleRotateShortComplex_f, HomologicalComplex₂.d_comm_assoc, HomologicalComplex₂.totalAux.d₁_eq', HomologicalComplex₂.total.hom_ext_iff, biprod_inl_snd_f, CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f, instIsNormalMonoCategory, g_shortComplexTruncLEX₃ToTruncGE_assoc, HomologicalComplex₂.flipFunctor_map_f_f, shortComplexTruncLE_X₃_isSupportedOutside, biprod_inl_desc_f_assoc, CategoryTheory.instPreservesZeroMorphismsHomologicalComplexMapHomologicalComplex, exact_iff_degreewise_exact, HomologicalComplex₂.total.map_id, HomologicalComplex₂.totalFunctor_map, instPreservesZeroMorphismsOpcyclesFunctor, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_toGradedObject, HomologicalComplex₂.ÎčTotal_map_assoc, HomologicalComplex₂.Îč_totalShift₁Iso_hom_f, ComplexShape.Embedding.instPreservesZeroMorphismsHomologicalComplexRestrictionFunctor, HomologicalComplex₂.instFaithfulGradedObjectProdToGradedObjectFunctor, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv
instInhabitedHom 📖CompOp—
instInhabitedOfHasZeroObject 📖CompOp—
instZeroHom 📖CompOp
8 mathmath: CategoryTheory.Abelian.LeftResolution.chainComplexMap_zero, ComplexShape.Embedding.AreComplementary.hom_ext, zero_f, cyclesMap_zero, homologyMap_zero, extendMap_zero, opcyclesMap_zero, ComplexShape.Embedding.AreComplementary.hom_ext'
xNext 📖CompOp
23 mathmath: dFrom_comp_xNextIsoSelf, dFrom_eq_zero, Hom.comm_from_apply, Homotopy.mkInductiveAux₃, Hom.next_eq, Hom.sqFrom_comp, dTo_comp_dFrom, Homotopy.mkCoinductiveAux₂_add_one, Homotopy.mkCoinductiveAux₂_zero, kernel_from_eq_kernel, Homotopy.mkCoinductiveAux₃, dNext_eq_dFrom_fromNext, Hom.sqFrom_left, Hom.comm_from, Hom.sqFrom_right, Hom.comm_from_assoc, dFrom_comp_xNextIso_assoc, dFrom_eq, dFrom_comp_xNextIso, Homotopy.mkInductiveAux₂_zero, dFrom_comp_xNextIsoSelf_assoc, Homotopy.mkInductiveAux₂_add_one, Hom.sqFrom_id
xNextIso 📖CompOp
9 mathmath: Homotopy.mkInductiveAux₃, Hom.next_eq, Homotopy.mkCoinductiveAux₂_add_one, Homotopy.mkCoinductiveAux₂_zero, Homotopy.mkCoinductiveAux₃, dFrom_comp_xNextIso_assoc, dFrom_eq, dFrom_comp_xNextIso, Homotopy.mkInductiveAux₂_add_one
xNextIsoSelf 📖CompOp
2 mathmath: dFrom_comp_xNextIsoSelf, dFrom_comp_xNextIsoSelf_assoc
xPrev 📖CompOp
21 mathmath: Homotopy.mkInductiveAux₃, dTo_eq_zero, Hom.comm_to_apply, xPrevIsoSelf_comp_dTo, dTo_eq, prevD_eq_toPrev_dTo, dTo_comp_dFrom, xPrevIso_comp_dTo, Hom.comm_to, Homotopy.mkCoinductiveAux₂_add_one, xPrevIso_comp_dTo_assoc, Homotopy.mkCoinductiveAux₂_zero, xPrevIsoSelf_comp_dTo_assoc, Homotopy.mkCoinductiveAux₃, image_to_eq_image, Hom.sqTo_right, Hom.sqTo_left, Hom.comm_to_assoc, Homotopy.mkInductiveAux₂_zero, Hom.prev_eq, Homotopy.mkInductiveAux₂_add_one
xPrevIso 📖CompOp
9 mathmath: Homotopy.mkInductiveAux₃, dTo_eq, xPrevIso_comp_dTo, Homotopy.mkCoinductiveAux₂_add_one, xPrevIso_comp_dTo_assoc, Homotopy.mkCoinductiveAux₃, Homotopy.mkInductiveAux₂_zero, Hom.prev_eq, Homotopy.mkInductiveAux₂_add_one
xPrevIsoSelf 📖CompOp
2 mathmath: xPrevIsoSelf_comp_dTo, xPrevIsoSelf_comp_dTo_assoc
zero 📖CompOp
1 mathmath: isZero_zero

Theorems

NameKindAssumesProvesValidatesDepends On
XIsoOfEq_hom_comp_XIsoOfEq_hom 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
XIsoOfEq
—CategoryTheory.eqToHom_trans
XIsoOfEq_hom_comp_XIsoOfEq_hom_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
XIsoOfEq
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XIsoOfEq_hom_comp_XIsoOfEq_hom
XIsoOfEq_hom_comp_XIsoOfEq_inv 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
XIsoOfEq
CategoryTheory.Iso.inv
—CategoryTheory.eqToHom_trans
XIsoOfEq_hom_comp_XIsoOfEq_inv_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
XIsoOfEq
CategoryTheory.Iso.inv
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XIsoOfEq_hom_comp_XIsoOfEq_inv
XIsoOfEq_hom_comp_d 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
XIsoOfEq
d
—CategoryTheory.Category.id_comp
XIsoOfEq_hom_comp_d_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
XIsoOfEq
d
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XIsoOfEq_hom_comp_d
XIsoOfEq_hom_naturality 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.f
CategoryTheory.Iso.hom
XIsoOfEq
—CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
XIsoOfEq_hom_naturality_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.f
CategoryTheory.Iso.hom
XIsoOfEq
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XIsoOfEq_hom_naturality
XIsoOfEq_inv_comp_XIsoOfEq_hom 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.inv
XIsoOfEq
CategoryTheory.Iso.hom
—CategoryTheory.eqToHom_trans
XIsoOfEq_inv_comp_XIsoOfEq_hom_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.inv
XIsoOfEq
CategoryTheory.Iso.hom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XIsoOfEq_inv_comp_XIsoOfEq_hom
XIsoOfEq_inv_comp_XIsoOfEq_inv 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.inv
XIsoOfEq
CategoryTheory.Iso.hom
—CategoryTheory.eqToHom_trans
XIsoOfEq_inv_comp_XIsoOfEq_inv_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.inv
XIsoOfEq
CategoryTheory.Iso.hom
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XIsoOfEq_inv_comp_XIsoOfEq_inv
XIsoOfEq_inv_comp_d 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.inv
XIsoOfEq
d
—CategoryTheory.Category.id_comp
XIsoOfEq_inv_comp_d_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.inv
XIsoOfEq
d
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XIsoOfEq_inv_comp_d
XIsoOfEq_inv_naturality 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.f
CategoryTheory.Iso.inv
XIsoOfEq
—CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
XIsoOfEq_inv_naturality_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.f
CategoryTheory.Iso.inv
XIsoOfEq
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
XIsoOfEq_inv_naturality
XIsoOfEq_rfl 📖mathematical—XIsoOfEq
CategoryTheory.Iso.refl
X
——
comp_f 📖mathematical—Hom.f
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
X
——
comp_f_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
Hom.f
HomologicalComplex
instCategory
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_f
congr_hom 📖mathematical—Hom.f——
dFrom_comp_xNextIso 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xNext
dFrom
CategoryTheory.Iso.hom
xNextIso
d
—dFrom_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
dFrom_comp_xNextIsoSelf 📖mathematicalComplexShape.Rel
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xNext
dFrom
CategoryTheory.Iso.hom
xNextIsoSelf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—shape
CategoryTheory.Limits.zero_comp
dFrom_comp_xNextIsoSelf_assoc 📖mathematicalComplexShape.Rel
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xNext
dFrom
CategoryTheory.Iso.hom
xNextIsoSelf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
dFrom_comp_xNextIsoSelf
dFrom_comp_xNextIso_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xNext
dFrom
CategoryTheory.Iso.hom
xNextIso
d
