Documentation Verification Report

HomotopyCategory

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory.lean

Statistics

MetricCount
DefinitionsmapHomotopyCategory, mapHomotopyCategoryFactors, mapHomotopyCategory, HomotopyCategory, homologyFunctor, homologyFunctorFactors, homotopyEquivOfIso, homotopyOfEq, homotopyOutMap, instInhabitedOfHasZeroObject, instLinear, instPreadditive, instPreadditiveQuotientHomologicalComplexHomotopic, isoOfHomotopyEquiv, quotient, HomotopyCategory, homotopic, instCategoryHomotopyCategory
18
TheoremsmapHomotopyCategory_map, mapHomotopyCategory_obj, mapHomotopyCategory_app, mapHomotopyCategory_comp, mapHomotopyCategory_id, instAdditiveHomotopyCategoryMapHomotopyCategory, instLinearHomotopyCategoryMapHomotopyCategory, eq_of_homotopy, instAdditiveHomologicalComplexQuotient, instAdditiveHomologicalComplexQuotientHomotopicFunctor, instAdditiveHomologyFunctor, instEssSurjHomologicalComplexQuotient, instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, instFullHomologicalComplexQuotient, instHasZeroObject, instLinearHomologicalComplexQuotient, isZero_quotient_obj_iff, isoOfHomotopyEquiv_hom, isoOfHomotopyEquiv_inv, quot_mk_eq_quotient_map, quotient_inverts_homotopyEquivalences, quotient_map_eq_zero_iff, quotient_map_out, quotient_map_out_comp_out, quotient_obj_as, quotient_obj_surjective, homotopy_congruence
28
Total46

CategoryTheory

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveHomotopyCategoryMapHomotopyCategory 📖mathematical—Functor.Additive
HomotopyCategory
instCategoryHomotopyCategory
HomotopyCategory.instPreadditive
Functor.mapHomotopyCategory
—Functor.additive_of_iso
Functor.preservesZeroMorphisms_of_additive
Functor.instAdditiveComp
Functor.map_homogical_complex_additive
HomotopyCategory.instAdditiveHomologicalComplexQuotient
Functor.additive_of_full_essSurj_comp
HomotopyCategory.instFullHomologicalComplexQuotient
HomotopyCategory.instEssSurjHomologicalComplexQuotient
instLinearHomotopyCategoryMapHomotopyCategory 📖mathematical—Functor.Linear
HomotopyCategory
instCategoryHomotopyCategory
HomotopyCategory.instPreadditive
HomotopyCategory.instLinear
Functor.mapHomotopyCategory
—Functor.linear_of_iso
Functor.preservesZeroMorphisms_of_additive
Functor.instLinearComp
Functor.mapHomologicalComplex_linear
HomotopyCategory.instLinearHomologicalComplexQuotient
Functor.linear_of_full_essSurj_comp
HomotopyCategory.instFullHomologicalComplexQuotient
HomotopyCategory.instEssSurjHomologicalComplexQuotient

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapHomotopyCategory 📖CompOp
13 mathmath: mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, CategoryTheory.instAdditiveHomotopyCategoryMapHomotopyCategory, CategoryTheory.NatTrans.mapHomotopyCategory_app, CategoryTheory.NatTrans.mapHomotopyCategory_comp, instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, CategoryTheory.NatTrans.mapHomotopyCategory_id, HomotopyCategory.instIsTriangulatedIntUpMapHomotopyCategory, CategoryTheory.instLinearHomotopyCategoryMapHomotopyCategory, mapHomotopyCategory_map, mapHomotopyCategory_obj, mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, mapDerivedCategoryFactorsh_hom_app, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors
mapHomotopyCategoryFactors 📖CompOp
4 mathmath: mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, mapDerivedCategoryFactorsh_hom_app, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors

Theorems

NameKindAssumesProvesValidatesDepends On
mapHomotopyCategory_map 📖mathematical—map
HomotopyCategory
instCategoryHomotopyCategory
mapHomotopyCategory
obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory.quotient
mapHomologicalComplex
preservesZeroMorphisms_of_additive
——
mapHomotopyCategory_obj 📖mathematical—obj
HomotopyCategory
instCategoryHomotopyCategory
mapHomotopyCategory
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory.quotient
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.Quotient.as
homotopic
——

CategoryTheory.NatTrans

Definitions

NameCategoryTheorems
mapHomotopyCategory 📖CompOp
3 mathmath: mapHomotopyCategory_app, mapHomotopyCategory_comp, mapHomotopyCategory_id

