Documentation Verification Report

HomologySequence

📁 Source: Mathlib/Algebra/Homology/HomologySequence.lean

Statistics

MetricCount
Definitionsδ, δIso, composableArrows₃, composableArrows₃Functor, snakeInput, natTransOpCyclesToCycles, opcyclesToCycles
7
Theoremscomp_δ, comp_δ_assoc, epi_δ, homology_exact₁, homology_exact₂, homology_exact₃, isIso_δ, mono_δ, δ_comp, δ_comp_assoc, δ_eq, δ_eq', composableArrows₃Functor_map, composableArrows₃Functor_obj, composableArrows₃_exact, instEpiMap'ComposableArrows₃OfNatNat, instMonoMap'ComposableArrows₃OfNatNat, snakeInput_L₀, snakeInput_L₁, snakeInput_L₂, snakeInput_L₃, snakeInput_v₀₁, snakeInput_v₁₂, snakeInput_v₂₃, cycles_left_exact, homologyι_opcyclesToCycles, homologyι_opcyclesToCycles_assoc, natTransOpCyclesToCycles_app, opcyclesToCycles_homologyπ, opcyclesToCycles_homologyπ_assoc, opcyclesToCycles_iCycles, opcyclesToCycles_iCycles_assoc, opcyclesToCycles_naturality, opcyclesToCycles_naturality_assoc, opcycles_right_exact, pOpcycles_opcyclesToCycles, pOpcycles_opcyclesToCycles_assoc, pOpcycles_opcyclesToCycles_iCycles, pOpcycles_opcyclesToCycles_iCycles_assoc
39
Total46

CategoryTheory.ShortComplex.ShortExact

Definitions

NameCategoryTheorems
δ 📖CompOp
17 mathmath: epi_δ, mono_δ, CochainComplex.mappingCone.homologySequenceδ_triangleh, comp_δ, δ_eq', δ_apply', HomologicalComplex.HomologySequence.δ_naturality_assoc, isIso_δ, δ_comp_assoc, homology_exact₃, δ_eq, δ_apply, δ_comp, HomologicalComplex.HomologySequence.δ_naturality, homology_exact₁, HomologicalComplex.shortComplexTruncLE_shortExact_δ_eq_zero, comp_δ_assoc
δIso 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comp_δ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.g
δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.ShortComplex.SnakeInput.L₀_g_δ
comp_δ_assoc 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₃
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₁
δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_δ
epi_δ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.Limits.IsZero
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.Epi
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.SnakeInput.epi_δ
homology_exact₁ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.Exact
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₃
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
δ
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.f
δ_comp
—CategoryTheory.ShortComplex.SnakeInput.L₂'_exact
homology_exact₂ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.ShortComplex.Exact
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₁
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.g
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.SnakeInput.L₀_exact
epi_g
CategoryTheory.ShortComplex.isIso_homologyΚ
HomologicalComplex.shape
HomologicalComplex.instPreservesZeroMorphismsHomologyFunctor
HomologicalComplex.instPreservesZeroMorphismsOpcyclesFunctor
HomologicalComplex.homologyΚ_naturality
CategoryTheory.ShortComplex.exact_of_iso
HomologicalComplex.opcycles_right_exact
exact
homology_exact₃ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.Exact
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.g
δ
comp_δ
—CategoryTheory.ShortComplex.SnakeInput.L₁'_exact
isIso_δ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.Limits.IsZero
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.IsIso
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.SnakeInput.isIso_δ
mono_δ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.Limits.IsZero
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.Mono
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.SnakeInput.mono_δ
δ_comp 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₃
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
δ
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.ShortComplex.SnakeInput.δ_L₃_f
δ_comp_assoc 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₃
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₁
δ
CategoryTheory.ShortComplex.X₂
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_comp
δ_eq 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.ShortComplex.X₃
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.X₂
HomologicalComplex.Hom.f
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ComplexShape.next
HomologicalComplex.cycles
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.homology
HomologicalComplex.liftCycles
ComplexShape.next_eq'
HomologicalComplex.homologyπ
δ
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
ComplexShape.next_eq'
CategoryTheory.Category.assoc
δ_eq'
HomologicalComplex.p_opcyclesMap
Mathlib.Tactic.Reassoc.eq_whisker'
HomologicalComplex.homology_π_ι
HomologicalComplex.liftCycles_i_assoc
CategoryTheory.cancel_mono
HomologicalComplex.instMonoICycles
HomologicalComplex.liftCycles_comp_cyclesMap
HomologicalComplex.liftCycles_i
HomologicalComplex.opcyclesToCycles_iCycles
HomologicalComplex.p_fromOpcycles
δ_eq' 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.opcycles
CategoryTheory.ShortComplex.X₂
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₃
HomologicalComplex.opcyclesMap
CategoryTheory.ShortComplex.g
HomologicalComplex.homology
HomologicalComplex.homologyΚ
HomologicalComplex.cycles
CategoryTheory.ShortComplex.X₁
HomologicalComplex.cyclesMap
CategoryTheory.ShortComplex.f
HomologicalComplex.opcyclesToCycles
δ
HomologicalComplex.homologyπ
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.SnakeInput.δ_eq