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
dFrom_comp_xNextIso
dFrom_eq 📖mathematicalComplexShape.ReldFrom
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xNext
d
CategoryTheory.Iso.inv
xNextIso
—CategoryTheory.Category.comp_id
ComplexShape.next_eq'
dFrom_eq_zero 📖mathematicalComplexShape.Rel
ComplexShape.next
dFrom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
xNext
CategoryTheory.Limits.HasZeroMorphisms.zero
—shape
dTo_comp_dFrom 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
xPrev
X
xNext
dTo
dFrom
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—d_comp_d
dTo_eq 📖mathematicalComplexShape.ReldTo
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
xPrev
X
CategoryTheory.Iso.hom
xPrevIso
d
—CategoryTheory.Category.id_comp
ComplexShape.prev_eq'
dTo_eq_zero 📖mathematicalComplexShape.Rel
ComplexShape.prev
dTo
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
xPrev
X
CategoryTheory.Limits.HasZeroMorphisms.zero
—shape
d_comp_XIsoOfEq_hom 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
CategoryTheory.Iso.hom
XIsoOfEq
—CategoryTheory.Category.comp_id
d_comp_XIsoOfEq_hom_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
CategoryTheory.Iso.hom
XIsoOfEq
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_comp_XIsoOfEq_hom
d_comp_XIsoOfEq_inv 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
CategoryTheory.Iso.inv
XIsoOfEq
—CategoryTheory.Category.comp_id
d_comp_XIsoOfEq_inv_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
CategoryTheory.Iso.inv
XIsoOfEq
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_comp_XIsoOfEq_inv
d_comp_d 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—d_comp_d'
shape
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
d_comp_d' 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
——
d_comp_d_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_comp_d
d_comp_eqToHom 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
CategoryTheory.eqToHom
ComplexShape.next_eq
—ComplexShape.next_eq
CategoryTheory.Category.comp_id
epi_of_epi_f 📖mathematicalCategoryTheory.Epi
X
Hom.f
HomologicalComplex
instCategory
—hom_ext
CategoryTheory.cancel_epi
congr_hom
eqToHom_comp_d 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.eqToHom
ComplexShape.prev_eq
d
—CategoryTheory.Category.id_comp
ComplexShape.prev_eq
eqToHom_f 📖mathematical—Hom.f
CategoryTheory.eqToHom
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
X
——
eval_map 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
instCategory
eval
Hom.f
——
eval_obj 📖mathematical—CategoryTheory.Functor.obj
HomologicalComplex
instCategory
eval
X
——
ext 📖—X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
d
CategoryTheory.eqToHom
——CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
forgetEval_hom_app 📖mathematical—CategoryTheory.NatTrans.app
HomologicalComplex
instCategory
CategoryTheory.Functor.comp
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
forget
CategoryTheory.GradedObject.eval
eval
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetEval
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
——
forgetEval_inv_app 📖mathematical—CategoryTheory.NatTrans.app
HomologicalComplex
instCategory
eval
CategoryTheory.Functor.comp
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
forget
CategoryTheory.GradedObject.eval
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
forgetEval
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
——
forget_map 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
instCategory
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
forget
Hom.f
——
forget_obj 📖mathematical—CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
forget
X
——
hom_ext 📖—Hom.f——Hom.ext
hom_ext_iff 📖mathematical—Hom.f—hom_ext
hom_f_injective 📖mathematical—Hom
Hom.f
—Hom.ext
id_f 📖mathematical—Hom.f
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
X
——
image_eq_image 📖mathematicalComplexShape.RelCategoryTheory.Limits.imageSubobject
X
d
CategoryTheory.Limits.HasImages.has_image
—CategoryTheory.Limits.HasImages.has_image
ComplexShape.prev_eq
eqToHom_comp_d
CategoryTheory.Limits.imageSubobject_iso_comp
CategoryTheory.instIsIsoEqToHom
image_to_eq_image 📖mathematicalComplexShape.RelCategoryTheory.Limits.imageSubobject
xPrev
X
dTo
CategoryTheory.Limits.HasImages.has_image
d
—CategoryTheory.Limits.HasImages.has_image
dTo_eq
CategoryTheory.Limits.imageSubobject_iso_comp
CategoryTheory.Iso.isIso_hom
instFaithfulGradedObjectForget 📖mathematical—CategoryTheory.Functor.Faithful
HomologicalComplex
instCategory
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
forget
—hom_ext
instHasZeroObject 📖mathematical—CategoryTheory.Limits.HasZeroObject
HomologicalComplex
instCategory
—isZero_zero
instPreservesZeroMorphismsEval 📖mathematical—CategoryTheory.Functor.PreservesZeroMorphisms
HomologicalComplex
instCategory
instHasZeroMorphisms
eval
——
isZero_zero 📖mathematical—CategoryTheory.Limits.IsZero
HomologicalComplex
instCategory
zero
—hom_ext
Unique.instSubsingleton
kernel_eq_kernel 📖mathematicalComplexShape.RelCategoryTheory.Limits.kernelSubobject
X
d
CategoryTheory.Limits.HasKernels.has_limit
—CategoryTheory.Limits.HasKernels.has_limit
ComplexShape.next_eq
d_comp_eqToHom
CategoryTheory.Limits.kernelSubobject_comp_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.instIsIsoEqToHom
kernel_from_eq_kernel 📖mathematicalComplexShape.RelCategoryTheory.Limits.kernelSubobject
X
xNext
dFrom
CategoryTheory.Limits.HasKernels.has_limit
d
—CategoryTheory.Limits.HasKernels.has_limit
dFrom_eq
CategoryTheory.Limits.kernelSubobject_comp_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
mono_of_mono_f 📖mathematicalCategoryTheory.Mono
X
Hom.f
HomologicalComplex
instCategory
—hom_ext
CategoryTheory.cancel_mono
congr_hom
shape 📖mathematicalComplexShape.Reld
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
——
xPrevIsoSelf_comp_dTo 📖mathematicalComplexShape.Rel
ComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xPrev
CategoryTheory.Iso.inv
xPrevIsoSelf
dTo
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—shape
CategoryTheory.Limits.comp_zero
xPrevIsoSelf_comp_dTo_assoc 📖mathematicalComplexShape.Rel
ComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xPrev
CategoryTheory.Iso.inv
xPrevIsoSelf
dTo
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
xPrevIsoSelf_comp_dTo
xPrevIso_comp_dTo 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xPrev
CategoryTheory.Iso.inv
xPrevIso
dTo
d
—dTo_eq
CategoryTheory.Iso.inv_hom_id_assoc
xPrevIso_comp_dTo_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
xPrev
CategoryTheory.Iso.inv
xPrevIso
dTo
d
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
xPrevIso_comp_dTo
zero_f 📖mathematical—Hom.f
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
X
CategoryTheory.Limits.HasZeroMorphisms.zero
——

HomologicalComplex.Hom

Definitions

NameCategoryTheorems
f 📖CompOp