Theorems

NameKindAssumesProvesValidatesDepends On
mapHomotopyCategory_app 📖mathematical—app
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.mapHomotopyCategory
mapHomotopyCategory
CategoryTheory.Functor.map
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory.quotient
CategoryTheory.Functor.obj
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Quotient.as
homotopic
mapHomologicalComplex
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapHomotopyCategory_comp 📖mathematical—mapHomotopyCategory
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.mapHomotopyCategory
——
mapHomotopyCategory_id 📖mathematical—mapHomotopyCategory
CategoryTheory.CategoryStruct.id
CategoryTheory.Functor
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.category
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.mapHomotopyCategory
——

HomotopyCategory

Definitions

NameCategoryTheorems
homologyFunctor 📖CompOp
11 mathmath: CochainComplex.mappingCone.homologySequenceδ_triangleh, instIsHomologicalIntUpHomologyFunctor, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, mem_quasiIso_iff, mem_subcategoryAcyclic_iff, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, homologyFunctor_shiftMap_assoc, homologyShiftIso_hom_app, instAdditiveHomologyFunctor, homologyFunctor_shiftMap, homologyFunctor_inverts_quasiIso
homologyFunctorFactors 📖CompOp
6 mathmath: CochainComplex.mappingCone.homologySequenceδ_triangleh, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, homologyFunctor_shiftMap_assoc, homologyShiftIso_hom_app, homologyFunctor_shiftMap
homotopyEquivOfIso 📖CompOp—
homotopyOfEq 📖CompOp—
homotopyOutMap 📖CompOp—
instInhabitedOfHasZeroObject 📖CompOp—
instLinear 📖CompOp
5 mathmath: instLinearIntUpShiftFunctor, instLinearIntUpSingleFunctor, CategoryTheory.instLinearHomotopyCategoryMapHomotopyCategory, DerivedCategory.instLinearHomotopyCategoryIntUpQh, instLinearHomologicalComplexQuotient
instPreadditive 📖CompOp
37 mathmath: spectralObjectMappingCone_δ'_app, CategoryTheory.instAdditiveHomotopyCategoryMapHomotopyCategory, CochainComplex.IsKInjective.rightOrthogonal, instIsHomologicalIntUpHomologyFunctor, quotient_map_eq_zero_iff, instAdditiveIntUpShiftFunctor, DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh, mappingCone_triangleh_distinguished, DerivedCategory.instAdditiveHomotopyCategoryIntUpQh, instLinearIntUpShiftFunctor, instLinearIntUpSingleFunctor, instAdditiveIntUpSingleFunctor, Pretriangulated.contractible_distinguished, instIsTriangulatedIntUpSubcategoryAcyclic, instIsTriangulatedIntUp, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, instIsTriangulatedIntUpMapHomotopyCategory, quasiIso_eq_subcategoryAcyclic_W, CochainComplex.IsKProjective.leftOrthogonal, CategoryTheory.instLinearHomotopyCategoryMapHomotopyCategory, CochainComplex.isKProjective_iff_leftOrthogonal, distinguished_iff_iso_trianglehOfDegreewiseSplit, spectralObjectMappingCone_ω₁, Pretriangulated.rotate_distinguished_triangle', CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, Pretriangulated.rotate_distinguished_triangle, instAdditiveHomologyFunctor, instAdditiveHomologicalComplexQuotient, Pretriangulated.invRotate_distinguished_triangle', DerivedCategory.instLinearHomotopyCategoryIntUpQh, CochainComplex.isKInjective_iff_rightOrthogonal, CochainComplex.HomComplex.CohomologyClass.toHom_mk, mappingConeCompTriangleh_distinguished, Pretriangulated.shift_distinguished_triangle, instLinearHomologicalComplexQuotient, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
instPreadditiveQuotientHomologicalComplexHomotopic 📖CompOp
1 mathmath: instAdditiveHomologicalComplexQuotientHomotopicFunctor
isoOfHomotopyEquiv 📖CompOp
2 mathmath: isoOfHomotopyEquiv_hom, isoOfHomotopyEquiv_inv
quotient 📖CompOp
77 mathmath: spectralObjectMappingCone_δ'_app, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, quotient_map_out_comp_out, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, CategoryTheory.ProjectiveResolution.iso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.iso_hom_naturality, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality, isZero_quotient_obj_iff, CochainComplex.mappingCone.homologySequenceδ_triangleh, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂_assoc, CochainComplex.IsKInjective.rightOrthogonal, quotient_inverts_homotopyEquivalences, CochainComplex.IsKInjective.Qh_map_bijective, CategoryTheory.NatTrans.mapHomotopyCategory_app, quotient_map_eq_zero_iff, instFullHomologicalComplexQuotient, isoOfHomotopyEquiv_hom, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences, eq_of_homotopy, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