HomologicalComplex

Definitions

NameCategoryTheorems
natTransOpCyclesToCycles 📖CompOp
2 mathmath: natTransOpCyclesToCycles_app, HomologySequence.snakeInput_v₁₂
opcyclesToCycles 📖CompOp
13 mathmath: pOpcycles_opcyclesToCycles_iCycles_assoc, homologyι_opcyclesToCycles_assoc, opcyclesToCycles_iCycles_assoc, opcyclesToCycles_naturality, opcyclesToCycles_homologyπ, natTransOpCyclesToCycles_app, opcyclesToCycles_homologyπ_assoc, opcyclesToCycles_naturality_assoc, homologyι_opcyclesToCycles, pOpcycles_opcyclesToCycles_iCycles, pOpcycles_opcyclesToCycles, pOpcycles_opcyclesToCycles_assoc, opcyclesToCycles_iCycles

Theorems

NameKindAssumesProvesValidatesDepends On
cycles_left_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
instHasZeroMorphisms
cycles
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
cyclesMap
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.g
—instPreservesZeroMorphismsEval
instMonoFOfHasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.ShortComplex.zero
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.ShortComplex.Exact.map
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.preservesHomologyOfExact
instPreservesFiniteLimitsEvalOfHasFiniteLimits
instPreservesFiniteColimitsEvalOfHasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.Category.assoc
cyclesMap_i
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CategoryTheory.cancel_mono
Hom.comm
iCycles_d
CategoryTheory.Limits.comp_zero
instMonoICycles
liftCycles_comp_cyclesMap
liftCycles_i
instMonoCyclesMapOfF
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
homologyι_opcyclesToCycles 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
opcycles
cycles
homologyΚ
opcyclesToCycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
opcyclesToCycles_iCycles
homologyΚ_comp_fromOpcycles
CategoryTheory.Limits.zero_comp
homologyι_opcyclesToCycles_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
opcycles
homologyΚ
cycles
opcyclesToCycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyΚ_opcyclesToCycles
natTransOpCyclesToCycles_app 📖mathematical—CategoryTheory.NatTrans.app
HomologicalComplex
instCategory
opcyclesFunctor
cyclesFunctor
natTransOpCyclesToCycles
opcyclesToCycles
——
opcyclesToCycles_homologyπ 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
cycles
homology
opcyclesToCycles
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.cancel_epi
instEpiPOpcycles
pOpcycles_opcyclesToCycles_assoc
toCycles_comp_homologyπ
CategoryTheory.Limits.comp_zero
opcyclesToCycles_homologyπ_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
cycles
opcyclesToCycles
homology
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesToCycles_homologyπ
opcyclesToCycles_iCycles 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
cycles
X
opcyclesToCycles
iCycles
fromOpcycles
—liftCycles_i
opcyclesToCycles_iCycles_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
cycles
opcyclesToCycles
X
iCycles
fromOpcycles
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesToCycles_iCycles
opcyclesToCycles_naturality 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
cycles
opcyclesMap
opcyclesToCycles
cyclesMap
—CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
cyclesMap_i
CategoryTheory.cancel_epi
instEpiPOpcycles
p_opcyclesMap_assoc
pOpcycles_opcyclesToCycles_iCycles
Hom.comm
pOpcycles_opcyclesToCycles_iCycles_assoc
opcyclesToCycles_naturality_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
opcyclesMap
cycles
opcyclesToCycles
cyclesMap
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesToCycles_naturality
opcycles_right_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
instCategory
instHasZeroMorphisms
opcycles
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
opcyclesMap
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.g
—instPreservesZeroMorphismsEval
instEpiFOfHasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
CategoryTheory.ShortComplex.zero
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
CategoryTheory.ShortComplex.Exact.map
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.preservesHomologyOfExact
instPreservesFiniteLimitsEvalOfHasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
instPreservesFiniteColimitsEvalOfHasFiniteColimits
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
p_opcyclesMap_assoc
CategoryTheory.Limits.comp_zero
CategoryTheory.cancel_epi
Hom.comm_assoc
d_pOpcycles_assoc
CategoryTheory.Limits.zero_comp
instEpiPOpcycles
opcyclesMap_comp_descOpcycles
p_descOpcycles
instEpiOpcyclesMapOfF
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
pOpcycles_opcyclesToCycles 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
cycles
pOpcycles
opcyclesToCycles
toCycles
—CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
opcyclesToCycles_iCycles
p_fromOpcycles
toCycles_i
pOpcycles_opcyclesToCycles_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
cycles
opcyclesToCycles
toCycles
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_opcyclesToCycles
pOpcycles_opcyclesToCycles_iCycles 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
cycles
opcyclesToCycles
iCycles
d
—liftCycles_i
p_fromOpcycles
pOpcycles_opcyclesToCycles_iCycles_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
cycles
opcyclesToCycles
iCycles
d
—CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_opcyclesToCycles_iCycles

