Documentation Verification Report

HomologicalComplexBiprod

📁 Source: Mathlib/Algebra/Homology/HomologicalComplexBiprod.lean

Statistics

MetricCount
DefinitionsbiprodXIso
1
TheoremsbiprodXIso_hom_fst, biprodXIso_hom_fst_assoc, biprodXIso_hom_snd, biprodXIso_hom_snd_assoc, biprod_inl_desc_f, biprod_inl_desc_f_assoc, biprod_inl_fst_f, biprod_inl_fst_f_assoc, biprod_inl_snd_f, biprod_inl_snd_f_assoc, biprod_inr_desc_f, biprod_inr_desc_f_assoc, biprod_inr_fst_f, biprod_inr_fst_f_assoc, biprod_inr_snd_f, biprod_inr_snd_f_assoc, biprod_lift_fst_f, biprod_lift_fst_f_assoc, biprod_lift_snd_f, biprod_lift_snd_f_assoc, inl_biprodXIso_inv, inl_biprodXIso_inv_assoc, inr_biprodXIso_inv, inr_biprodXIso_inv_assoc, instHasBinaryBiproduct, instHasBinaryBiproductObjEval, instHasColimitDiscreteWalkingPairCompPairEval, instHasLimitDiscreteWalkingPairCompPairEval, instPreservesBinaryBiproductEval
29
Total30

