| Name | Category | Theorems |
add 📖 | CompOp | 1 mathmath: add_hom
|
comp 📖 | CompOp | 1 mathmath: comp_hom
|
compLeft 📖 | CompOp | 1 mathmath: compLeft_hom
|
compLeftId 📖 | CompOp | 1 mathmath: compLeftId_hom
|
compRight 📖 | CompOp | 2 mathmath: HomologicalComplex.homotopyCofiber.eq_desc, compRight_hom
|
compRightId 📖 | CompOp | 1 mathmath: compRightId_hom
|
equivSubZero 📖 | CompOp | — |
hom 📖 | CompOp | 37 mathmath: HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, AlgebraicTopology.DoldKan.homotopyPInftyToId_hom, extend_hom_eq, CochainComplex.homotopyUnop_hom_eq, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom, HomologicalComplex.homotopyCofiber.descSigma_ext_iff, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_desc_hom, zero, HomologicalComplex.homotopyCofiber.inlX_desc_f_assoc, CategoryTheory.Functor.mapHomotopy_hom, compRight_hom, HomologicalComplex.homotopyCofiber.inrCompHomotopy_hom_eq_zero, CochainComplex.homotopyOp_hom_eq, ofEq_hom, ofExtend_hom, symm_hom, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₂, compLeftId_hom, add_hom, ext_iff, compRightId_hom, trans_hom, HomologicalComplex.mapBifunctorMapHomotopy.comm₁_aux, smul_hom, comm, comp_hom, HomologicalComplex.homotopyCofiber.desc_f, AlgebraicTopology.DoldKan.homotopyPToId_eventually_constant, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₁_assoc, compLeft_hom, nullHomotopy_hom, HomologicalComplex.homotopyCofiber.inlX_desc_f, CochainComplex.HomComplex.Cochain.equivHomotopy_symm_apply_hom, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₁, refl_hom, HomologicalComplex.mapBifunctorMapHomotopy.ιMapBifunctor_hom₂_assoc, nullHomotopy'_hom
|
mkCoinductive 📖 | CompOp | — |
mkCoinductiveAux₁ 📖 | CompOp | 1 mathmath: mkCoinductiveAux₂_add_one
|
mkCoinductiveAux₂ 📖 | CompOp | 3 mathmath: mkCoinductiveAux₂_add_one, mkCoinductiveAux₂_zero, mkCoinductiveAux₃
|
mkInductive 📖 | CompOp | — |
mkInductiveAux₁ 📖 | CompOp | 1 mathmath: mkInductiveAux₂_add_one
|
mkInductiveAux₂ 📖 | CompOp | 3 mathmath: mkInductiveAux₃, mkInductiveAux₂_zero, mkInductiveAux₂_add_one
|
nullHomotopicMap 📖 | CompOp | 8 mathmath: nullHomotopicMap_comp, nullHomotopicMap_f_eq_zero, nullHomotopicMap_f, map_nullHomotopicMap, nullHomotopicMap_f_of_not_rel_right, comp_nullHomotopicMap, nullHomotopicMap_f_of_not_rel_left, nullHomotopy_hom
|
nullHomotopicMap' 📖 | CompOp | 9 mathmath: nullHomotopicMap'_f_eq_zero, map_nullHomotopicMap', nullHomotopicMap'_comp, comp_nullHomotopicMap', nullHomotopicMap'_f_of_not_rel_left, nullHomotopicMap'_f, nullHomotopicMap'_f_of_not_rel_right, CochainComplex.HomComplex.δ_neg_one_cochain, nullHomotopy'_hom
|
nullHomotopy 📖 | CompOp | 1 mathmath: nullHomotopy_hom
|
nullHomotopy' 📖 | CompOp | 1 mathmath: nullHomotopy'_hom
|
ofEq 📖 | CompOp | 7 mathmath: AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyHomInvId, HomologicalComplex.homotopyCofiber.eq_desc, CochainComplex.HomComplex.Cochain.equivHomotopy_apply_of_eq, ofEq_hom, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, CochainComplex.mappingCone.map_eq_mapOfHomotopy, CochainComplex.HomComplex.Cochain.ofHomotopy_ofEq
|
refl 📖 | CompOp | 2 mathmath: CochainComplex.HomComplex.Cochain.ofHomotopy_refl, refl_hom
|
smul 📖 | CompOp | 1 mathmath: smul_hom
|
toShortComplex 📖 | CompOp | — |
trans 📖 | CompOp | 3 mathmath: HomologicalComplex.homotopyCofiber.eq_desc, AlgebraicTopology.DoldKan.homotopyEquivNormalizedMooreComplexAlternatingFaceMapComplex_homotopyInvHomId, trans_hom
|