591 mathmath: CategoryTheory.InjectiveResolution.Hom.hom'_f, HomologicalComplex.eqToHom_f, HomologicalComplex.extendSingleIso_inv_f, HomologicalComplex.opcyclesMap_comp_descOpcycles_assoc, HomologicalComplex.restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, HomologicalComplex.evalCompCoyonedaCorepresentableByDoubleId_homEquiv_apply, AlgebraicTopology.DoldKan.P_f_0_eq, HomologicalComplex.singleMapHomologicalComplex_hom_app_ne, ChainComplex.truncate_map_f, AlgebraicTopology.DoldKan.PInfty_f_add_QInfty_f, CategoryTheory.NatIso.mapHomologicalComplex_inv_app_f, ComplexShape.Embedding.isIso_liftExtend_f_iff, CategoryTheory.Functor.mapHomologicalComplexIdIso_hom_app_f, CategoryTheory.InjectiveResolution.extMk_comp_mk₀, HomologicalComplex₂.totalFlipIso_hom_f_D₁, HomologicalComplex.singleMapHomologicalComplex_hom_app_self, AlgebraicTopology.DoldKan.σ_comp_PInfty_assoc, CochainComplex.mappingCone.inr_f_d_assoc, HomologicalComplex.liftCycles_comp_cyclesMap, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_map_f_f, comm_from_apply, prevD_comp_left, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, groupHomology.chainsMap_f_3_comp_chainsIso₃_apply, CategoryTheory.InjectiveResolution.Îč'_f_zero, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_map_f_f, CochainComplex.augmentTruncate_inv_f_zero, CochainComplex.mappingCone.inr_f_fst_v, HomologicalComplex.biprod_inr_desc_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.map_f_f, ChainComplex.mkHom_f_0, HomologicalComplex.biprod_lift_fst_f_assoc, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_inv_f, Homotopy.nullHomotopicMap_comp, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.of_P, SimplicialObject.Splitting.PInfty_comp_πSummand_id, HomologicalComplex₂.comm_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_inv_app_f_f, comm_to_apply, HomologicalComplex.inl_biprodXIso_inv_assoc, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_assoc, HomologicalComplex.biprod_inr_snd_f_assoc, CategoryTheory.Functor.mapHomologicalComplex_map_f, HomologicalComplex.biprod_inl_snd_f_assoc, Homotopy.nullHomotopicMap_f_eq_zero, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_succ, CochainComplex.mappingCone.d_snd_v, HomologicalComplex.eval_map, HomologicalComplex.to_single_hom_ext_iff, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_obj_p_f, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂, HomologicalComplex.biprodXIso_hom_fst, HomologicalComplex₂.d_f_comp_d_f, HomologicalComplex.add_f_apply, HomologicalComplex.extend_op_d_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d, CochainComplex.HomComplex.Cochain.ofHom_v_comp_d, HomologicalComplex.unopInverse_map, next_eq, CategoryTheory.NatTrans.mapHomologicalComplex_app_f, HomologicalComplex.homotopyCofiber.desc_f', CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, HomologicalComplex.biprod_lift_fst_f, HomologicalComplex.forget_map, HomologicalComplex₂.ÎčTotalOrZero_map_assoc, CochainComplex.Îč_mapBifunctorShift₂Iso_hom_f_assoc, HomologicalComplex₂.ÎčTotal_map, HomologicalComplex₂.Îč_totalShift₁Iso_hom_f_assoc, CochainComplex.mappingCone.inr_f_d, groupHomology.chainsMap_id_f_map_mono, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv_assoc, CochainComplex.fromSingle₀Equiv_apply_coe, HomologicalComplex.instEpiFπTruncGE, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_apply, CochainComplex.mappingCone.inr_f_descShortComplex_f_assoc, HomologicalComplex.shortComplexFunctor'_map_τ₂, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃_apply, HomologicalComplex.XIsoOfEq_inv_naturality_assoc, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_f, Homotopy.nullHomotopicMap'_f_eq_zero, CochainComplex.mappingCone.lift_f_fst_v, CochainComplex.mappingCone.inl_v_triangle_mor₃_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, AlgebraicTopology.DoldKan.PInfty_f_naturality_assoc, HomologicalComplex.mapBifunctorMapHomotopy.comm₁, HomologicalComplex₂.Îč_totalShift₁Iso_inv_f, HomologicalComplex.extendSingleIso_inv_f_assoc, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f_assoc, CategoryTheory.Limits.FormalCoproduct.cochainComplexFunctor_map_f, HomologicalComplex.XIsoOfEq_inv_naturality, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, AlgebraicTopology.DoldKan.comp_P_eq_self_iff, CochainComplex.mappingCone.id_X, groupHomology.chainsMap_f_3_comp_chainsIso₃, HomologicalComplex.instEpiFOfHasFiniteColimits, HomologicalComplex.instIsIsoFRestrictionToTruncGE'OfIsStrictlySupported, AlgebraicTopology.AlternatingFaceMapComplex.map_f, CochainComplex.HomComplex.Cochain.fromSingleMk_postcomp, HomologicalComplex.sub_f_apply, CochainComplex.mappingCone.d_snd_v'_assoc, AlgebraicTopology.DoldKan.QInfty_f, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁_assoc, HomologicalComplex₂.flipEquivalenceUnitIso_hom_app_f_f, CochainComplex.shiftFunctorZero_inv_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d_assoc, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f_assoc, ChainComplex.toSingle₀Equiv_apply_coe, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self_assoc, HomologicalComplex.extendMap_f, HomologicalComplex₂.Îč_totalShift₂Iso_inv_f_assoc, AlgebraicTopology.alternatingFaceMapComplex_map_f, AlgebraicTopology.DoldKan.P_f_idem_assoc, HomologicalComplex₂.d_comm, HomologicalComplex.extend.mapX_some, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero_assoc, ChainComplex.mkHom_f_1, HomologicalComplex.inr_biprodXIso_inv, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.comp_p_d_assoc, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom, HomologicalComplex₂.d_f_comp_d_f_assoc, isoOfComponents_inv_f, ChainComplex.truncateAugment_inv_f, AlgebraicTopology.DoldKan.QInfty_f_0, CategoryTheory.InjectiveResolution.Îč_f_succ, HomologicalComplex.from_single_hom_ext_iff, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, HomologicalComplex.mkHomFromDouble_f₀, Homotopy.nullHomotopicMap'_comp, HomologicalComplex.instMonoFÎčTruncLE, HomologicalComplex₂.total.mapAux.d₁_mapMap, CochainComplex.mappingCone.lift_f_fst_v_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_hom_app_f_f, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d_assoc, groupHomology.chainsMap_f_single, HomologicalComplex₂.d₁_eq, groupCohomology.cochainsMap_f_map_epi, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, AlgebraicTopology.DoldKan.map_Hσ, HomologicalComplex.instMonoFTruncLE'ToRestriction, HomologicalComplex.biprod_inr_snd_f, HomologicalComplex.id_f, HomologicalComplex.singleMapHomologicalComplex_inv_app_self, HomologicalComplex.restrictionMap_f'_assoc, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_1, HomologicalComplex.extendSingleIso_hom_f_assoc, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_hom_f, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, CategoryTheory.ProjectiveResolution.mk₀_comp_extMk, CochainComplex.single₀_map_f_zero, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq_zero, CategoryTheory.ProjectiveResolution.Hom.hom'_f_assoc, CochainComplex.mappingCone.ext_from_iff, ChainComplex.augmentTruncate_inv_f_succ, HomologicalComplex.units_smul_f_apply, HomologicalComplex.p_opcyclesMap, AlgebraicTopology.DoldKan.PInfty_comp_map_mono_eq_zero, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, CategoryTheory.NatIso.mapHomologicalComplex_hom_app_f, SimplicialObject.Splitting.cofan_inj_comp_PInfty_eq_zero, groupHomology.chainsMap_f_map_epi, Homotopy.nullHomotopicMap_f, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_zero, CochainComplex.HomComplex.Cochain.ofHom_v, HomologicalComplex.opFunctor_map_f, CochainComplex.mappingCone.inr_f_snd_v, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.map_f_f, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Inverse.obj_p_f, HomologicalComplex.truncLE'Map_f_eq_cyclesMap, CategoryTheory.ProjectiveResolution.