HomologicalComplex

Definitions

NameCategoryTheorems
biprodXIso 📖CompOp
8 mathmath: inl_biprodXIso_inv_assoc, biprodXIso_hom_fst, inr_biprodXIso_inv, inl_biprodXIso_inv, biprodXIso_hom_fst_assoc, biprodXIso_hom_snd, biprodXIso_hom_snd_assoc, inr_biprodXIso_inv_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
biprodXIso_hom_fst 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
CategoryTheory.Iso.hom
biprodXIso
CategoryTheory.Limits.biprod.fst
Hom.f
instHasBinaryBiproduct
CategoryTheory.Limits.biprod.lift_fst
CategoryTheory.Functor.hasBinaryBiproduct_of_preserves
instPreservesBinaryBiproductEval
biprodXIso_hom_fst_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
CategoryTheory.Iso.hom
biprodXIso
CategoryTheory.Limits.biprod.fst
Hom.f
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
biprodXIso_hom_fst
biprodXIso_hom_snd 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
CategoryTheory.Iso.hom
biprodXIso
CategoryTheory.Limits.biprod.snd
Hom.f
instHasBinaryBiproduct
CategoryTheory.Limits.biprod.lift_snd
CategoryTheory.Functor.hasBinaryBiproduct_of_preserves
instPreservesBinaryBiproductEval
biprodXIso_hom_snd_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
CategoryTheory.Iso.hom
biprodXIso
CategoryTheory.Limits.biprod.snd
Hom.f
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
biprodXIso_hom_snd
biprod_inl_desc_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.desc
instHasBinaryBiproduct
comp_f
CategoryTheory.Limits.biprod.inl_desc
biprod_inl_desc_f_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.desc
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
biprod_inl_desc_f
biprod_inl_fst_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.fst
CategoryTheory.CategoryStruct.id
instHasBinaryBiproduct
comp_f
CategoryTheory.Limits.biprod.inl_fst
id_f
biprod_inl_fst_f_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.fst
instHasBinaryBiproduct
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
biprod_inl_fst_f
biprod_inl_snd_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
instHasBinaryBiproduct
comp_f
CategoryTheory.Limits.biprod.inl_snd
zero_f
biprod_inl_snd_f_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inl
CategoryTheory.Limits.biprod.snd
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
biprod_inl_snd_f
biprod_inr_desc_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inr
CategoryTheory.Limits.biprod.desc
instHasBinaryBiproduct
comp_f
CategoryTheory.Limits.biprod.inr_desc
biprod_inr_desc_f_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inr
CategoryTheory.Limits.biprod.desc
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
biprod_inr_desc_f
biprod_inr_fst_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inr
CategoryTheory.Limits.biprod.fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
instHasBinaryBiproduct
comp_f
CategoryTheory.Limits.biprod.inr_fst
zero_f
biprod_inr_fst_f_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inr
CategoryTheory.Limits.biprod.fst
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
biprod_inr_fst_f
biprod_inr_snd_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inr
CategoryTheory.Limits.biprod.snd
CategoryTheory.CategoryStruct.id
instHasBinaryBiproduct
comp_f
CategoryTheory.Limits.biprod.inr_snd
id_f
biprod_inr_snd_f_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.inr
CategoryTheory.Limits.biprod.snd
instHasBinaryBiproduct
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
biprod_inr_snd_f
biprod_lift_fst_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.lift
CategoryTheory.Limits.biprod.fst
instHasBinaryBiproduct
comp_f
CategoryTheory.Limits.biprod.lift_fst
biprod_lift_fst_f_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.lift
CategoryTheory.Limits.biprod.fst
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
biprod_lift_fst_f
biprod_lift_snd_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.lift
CategoryTheory.Limits.biprod.snd
instHasBinaryBiproduct
comp_f
CategoryTheory.Limits.biprod.lift_snd
biprod_lift_snd_f_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
Hom.f
CategoryTheory.Limits.biprod.lift
CategoryTheory.Limits.biprod.snd
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
biprod_lift_snd_f
inl_biprodXIso_inv 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
CategoryTheory.Limits.biprod.inl
CategoryTheory.Iso.inv
biprodXIso
Hom.f
instHasBinaryBiproduct
CategoryTheory.Limits.biprod.inl_desc
inl_biprodXIso_inv_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inl
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
CategoryTheory.Iso.inv
biprodXIso
Hom.f
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_biprodXIso_inv
inr_biprodXIso_inv 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
CategoryTheory.Limits.biprod.inr
CategoryTheory.Iso.inv
biprodXIso
Hom.f
instHasBinaryBiproduct
CategoryTheory.Limits.biprod.inr_desc
inr_biprodXIso_inv_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
CategoryTheory.Limits.biprod.inr
HomologicalComplex
instCategory
instHasZeroMorphisms
instHasBinaryBiproduct
CategoryTheory.Iso.inv
biprodXIso
Hom.f
instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_biprodXIso_inv
instHasBinaryBiproduct 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
HomologicalComplex
instCategory
instHasZeroMorphisms
CategoryTheory.Limits.HasBinaryBiproduct.of_hasBinaryProduct
instHasLimit
instHasLimitDiscreteWalkingPairCompPairEval
instHasBinaryBiproductObjEval 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
eval
instHasColimitDiscreteWalkingPairCompPairEval 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.Limits.HasColimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
HomologicalComplex
instCategory
CategoryTheory.Limits.pair
eval
CategoryTheory.Limits.hasColimit_of_iso
CategoryTheory.Limits.HasBinaryBiproduct.hasColimit_pair
instHasLimitDiscreteWalkingPairCompPairEval 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.Limits.HasLimit
CategoryTheory.Discrete
CategoryTheory.Limits.WalkingPair
CategoryTheory.discreteCategory
CategoryTheory.Functor.comp
HomologicalComplex
instCategory
CategoryTheory.Limits.pair
eval
CategoryTheory.Limits.hasLimit_of_iso
CategoryTheory.Limits.HasBinaryBiproduct.hasLimit_pair
instPreservesBinaryBiproductEval 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
CategoryTheory.Limits.PreservesBinaryBiproduct
HomologicalComplex
instCategory
instHasZeroMorphisms
eval
instPreservesZeroMorphismsEval
CategoryTheory.Limits.preservesBinaryBiproduct_of_preservesBinaryProduct
instPreservesZeroMorphismsEval
instPreservesLimitEval
instHasLimitDiscreteWalkingPairCompPairEval

---

← Back to Index