HomologicalComplex.HomologySequence

Definitions

NameCategoryTheorems
composableArrows₃ 📖CompOp
5 mathmath: instEpiMap'ComposableArrows₃OfNatNat, instMonoMap'ComposableArrows₃OfNatNat, composableArrows₃_exact, composableArrows₃Functor_map, composableArrows₃Functor_obj
composableArrows₃Functor 📖CompOp
2 mathmath: composableArrows₃Functor_map, composableArrows₃Functor_obj
snakeInput 📖CompOp
11 mathmath: snakeInput_v₂₃, mapSnakeInput_f₃, snakeInput_L₁, snakeInput_v₀₁, mapSnakeInput_f₁, snakeInput_L₀, snakeInput_L₂, snakeInput_v₁₂, snakeInput_L₃, mapSnakeInput_f₂, mapSnakeInput_f₀

Theorems

NameKindAssumesProvesValidatesDepends On
composableArrows₃Functor_map 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrows₃Functor
CategoryTheory.ComposableArrows.homMk₃
composableArrows₃
HomologicalComplex.homologyMap
HomologicalComplex.opcyclesMap
HomologicalComplex.cyclesMap
——
composableArrows₃Functor_obj 📖mathematical—CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrows₃Functor
composableArrows₃
——
composableArrows₃_exact 📖mathematicalComplexShape.RelCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
composableArrows₃
CategoryTheory.CategoryWithHomology.hasHomology
HomologicalComplex.sc
—CategoryTheory.CategoryWithHomology.hasHomology
HomologicalComplex.homologyΚ_opcyclesToCycles
HomologicalComplex.homologyΚ_comp_fromOpcycles
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
HomologicalComplex.opcyclesToCycles_iCycles
CategoryTheory.ShortComplex.exact_iff_of_epi_of_isIso_of_mono
CategoryTheory.instEpiId
CategoryTheory.IsIso.id
HomologicalComplex.instMonoICycles
CategoryTheory.ShortComplex.exact_of_f_is_kernel
ComplexShape.next_eq'
HomologicalComplex.opcyclesToCycles_homologyπ
HomologicalComplex.toCycles_comp_homologyπ
HomologicalComplex.pOpcycles_opcyclesToCycles
HomologicalComplex.instEpiPOpcycles
CategoryTheory.instMonoId
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
ComplexShape.prev_eq'
CategoryTheory.ComposableArrows.exact_of_δ₀
CategoryTheory.ShortComplex.Exact.exact_toComposableArrows
instEpiMap'ComposableArrows₃OfNatNat 📖mathematical—CategoryTheory.Epi
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrows₃
CategoryTheory.ComposableArrows.map'
—HomologicalComplex.instEpiHomologyπ
instMonoMap'ComposableArrows₃OfNatNat 📖mathematical—CategoryTheory.Mono
CategoryTheory.Functor.obj
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrows₃
CategoryTheory.ComposableArrows.map'
—HomologicalComplex.instMonoHomologyι
snakeInput_L₀ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.L₀
snakeInput
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
——
snakeInput_L₁ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.L₁
snakeInput
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
HomologicalComplex.opcyclesFunctor
CategoryTheory.categoryWithHomology_of_abelian
——
snakeInput_L₂ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.L₂
snakeInput
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
HomologicalComplex.cyclesFunctor
CategoryTheory.categoryWithHomology_of_abelian
——
snakeInput_L₃ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.L₃
snakeInput
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
——
snakeInput_v₀₁ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.v₀₁
snakeInput
CategoryTheory.ShortComplex.mapNatTrans
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.opcyclesFunctor
HomologicalComplex.natTransHomologyΚ
—CategoryTheory.categoryWithHomology_of_abelian
snakeInput_v₁₂ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.v₁₂
snakeInput
CategoryTheory.ShortComplex.mapNatTrans
HomologicalComplex.opcyclesFunctor
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.cyclesFunctor
HomologicalComplex.natTransOpCyclesToCycles
—CategoryTheory.categoryWithHomology_of_abelian
snakeInput_v₂₃ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.v₂₃
snakeInput
CategoryTheory.ShortComplex.mapNatTrans
HomologicalComplex.cyclesFunctor
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.homologyFunctor
HomologicalComplex.natTransHomologyπ
—CategoryTheory.categoryWithHomology_of_abelian

---

← Back to Index