π_f_succ, HomologicalComplex₂.totalAux.d₁_eq, ComplexShape.Embedding.epi_liftExtend_f_iff, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, AlgebraicTopology.DoldKan.P_f_idem, CochainComplex.shiftFunctor_map_f', HomologicalComplex₂.total.mapAux.d₂_mapMap_assoc, CochainComplex.ConnectData.restrictionLEIso_inv_f, HomologicalComplex.Îč_mapBifunctorFlipIso_inv_assoc, CochainComplex.mappingCone.inr_f_desc_f, HomologicalComplex.zsmul_f_apply, HomologicalComplex.cyclesMap_i_assoc, CategoryTheory.ProjectiveResolution.Hom.hom'_f, HomologicalComplex.biprod_lift_snd_f, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, isoOfComponents_hom_f, HomologicalComplex.biprod_inl_fst_f_assoc, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero_assoc, CochainComplex.mappingCone.inl_v_desc_f_assoc, HomologicalComplex.nsmul_f_apply, CochainComplex.shiftFunctorAdd'_inv_app_f', Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, CategoryTheory.Functor.mapBifunctorHomologicalComplex_map_app_f_f, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_0, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, HomologicalComplex.inl_biprodXIso_inv, AlgebraicTopology.DoldKan.QInfty_f_naturality_assoc, CategoryTheory.Functor.mapCochainComplexShiftIso_inv_app_f, CochainComplex.shiftFunctorAdd'_inv_app_f, CategoryTheory.InjectiveResolution.Îč_f_zero_comp_complex_d, HomologicalComplex.cylinder.inrX_π_assoc, groupHomology.chainsMap_id_f_map_epi, CochainComplex.truncateAugment_inv_f, HomologicalComplex.homotopyCofiber.inlX_desc_f_assoc, HomologicalComplex.biprod_inl_fst_f, SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty, CochainComplex.mappingCone.inl_v_triangle_mor₃_f_assoc, AlgebraicTopology.DoldKan.map_PInfty_f, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, groupCohomology.cochainsMap_id_f_map_mono, HomologicalComplex.shortComplexFunctor_map_τ₁, HomologicalComplex.comp_f, HomologicalComplex.cylinder.inlX_π, SimplicialObject.Split.nondegComplexFunctor_map_f, HomologicalComplex.biprod_inr_fst_f, CochainComplex.mappingCone.inr_f_triangle_mor₃_f, CategoryTheory.Functor.mapHomologicalComplexIdIso_inv_app_f, HomologicalComplex.homotopyCofiber.inrX_desc_f, Homotopy.compRight_hom, AlgebraicTopology.DoldKan.Hσ_eq_zero, CochainComplex.mapBifunctorHomologicalComplexShift₂Iso_hom_f_f, HomologicalComplex.biprodXIso_hom_fst_assoc, CochainComplex.shiftFunctorZero'_hom_app_f, HomologicalComplex₂.flipEquivalenceUnitIso_inv_app_f_f, CategoryTheory.ProjectiveResolution.lift_commutes_zero, HomologicalComplex.cylinder.inlX_π_assoc, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_apply, HomologicalComplex.shortComplexFunctor_map_τ₃, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp, HomologicalComplex₂.Îč_totalShift₁Iso_inv_f_assoc, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom_assoc, HomologicalComplex.zero_f, CochainComplex.mkHom_f_succ_succ, CochainComplex.mappingCone.d_snd_v_assoc, AlgebraicTopology.DoldKan.PInfty_f, CochainComplex.shiftFunctor_map_f, HomologicalComplex.isIso_truncLE'ToRestriction, CochainComplex.mappingCone.d_snd_v', HomologicalComplex.extend_op_d, ComplexShape.Embedding.mono_liftExtend_f_iff, AlgebraicTopology.DoldKan.Γ₀_map_app, comm_to, AlgebraicTopology.DoldKan.Q_f_0_eq, HomologicalComplex.complexOfFunctorsToFunctorToComplex_map_app_f, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, HomologicalComplex.mkHomToSingle_f, HomologicalComplex.biprodXIso_hom_snd, HomologicalComplex.stupidTruncMap_stupidTruncXIso_hom_assoc, Homotopy.nullHomotopicMap_f_of_not_rel_right, CochainComplex.mappingCone.inr_f_descCochain_v_assoc, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_apply, AlgebraicTopology.DoldKan.QInfty_f_naturality, CochainComplex.HomComplex.Cocycle.homOf_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem, CochainComplex.homOfDegreewiseSplit_f, CochainComplex.shiftFunctorAdd_inv_app_f, CochainComplex.truncate_map_f, HomologicalComplex₂.Îč_totalShift₂Iso_hom_f_assoc, ChainComplex.augmentTruncate_hom_f_succ, groupHomology.chainsMap_id_f_hom_eq_mapRange, HomologicalComplex.XIsoOfEq_hom_naturality_assoc, HomologicalComplex.biprodXIso_hom_snd_assoc, CategoryTheory.ProjectiveResolution.π'_f_zero, HomologicalComplex₂.totalFlipIso_hom_f_D₂, HomologicalComplex.opcyclesMap_comp_descOpcycles, dNext_comp_left, AlgebraicTopology.DoldKan.P_f_naturality_assoc, AlgebraicTopology.DoldKan.map_P, HomologicalComplex.homotopyCofiber.inlX_d, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, Homotopy.comp_nullHomotopicMap, groupHomology.chainsMap_f_map_mono, HomologicalComplex.single_map_f_self_assoc, HomologicalComplex.Îč_mapBifunctorMap_assoc, HomologicalComplex.homologicalComplexToDGO_map_f, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, AlgebraicTopology.DoldKan.PInfty_on_Γ₀_splitting_summand_eq_self, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty_assoc, CochainComplex.ConnectData.restrictionLEIso_hom_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comp_d, groupHomology.chainsMap_f_1_comp_chainsIso₁_assoc, CochainComplex.mappingCone.inr_f_descCochain_v, CochainComplex.Îč_mapBifunctorShift₂Iso_hom_f, groupHomology.lsingle_comp_chainsMap_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_X_p, HomologicalComplex₂.comm_f_assoc, HomologicalComplex.cylinder.inrX_π, HomologicalComplex₂.totalFlipIso_hom_f_D₁_assoc, Homotopy.comp_nullHomotopicMap', groupCohomology.cochainsMap_f, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.Γ₀.map_app, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero, HomologicalComplex.cylinder.