Documentation Verification Report

HomologySequenceLemmas

📁 Source: Mathlib/Algebra/Homology/HomologySequenceLemmas.lean

Statistics

MetricCount
DefinitionscomposableArrows₂, composableArrows₅, mapComposableArrows₂, mapComposableArrows₅, mapSnakeInput
5
TheoremscomposableArrows₂_exact, composableArrows₅_exact, epi_homologyMap_τ₃, isIso_homologyMap_τ₃, mapSnakeInput_f₀, mapSnakeInput_f₁, mapSnakeInput_f₂, mapSnakeInput_f₃, mono_homologyMap_τ₃, quasiIso_τ₃, δ_naturality, δ_naturality_assoc
12
Total17

HomologicalComplex.HomologySequence

Definitions

NameCategoryTheorems
composableArrows₂ 📖CompOp
1 mathmath: composableArrows₂_exact
composableArrows₅ 📖CompOp
1 mathmath: composableArrows₅_exact
mapComposableArrows₂ 📖CompOp—
mapComposableArrows₅ 📖CompOp—
mapSnakeInput 📖CompOp
4 mathmath: mapSnakeInput_f₃, mapSnakeInput_f₁, mapSnakeInput_f₂, mapSnakeInput_f₀

Theorems

NameKindAssumesProvesValidatesDepends On
composableArrows₂_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.ComposableArrows.Exact
composableArrows₂
—CategoryTheory.ShortComplex.Exact.exact_toComposableArrows
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.ShortExact.homology_exact₂
composableArrows₅_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ComposableArrows.Exact
composableArrows₅
—CategoryTheory.ComposableArrows.exact_of_δ₀
CategoryTheory.ShortComplex.Exact.exact_toComposableArrows
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ShortComplex.ShortExact.homology_exact₂
CategoryTheory.ShortComplex.ShortExact.comp_δ
CategoryTheory.ShortComplex.ShortExact.homology_exact₃
CategoryTheory.ShortComplex.ShortExact.δ_comp
CategoryTheory.ShortComplex.ShortExact.homology_exact₁
epi_homologyMap_τ₃ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.Epi
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₁
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Mono
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.Hom.τ₃
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.epi_of_epi_of_epi_of_mono
CategoryTheory.ComposableArrows.Exact.δlast
CategoryTheory.ComposableArrows.Exact.δ₀
composableArrows₅_exact
CategoryTheory.ShortComplex.ShortExact.epi_g
CategoryTheory.Functor.congr_map
CategoryTheory.ShortComplex.Hom.comm₂₃
HomologicalComplex.epi_homologyMap_of_epi_of_not_rel
HomologicalComplex.instEpiFOfHasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
CategoryTheory.epi_of_epi_fac
CategoryTheory.epi_comp
HomologicalComplex.homologyMap_comp
isIso_homologyMap_τ₃ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.IsIso
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₁
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Mono
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.Hom.τ₃
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
mono_homologyMap_τ₃
CategoryTheory.IsIso.mono_of_iso
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
epi_homologyMap_τ₃
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
mapSnakeInput_f₀ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.Hom.f₀
snakeInput
mapSnakeInput
CategoryTheory.Functor.map
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
—CategoryTheory.categoryWithHomology_of_abelian
mapSnakeInput_f₁ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.Hom.f₁
snakeInput
mapSnakeInput
CategoryTheory.Functor.map
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
HomologicalComplex.opcyclesFunctor
CategoryTheory.categoryWithHomology_of_abelian
—CategoryTheory.categoryWithHomology_of_abelian
mapSnakeInput_f₂ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.Hom.f₂
snakeInput
mapSnakeInput
CategoryTheory.Functor.map
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
HomologicalComplex.cyclesFunctor
CategoryTheory.categoryWithHomology_of_abelian
—CategoryTheory.categoryWithHomology_of_abelian
mapSnakeInput_f₃ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.ShortComplex.SnakeInput.Hom.f₃
snakeInput
mapSnakeInput
CategoryTheory.Functor.map
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
HomologicalComplex.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
—CategoryTheory.categoryWithHomology_of_abelian
mono_homologyMap_τ₃ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.Mono
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₁
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.Hom.τ₃
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.mono_of_epi_of_mono_of_mono
CategoryTheory.ComposableArrows.Exact.δlast
composableArrows₅_exact
CategoryTheory.Abelian.mono_of_epi_of_epi_of_mono
composableArrows₂_exact
CategoryTheory.ShortComplex.ShortExact.epi_g
HomologicalComplex.epi_homologyMap_of_epi_of_not_rel
HomologicalComplex.instEpiFOfHasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
quasiIso_τ₃ 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
QuasiIso
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
quasiIso_iff
quasiIsoAt_iff_isIso_homologyMap
isIso_homologyMap_τ₃
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
instIsIsoHomologyMapOfQuasiIsoAt
QuasiIso.quasiIsoAt
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
δ_naturality 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₃
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.ShortExact.δ
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.ShortComplex.Hom.τ₃
—CategoryTheory.ShortComplex.SnakeInput.naturality_δ
δ_naturality_assoc 📖mathematicalCategoryTheory.ShortComplex.ShortExact
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₃
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.ShortExact.δ
HomologicalComplex.homologyMap
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.ShortComplex.Hom.τ₃
—CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
δ_naturality

---

← Back to Index