πCompÎč₀Homotopy.inrX_nullHomotopy_f, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp_assoc, groupHomology.chainsMap_f_3_comp_chainsIso₃_assoc, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, HomologicalComplex.smul_f_apply, CochainComplex.cm5b.instMonoFIntI, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂, groupHomology.chainsMap_f_0_comp_chainsIso₀_assoc, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self_assoc, AlgebraicTopology.DoldKan.Q_is_eventually_constant, AlgebraicTopology.DoldKan.Q_f_naturality_assoc, Homotopy.compLeftId_hom, HomologicalComplex.zero_f_apply, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_P_eq_self, HomologicalComplex.homotopyCofiber.inlX_d'_assoc, CochainComplex.mappingCone.inr_f_fst_v_assoc, CategoryTheory.InjectiveResolution.Îč'_f_zero_assoc, CochainComplex.mappingCone.inl_v_d_assoc, CochainComplex.shiftFunctorZero'_inv_app_f, CochainComplex.mappingCone.inl_v_desc_f, CochainComplex.mappingCone.cocycleOfDegreewiseSplit_triangleRotateShortComplexSplitting_v, SimplicialObject.Splitting.PInfty_comp_πSummand_id_assoc, HomologicalComplex.inr_biprodXIso_inv_assoc, HomologicalComplex.singleMapHomologicalComplex_inv_app_ne, HomologicalComplex.dgoToHomologicalComplex_map_f, ChainComplex.truncateAugment_hom_f, HomologicalComplex.shortComplexFunctor'_map_τ₁, HomologicalComplex.mkHomFromDouble_f₁, HomologicalComplex.liftCycles_comp_cyclesMap_assoc, ext_iff, HomologicalComplex.instMonoFOfHasFiniteLimits, AlgebraicTopology.DoldKan.natTransPInfty_f_app, HomologicalComplex.single_map_f_self, ChainComplex.fromSingle₀Equiv_symm_apply_f_zero, AlgebraicTopology.NormalizedMooreComplex.map_f, Homotopy.compRightId_hom, HomologicalComplex.homotopyCofiber.d_sndX, CategoryTheory.InjectiveResolution.Hom.hom'_f_assoc, CochainComplex.toSingle₀Equiv_symm_apply_f_succ, CochainComplex.mappingCone.inl_v_descShortComplex_f_assoc, ChainComplex.augmentTruncate_hom_f_zero, HomologicalComplex₂.ÎčTotalOrZero_map, HomologicalComplex.truncGE'Map_f_eq_opcyclesMap, groupHomology.chainsMap_f_1_comp_chainsIso₁, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_naturality, ChainComplex.toSingle₀Equiv_symm_apply_f_zero, groupHomology.chainsMap_f_2_comp_chainsIso₂, AlgebraicTopology.DoldKan.MorphComponents.id_a, Homotopy.nullHomotopicMap'_f_of_not_rel_left, HomologicalComplex.coconeOfHasColimitEval_Îč_app_f, HomologicalComplex.homotopyCofiber.inlX_d', AlgebraicTopology.DoldKan.PInfty_f_0, Homotopy.nullHomotopicMap_f_of_not_rel_left, ChainComplex.ofHom_f, groupCohomology.cochainsMap_f_map_mono, AlgebraicTopology.DoldKan.PInfty_f_naturality, HomologicalComplex₂.shape_f, AlgebraicTopology.DoldKan.PInfty_f_idem_assoc, ComplexShape.Embedding.liftExtend_f, CochainComplex.cm5b.i_f_comp, CochainComplex.mappingCone.decomp_to, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne_assoc, ComplexShape.Embedding.liftExtend.f_eq, groupCohomology.cochainsMap_id_f_map_epi, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_hom_app_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_idem_assoc, CochainComplex.mappingCone.lift_desc_f, groupHomology.chainsMap_f_hom, CochainComplex.ConnectData.restrictionGEIso_inv_f, AlgebraicTopology.DoldKan.P_is_eventually_constant, AlgebraicTopology.DoldKan.map_Q, HomologicalComplex₂.ofGradedObject_d_f, HomologicalComplex₂.Îč_totalShift₂Iso_inv_f, AlgebraicTopology.DoldKan.PInfty_f_idem, AlgebraicTopology.DoldKan.N₂_obj_p_f, HomologicalComplex.hom_f_injective, sqTo_right, CochainComplex.mappingCone.desc_f, CategoryTheory.ProjectiveResolution.liftHomotopyZeroZero_comp_assoc, HomologicalComplex.to_double_hom_ext_iff, AlgebraicTopology.DoldKan.σ_comp_PInfty, CochainComplex.mkHom_f_1, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, CochainComplex.augmentTruncate_inv_f_succ, CochainComplex.mappingCone.inl_v_d, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.unitIso_hom_app_f_f, sqFrom_left, CochainComplex.shiftFunctorZero_hom_app_f, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀, CochainComplex.mappingCone.inr_f_snd_v_assoc, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, comm_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_functor_obj_d_f, CochainComplex.mkHom_f_0, HomologicalComplex.instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported, HomologicalComplex₂.total.mapAux.d₂_mapMap, groupCohomology.cochainsMap_f_3_comp_cochainsIso₃, HomologicalComplex.restrictionMap_f', SimplicialObject.Splitting.πSummand_comp_cofan_inj_id_comp_PInfty_eq_PInfty_assoc, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_hom, ChainComplex.fromSingle₀Equiv_apply, CategoryTheory.InjectiveResolution.desc_commutes_zero, Rep.FiniteCyclicGroup.homResolutionIso_hom_f_hom_apply, CochainComplex.shiftFunctorAdd'_hom_app_f', Homotopy.comm, Rep.FiniteCyclicGroup.homResolutionIso_inv_f_hom_apply_hom_hom_apply, comm_from, CochainComplex.augmentTruncate_hom_f_succ, groupCohomology.cochainsMap_f_hom, HomologicalComplex.congr_hom, HomologicalComplex₂.flip_X_d, CochainComplex.cm5b.i_f_comp_assoc, Homotopy.comp_hom, HomologicalComplex.biprod_inl_desc_f, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, HomologicalComplex.coneOfHasLimitEval_π_app_f, HomologicalComplex.restrictionMap_f, CochainComplex.Îč_mapBifunctorShift₁Iso_hom_f_assoc, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroOne, CategoryTheory.ProjectiveResolution.exact₀, CochainComplex.mappingCone.mapHomologicalComplexXIso'_hom, HomologicalComplex.homotopyCofiber.inlX_d_assoc, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, CochainComplex.mapBifunctorHomologicalComplexShift₁Iso_inv_f_f, CochainComplex.HomComplex.Cochain.d_comp_ofHom_v, AlgebraicTopology.DoldKan.karoubi_PInfty_f, CochainComplex.fromSingle₀Equiv_symm_apply_f_zero, HomologicalComplex.homotopyCofiber.desc_f, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_X_p, ChainComplex.augmentTruncate_inv_f_zero, CochainComplex.shiftFunctorAdd_hom_app_f, HomologicalComplex.Îč_mapBifunctorFlipIso_hom, CochainComplex.truncateAugment_hom_f, HomologicalComplex.mkHomFromDouble_f₀_assoc, SimplicialObject.Splitting.comp_PInfty_eq_zero_iff, HomologicalComplex.biprod_inr_desc_f_assoc, CategoryTheory.Idempotents.DoldKan.Γ_map_app, HomologicalComplex.evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, CochainComplex.ofHom_f, HomologicalComplex.shortComplexFunctor'_map_τ₃, CochainComplex.mappingCone.inl_v_descShortComplex_f, HomologicalComplex₂.flipEquivalenceCounitIso_inv_app_f_f, AlgebraicTopology.DoldKan.degeneracy_comp_PInfty, CochainComplex.mappingCone.inr_f_descShortComplex_f, HomologicalComplex.asFunctor_map_f, comm_from_assoc, CochainComplex.toSingle₀Equiv_apply, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁_assoc, CategoryTheory.ProjectiveResolution.liftHomotopyZeroOne_comp, ComplexShape.Embedding.homRestrict_f, CategoryTheory.Idempotents.Karoubi.HomologicalComplex.p_comm_f, HomologicalComplex.mkHomFromSingle_f, HomologicalComplex.shortComplexFunctor_map_τ₂, CochainComplex.shiftFunctorAdd'_hom_app_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, CochainComplex.mappingCone.inr_f_triangle_mor₃_f_assoc, Homotopy.compLeft_hom, HomologicalComplex.isIso_restrictionToTruncGE', HomologicalComplex.truncLE'Map_f_eq, prevD_comp_right, comm', HomologicalComplex₂.Îč_totalShift₂Iso_hom_f, AlgebraicTopology.DoldKan.HigherFacesVanish.comp_Hσ_eq, CategoryTheory.InjectiveResolution.Hom.Îč_f_zero_comp_hom_f_zero_assoc, groupHomology.chainsMap_f_2_comp_chainsIso₂_assoc, AlgebraicTopology.DoldKan.QInfty_f_idem_assoc, CochainComplex.shiftFunctorComm_hom_app_f, ComplexShape.Embedding.homRestrict.f_eq, AlgebraicTopology.DoldKan.QInfty_f_idem, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f, isoApp_inv, HomologicalComplex₂.total.mapAux.d₁_mapMap_assoc, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, AlgebraicTopology.DoldKan.PInfty_f_comp_QInfty_f, CategoryTheory.InjectiveResolution.instMonoFNatÎč, CategoryTheory.InjectiveResolution.comp_descHomotopyZeroZero, Homotopy.nullHomotopicMap'_f, CategoryTheory.Functor.mapCochainComplexShiftIso_hom_app_f, groupCohomology.cochainsMap_f_2_comp_cochainsIso₂_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, Homotopy.nullHomotopicMap'_f_of_not_rel_right, dNext_comp_right, HomologicalComplex.homotopyCofiber.inlX_desc_f, HomologicalComplex₂.d₁_eq', HomologicalComplex.cyclesMap_i, AlgebraicTopology.DoldKan.Γ₂_map_f_app, AlgebraicTopology.DoldKan.decomposition_Q, HomologicalComplex.extendMap_f_eq_zero, CategoryTheory.InjectiveResolution.exact₀, CategoryTheory.Abelian.LeftResolution.chainComplexMap_f_succ_succ, AlgebraicTopology.DoldKan.σ_comp_P_eq_zero, HomologicalComplex₂.toGradedObjectMap_apply, groupHomology.chainsMap_f_0_comp_chainsIso₀_apply, CochainComplex.mappingCone.lift_f_snd_v, HomologicalComplex₂.flip_d_f, HomologicalComplex.truncGE'Map_f_eq, HomologicalComplex.hom_ext_iff, AlgebraicTopology.DoldKan.Q_f_idem_assoc, CategoryTheory.Idempotents.KaroubiHomologicalComplexEquivalence.Functor.obj_d_f, AlgebraicTopology.DoldKan.Q_f_naturality, groupHomology.lsingle_comp_chainsMap_f_assoc, ChainComplex.mkHom_f_succ_succ, AlgebraicTopology.DoldKan.QInfty_f_comp_PInfty_f_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_map_f_f, HomologicalComplex.restrictionToTruncGE'_f_eq_iso_hom_iso_inv, AlgebraicTopology.inclusionOfMooreComplexMap_f, HomologicalComplex.stupidTruncMap_stupidTruncXIso_hom, groupCohomology.cochainsMap_id_f_hom_eq_compLeft, HomologicalComplex.biprod_lift_snd_f_assoc, CategoryTheory.Idempotents.karoubiCochainComplexEquivalence_unitIso_inv_app_f_f, HomologicalComplex.biprod_inr_fst_f_assoc, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, HomologicalComplex.homotopyCofiber.d_sndX_assoc, CategoryTheory.Functor.mapBifunctorHomologicalComplexObj_obj_d_f, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₁, groupCohomology.cochainsMap_f_1_comp_cochainsIso₁, HomologicalComplex.neg_f_apply, CategoryTheory.ProjectiveResolution.instEpiFNatπ, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, HomologicalComplex.unopFunctor_map_f, comm, groupCohomology.cochainsMap_f_0_comp_cochainsIso₀_assoc, HomologicalComplex₂.flipEquivalenceCounitIso_hom_app_f_f, AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty_assoc, AlgebraicTopology.DoldKan.N₂_map_f_f, CochainComplex.HomComplex.Cocycle.fromSingleMk_postcomp, HomologicalComplex₂.d_comm_assoc, AlgebraicTopology.DoldKan.P_f_naturality, CochainComplex.mappingCone.lift_f, HomologicalComplex.XIsoOfEq_hom_naturality, AlgebraicTopology.DoldKan.factors_normalizedMooreComplex_PInfty, HomologicalComplex₂.totalAux.d₁_eq', CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, comm_to_assoc, HomologicalComplex.Îč_mapBifunctorFlipIso_hom_assoc, CochainComplex.HomComplex.Cocycle.toSingleMk_precomp, HomologicalComplex.extendSingleIso_hom_f, HomologicalComplex.biprod_inl_snd_f, CochainComplex.toSingle₀Equiv_symm_apply_f_zero, CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f, CochainComplex.augmentTruncate_hom_f_zero, HomologicalComplex.comp_f_assoc, ChainComplex.alternatingConst_map_f, ChainComplex.fromSingle₀Equiv_symm_apply_f_succ, AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono_naturality_assoc, AlgebraicTopology.DoldKan.P_add_Q_f, HomologicalComplex.opInverse_map, HomologicalComplex₂.flipFunctor_map_f_f, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, AlgebraicTopology.DoldKan.Γ₀_obj_termwise_mapMono_comp_PInfty, groupHomology.chainsMap_f_1_comp_chainsIso₁_apply, HomologicalComplex.biprod_inl_desc_f_assoc, isoApp_hom, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, ChainComplex.single₀_map_f_zero, HomologicalComplex.mapBifunctorMapHomotopy.ÎčMapBifunctor_hom₂_assoc, HomologicalComplex.dgoEquivHomologicalComplexCounitIso_inv_app_f, AlgebraicTopology.DoldKan.Γ₀'_map_f, CochainComplex.mappingCone.lift_f_snd_v_assoc, CochainComplex.mappingCone.mapHomologicalComplexXIso'_inv, HomologicalComplex.mkHomFromDouble_f₁_assoc, Rep.FiniteCyclicGroup.resolution.π_f, HomologicalComplex.from_double_hom_ext_iff, CochainComplex.mappingCone.inr_f_desc_f_assoc, fAddMonoidHom_apply, CochainComplex.HomComplex.Cochain.toSingleMk_precomp, HomologicalComplex.Îč_mapBifunctorMap, HomologicalComplex.homotopyCofiber.inr_f, HomologicalComplex.homotopyCofiber.inrX_desc_f_assoc, HomologicalComplex.extendMap_id_f, HomologicalComplex.p_opcyclesMap_assoc, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, groupHomology.chainsMap_f_0_comp_chainsIso₀, HomologicalComplex₂.ÎčTotal_map_assoc, HomologicalComplex.Îč_mapBifunctorFlipIso_inv, HomologicalComplex.cylinder.πCompÎč₀Homotopy.inlX_nullHomotopy_f, HomologicalComplex₂.totalFlipIso_hom_f_D₂_assoc, HomologicalComplex₂.Îč_totalShift₁Iso_hom_f, HomologicalComplex.instEpiFRestrictionToTruncGE', Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, CategoryTheory.Functor.mapBifunctorHomologicalComplex_obj_obj_d_f, CochainComplex.Îč_mapBifunctorShift₁Iso_hom_f, groupHomology.chainsMap_f, groupHomology.chainsMap_f_2_comp_chainsIso₂_apply, AlgebraicTopology.DoldKan.Q_f_idem, prev_eq, HomologicalComplex₂.ÎčTotal_totalFlipIso_f_inv, CochainComplex.ConnectData.restrictionGEIso_hom_f
isoApp 📖CompOp
3 mathmath: isoOfComponents_app, isoApp_inv, isoApp_hom
isoOfComponents 📖CompOp
3 mathmath: isoOfComponents_inv_f, isoOfComponents_app, isoOfComponents_hom_f
next 📖CompOp
5 mathmath: comm_from_apply, next_eq, comm_from, sqFrom_right, comm_from_assoc
prev 📖CompOp
5 mathmath: comm_to_apply, comm_to, sqTo_left, comm_to_assoc, prev_eq
sqFrom 📖CompOp
4 mathmath: sqFrom_comp, sqFrom_left, sqFrom_right, sqFrom_id
sqTo 📖CompOp
2 mathmath: sqTo_right, sqTo_left

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
f
HomologicalComplex.d
—comm'
HomologicalComplex.shape
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.zero_comp
comm' 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
f
HomologicalComplex.d
——
comm_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
f
HomologicalComplex.d
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
comm_from 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
HomologicalComplex.xNext
f
HomologicalComplex.dFrom
next
—comm
comm_from_apply 📖mathematical—DFunLike.coe
HomologicalComplex.X
HomologicalComplex.xNext
CategoryTheory.ConcreteCategory.hom
HomologicalComplex.dFrom
f
next
—CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
comm_from
comm_from_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
f
HomologicalComplex.xNext
HomologicalComplex.dFrom
next
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm_from
comm_to 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.xPrev
HomologicalComplex.X
prev
HomologicalComplex.dTo
f
—comm
comm_to_apply 📖mathematical—DFunLike.coe
HomologicalComplex.xPrev
HomologicalComplex.X
CategoryTheory.ConcreteCategory.hom
HomologicalComplex.dTo
prev
f
—CategoryTheory.comp_apply
Mathlib.Tactic.Elementwise.hom_elementwise
comm_to
comm_to_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.xPrev
prev
HomologicalComplex.X
HomologicalComplex.dTo
f
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm_to
ext 📖—f———
ext_iff 📖mathematical—f—ext
isIso_of_components 📖mathematicalCategoryTheory.IsIso
HomologicalComplex.X
f
HomologicalComplex
HomologicalComplex.instCategory
—CategoryTheory.Iso.isIso_hom
comm
isoApp_hom 📖mathematical—CategoryTheory.Iso.hom
HomologicalComplex.X
isoApp
f
HomologicalComplex
HomologicalComplex.instCategory
——
isoApp_inv 📖mathematical—CategoryTheory.Iso.inv
HomologicalComplex.X
isoApp
f
HomologicalComplex
HomologicalComplex.instCategory
——
isoOfComponents_app 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Iso.hom
HomologicalComplex.d
isoApp
isoOfComponents
—CategoryTheory.Iso.ext
isoOfComponents_hom_f 📖mathematical—f
CategoryTheory.Iso.hom
HomologicalComplex
HomologicalComplex.instCategory
isoOfComponents
HomologicalComplex.X
——
isoOfComponents_inv_f 📖mathematical—f
CategoryTheory.Iso.inv
HomologicalComplex
HomologicalComplex.instCategory
isoOfComponents
HomologicalComplex.X
——
next_eq 📖mathematicalComplexShape.Relnext
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.xNext
HomologicalComplex.X
CategoryTheory.Iso.hom
HomologicalComplex.xNextIso
f
CategoryTheory.Iso.inv
—CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
ComplexShape.next_eq'
prev_eq 📖mathematicalComplexShape.Relprev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.xPrev
HomologicalComplex.X
CategoryTheory.Iso.hom
HomologicalComplex.xPrevIso
f
CategoryTheory.Iso.inv
—CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
ComplexShape.prev_eq'
sqFrom_comp 📖mathematical—sqFrom
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
HomologicalComplex.X
HomologicalComplex.xNext
HomologicalComplex.dFrom
——
sqFrom_id 📖mathematical—sqFrom
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
CategoryTheory.Arrow
CategoryTheory.instCategoryArrow
HomologicalComplex.X
HomologicalComplex.xNext
HomologicalComplex.dFrom
——
sqFrom_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
HomologicalComplex.X
HomologicalComplex.xNext
HomologicalComplex.dFrom
sqFrom
f
——
sqFrom_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
HomologicalComplex.X
HomologicalComplex.xNext
HomologicalComplex.dFrom
sqFrom
next
——
sqTo_left 📖mathematical—CategoryTheory.CommaMorphism.left
CategoryTheory.Functor.id
HomologicalComplex.xPrev
HomologicalComplex.X
HomologicalComplex.dTo
sqTo
prev
——
sqTo_right 📖mathematical—CategoryTheory.CommaMorphism.right
CategoryTheory.Functor.id
HomologicalComplex.xPrev
HomologicalComplex.X
HomologicalComplex.dTo
sqTo
f
——

(root)

Definitions

NameCategoryTheorems
ChainComplex 📖CompOp
207 mathmath: AlgebraicTopology.DoldKan.natTransPInfty_app, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex, ChainComplex.truncate_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_d, AlgebraicTopology.DoldKan.N₁_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_X, AlgebraicTopology.DoldKan.HigherFacesVanish.inclusionOfMooreComplexMap, CategoryTheory.ProjectiveResolution.quasiIso, AlgebraicTopology.singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_inv_f, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, AlgebraicTopology.DoldKan.identity_N₂, AlgebraicTopology.DoldKan.PInfty_comp_QInfty, CategoryTheory.Abelian.LeftResolution.chainComplexMap_zero, groupHomology.chainsMap_id, CategoryTheory.Abelian.LeftResolution.chainComplexMap_comp, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π_assoc, CategoryTheory.Abelian.LeftResolution.chainComplexMap_id, AlgebraicTopology.DoldKan.PInfty_idem, CategoryTheory.Preadditive.DoldKan.equivalence_unitIso, AlgebraicTopology.DoldKan.instIsIsoFunctorSimplicialObjectKaroubiNatTrans, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_succ, AlgebraicTopology.DoldKan.QInfty_idem, CochainComplex.ConnectData.map_comp_map, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_inv, CategoryTheory.Preadditive.DoldKan.equivalence_functor, CategoryTheory.ProjectiveResolution.self_π, AlgebraicTopology.alternatingFaceMapComplex_obj_d, CategoryTheory.Functor.mapProjectiveResolution_π, Rep.FiniteCyclicGroup.chainComplexFunctor_obj, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_X_p, AlgebraicTopology.DoldKan.instIsIsoFunctorKaroubiSimplicialObjectNatTrans, AlgebraicTopology.DoldKan.N₁_obj_p, CategoryTheory.Preadditive.DoldKan.equivalence_counitIso, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_p_f, AlgebraicTopology.DoldKan.QInfty_idem_assoc, ChainComplex.toSingle₀Equiv_apply_coe, AlgebraicTopology.alternatingFaceMapComplex_map_f, Rep.standardComplex.ΔToSingle₀_comp_eq, AlgebraicTopology.DoldKan.Γ₀'_obj, ChainComplex.exactAt_succ_single_obj, CategoryTheory.Idempotents.DoldKan.hΔ, ChainComplex.truncateAugment_inv_f, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, AlgebraicTopology.DoldKan.Γ₂_obj_p_app, CategoryTheory.Idempotents.DoldKan.N₂_map_isoΓ₀_hom_app_f, CategoryTheory.ProjectiveResolution.Hom.hom_comp_π_assoc, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_map_f_f, AlgebraicTopology.DoldKan.compatibility_Γ₂N₁_Γ₂N₂_natTrans, AlgebraicTopology.DoldKan.Γ₀NondegComplexIso_hom_f, AlgebraicTopology.DoldKan.Γ₀_obj_map, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app_f_f, groupHomology.map_chainsFunctor_shortExact, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty_assoc, CategoryTheory.Idempotents.DoldKan.equivalence_counitIso, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_hom_app, CategoryTheory.Abelian.LeftResolution.chainComplexMap_comp_assoc, ChainComplex.augmentTruncate_inv_f_succ, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, AlgebraicTopology.AlternatingFaceMapComplex.Δ_app_f_zero, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π, CategoryTheory.ProjectiveResolution.of_def, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, CategoryTheory.ProjectiveResolution.π_f_succ, AlgebraicTopology.inclusionOfMooreComplex_app, AlgebraicTopology.DoldKan.Γ₂_obj_X_map, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_inv_f_f, AlgebraicTopology.DoldKan.PInfty_idem_assoc, groupHomology.chainsFunctor_obj, CategoryTheory.Idempotents.DoldKan.equivalence_inverse, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', AlgebraicTopology.DoldKan.N₂Γ₂_inv_app_f_f, AlgebraicTopology.DoldKan.inclusionOfMooreComplexMap_comp_PInfty, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero_assoc, Rep.FiniteCyclicGroup.chainComplexFunctor_map_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_functor_obj_d_f, AlgebraicTopology.DoldKan.N₂Γ₂ToKaroubiIso_hom_app, AlgebraicTopology.DoldKan.compatibility_N₂_N₁_karoubi, AlgebraicTopology.DoldKan.P_succ, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_hom_app_f_f, groupHomology.chainsMap_id_comp, AlgebraicTopology.DoldKan.N₂Γ₂_compatible_with_N₁Γ₀, SimplicialObject.Split.nondegComplexFunctor_map_f, AlgebraicTopology.DoldKan.Γ₀'_map_F, AlgebraicTopology.normalizedMooreComplex_objD, CategoryTheory.ProjectiveResolution.lift_commutes_zero, AlgebraicTopology.DoldKan.QInfty_comp_PInfty, AlgebraicTopology.DoldKan.Q_idem, AlgebraicTopology.DoldKan.whiskerLeft_toKaroubi_N₂Γ₂_hom, AlgebraicTopology.normalizedMooreComplex_map, CategoryTheory.ProjectiveResolution.lift_commutes, AlgebraicTopology.DoldKan.Q_idem_assoc, AlgebraicTopology.DoldKan.Γ₀_map_app, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π_assoc, CategoryTheory.Idempotents.DoldKan.N_obj, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_hom_app, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, CategoryTheory.ProjectiveResolution.Hom.hom_comp_π, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_obj_X_X, ChainComplex.augmentTruncate_hom_f_succ, CategoryTheory.ProjectiveResolution.π'_f_zero, CategoryTheory.Idempotents.DoldKan.η_inv_app_f, AlgebraicTopology.DoldKan.toKaroubiCompN₂IsoN₁_inv_app, AlgebraicTopology.DoldKan.P_idem, groupHomology.chainsMap_comp, AlgebraicTopology.DoldKan.natTransP_app, SimplicialObject.Split.nondegComplexFunctor_obj, AlgebraicTopology.DoldKan.N₁_obj_X, AlgebraicTopology.map_alternatingFaceMapComplex, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_inverse_map_f_f, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, AlgebraicTopology.DoldKan.Γ₀_obj_obj, CategoryTheory.Idempotents.DoldKan.Γ_obj_map, Rep.standardComplex.quasiIso_forget₂_ΔToSingle₀, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc, CategoryTheory.ProjectiveResolution.self_complex, ChainComplex.truncateAugment_hom_f, AlgebraicTopology.DoldKan.Q_succ, AlgebraicTopology.DoldKan.natTransPInfty_f_app, CategoryTheory.Idempotents.DoldKan.Γ_obj_obj, ChainComplex.fromSingle₀Equiv_symm_apply_f_zero, AlgebraicTopology.DoldKan.Γ₂N₂ToKaroubiIso_inv_app, AlgebraicTopology.DoldKan.instMonoChainComplexNatInclusionOfMooreComplexMap, CategoryTheory.Abelian.DoldKan.equivalence_inverse, ChainComplex.augmentTruncate_hom_f_zero, CategoryTheory.ProjectiveResolution.lift_commutes_assoc, AlgebraicTopology.DoldKan.P_add_Q, AlgebraicTopology.DoldKan.instReflectsIsomorphismsSimplicialObjectKaroubiChainComplexNatN₁, ChainComplex.toSingle₀Equiv_symm_apply_f_zero, ChainComplex.instHasHomologyNatObjAlternatingConst, ChainComplex.truncate_obj_d, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, Rep.FiniteCyclicGroup.resolution_complex, groupHomology.chainsFunctor_map, CategoryTheory.Preadditive.DoldKan.equivalence_inverse, groupHomology.instPreservesZeroMorphismsRepChainComplexModuleCatNatChainsFunctor, CochainComplex.ConnectData.map_id, AlgebraicTopology.DoldKan.N₂_obj_p_f, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero, AlgebraicTopology.DoldKan.N₂_obj_X_X, CategoryTheory.Idempotents.DoldKan.isoN₁_hom_app_f, AlgebraicTopology.DoldKan.N₁Γ₀_hom_app, Rep.standardComplex.instQuasiIsoNatΔToSingle₀, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap_assoc, ChainComplex.fromSingle₀Equiv_apply, Rep.FiniteCyclicGroup.resolution_quasiIso, AlgebraicTopology.DoldKan.P_zero, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_inv, AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality, CategoryTheory.Idempotents.DoldKan.equivalence_functor, AlgebraicTopology.DoldKan.N₂_obj_X_d, CategoryTheory.Abelian.DoldKan.equivalence_functor, CategoryTheory.ProjectiveResolution.exact₀, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, ChainComplex.augmentTruncate_inv_f_zero, CategoryTheory.Idempotents.DoldKan.Γ_map_app, AlgebraicTopology.DoldKan.Γ₂N₁.natTrans_app_f_app, ChainComplex.alternatingConst_exactAt, groupHomology.chainsMap_zero, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_inv_app_f_f, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app, CategoryTheory.Abelian.DoldKan.comparisonN_hom_app_f, SimplicialObject.Split.toKaroubiNondegComplexFunctorIsoN₁_inv_app_f_f, AlgebraicTopology.DoldKan.Γ₂_obj_X_obj, AlgebraicTopology.DoldKan.QInfty_comp_PInfty_assoc, AlgebraicTopology.DoldKan.Γ₂_map_f_app, AlgebraicTopology.DoldKan.Γ₂N₁_inv, AlgebraicTopology.DoldKan.instReflectsIsomorphismsKaroubiSimplicialObjectChainComplexNatN₂, AlgebraicTopology.DoldKan.Q_zero, ChainComplex.truncate_obj_X, AlgebraicTopology.DoldKan.identity_N₂_objectwise, AlgebraicTopology.inclusionOfMooreComplexMap_f, CategoryTheory.Idempotents.DoldKan.hη, AlgebraicTopology.DoldKan.N₁Γ₀_inv_app_f_f, AlgebraicTopology.alternatingFaceMapComplex_obj_X, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_inv_f_hom_apply, SimplicialObject.Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, AlgebraicTopology.DoldKan.PInfty_comp_PInftyToNormalizedMooreComplex_assoc, CategoryTheory.ProjectiveResolution.instEpiFNatπ, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, AlgebraicTopology.DoldKan.P_idem_assoc, AlgebraicTopology.DoldKan.PInfty_comp_QInfty_assoc, AlgebraicTopology.DoldKan.N₂_map_f_f, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_unitIso_hom_app_f_f, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_hom, AlgebraicTopology.DoldKan.N₁Γ₀_app, ChainComplex.alternatingConst_map_f, CategoryTheory.Idempotents.DoldKan.N_map, ChainComplex.single₀_obj_zero, ChainComplex.fromSingle₀Equiv_symm_apply_f_succ, AlgebraicTopology.DoldKan.HigherFacesVanish.induction, CategoryTheory.Abelian.DoldKan.comparisonN_inv_app_f, ChainComplex.single₀_map_f_zero, ChainComplex.alternatingConst_obj, AlgebraicTopology.DoldKan.Γ₀'_map_f, Rep.FiniteCyclicGroup.resolution.π_f, AlgebraicTopology.DoldKan.Γ₂N₂_inv, CategoryTheory.Idempotents.DoldKan.η_hom_app_f, AlgebraicTopology.normalizedMooreComplex_obj, AlgebraicTopology.DoldKan.natTransQ_app, AlgebraicTopology.DoldKan.Γ₂N₂.natTrans_app_f_app, CategoryTheory.Idempotents.karoubiChainComplexEquivalence_counitIso_hom, CategoryTheory.Idempotents.DoldKan.equivalence_unitIso, Rep.FiniteCyclicGroup.coinvariantsTensorResolutionIso_hom_f_hom_apply, AlgebraicTopology.DoldKan.PInfty_add_QInfty

---

← Back to Index