, instEssSurjHomologicalComplexQuotient, quasiIso_eq_quasiIso_map_quotient, quot_mk_eq_quotient_map, CategoryTheory.ProjectiveResolution.iso_hom_naturality, instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, quotient_obj_surjective, instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, CochainComplex.IsKProjective.Qh_map_bijective, CategoryTheory.InjectiveResolution.iso_hom_naturality_assoc, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, CochainComplex.IsKProjective.leftOrthogonal, quotient_obj_as, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, CochainComplex.isKProjective_iff_leftOrthogonal, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₃, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₁, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, homologyFunctor_shiftMap_assoc, CategoryTheory.Functor.mapHomotopyCategory_map, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₂, spectralObjectMappingCone_ω₁, CategoryTheory.Functor.mapHomotopyCategory_obj, homologyShiftIso_hom_app, CategoryTheory.InjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, quotient_obj_singleFunctors_obj, ComplexShape.quotient_isLocalization, quotient_obj_mem_subcategoryAcyclic_iff_acyclic, instAdditiveHomologicalComplexQuotient, quotient_map_out, CategoryTheory.ProjectiveResolution.iso_inv_naturality, homologyFunctor_shiftMap, CochainComplex.mappingConeCompTriangleh_comm₁, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality, CochainComplex.isKInjective_iff_rightOrthogonal, CategoryTheory.ProjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, quotient_obj_mem_subcategoryAcyclic_iff_exactAt, CochainComplex.HomComplex.CohomologyClass.toHom_mk, quotient_map_mem_quasiIso_iff, CategoryTheory.InjectiveResolution.iso_inv_naturality, isoOfHomotopyEquiv_inv, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, instLinearHomologicalComplexQuotient, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_homotopy 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
—CategoryTheory.Quotient.sound
instAdditiveHomologicalComplexQuotient 📖mathematical—CategoryTheory.Functor.Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomotopyCategory
HomologicalComplex.instCategory
instCategoryHomotopyCategory
HomologicalComplex.instPreadditive
instPreadditive
quotient
——
instAdditiveHomologicalComplexQuotientHomotopicFunctor 📖mathematical—CategoryTheory.Functor.Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Quotient
HomologicalComplex.instCategory
homotopic
CategoryTheory.Quotient.category
HomologicalComplex.instPreadditive
instPreadditiveQuotientHomologicalComplexHomotopic
CategoryTheory.Quotient.functor
——
instAdditiveHomologyFunctor 📖mathematical—CategoryTheory.Functor.Additive
HomotopyCategory
instCategoryHomotopyCategory
instPreadditive
homologyFunctor
—CategoryTheory.Functor.additive_of_iso
HomologicalComplex.instAdditiveHomologyFunctor
CategoryTheory.Functor.additive_of_full_essSurj_comp
instAdditiveHomologicalComplexQuotient
instFullHomologicalComplexQuotient
instEssSurjHomologicalComplexQuotient
instEssSurjHomologicalComplexQuotient 📖mathematical—CategoryTheory.Functor.EssSurj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomotopyCategory
HomologicalComplex.instCategory
instCategoryHomotopyCategory
quotient
—CategoryTheory.Quotient.essSurj_functor
instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient 📖mathematical—CategoryTheory.Functor.Faithful
CategoryTheory.Functor
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.category
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
quotient
—CategoryTheory.Quotient.faithful_whiskeringLeft_functor
instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient 📖mathematical—CategoryTheory.Functor.Full
CategoryTheory.Functor
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.category
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor.whiskeringLeft
quotient
—CategoryTheory.Quotient.full_whiskeringLeft_functor
instFullHomologicalComplexQuotient 📖mathematical—CategoryTheory.Functor.Full
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
—CategoryTheory.Quotient.full_functor
instHasZeroObject 📖mathematical—CategoryTheory.Limits.HasZeroObject
HomotopyCategory
instCategoryHomotopyCategory
—HomologicalComplex.instHasZeroObject
CategoryTheory.Limits.IsZero.iff_id_eq_zero
CategoryTheory.Functor.map_id
CategoryTheory.Limits.id_zero
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveHomologicalComplexQuotient
instLinearHomologicalComplexQuotient 📖mathematical—CategoryTheory.Functor.Linear
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomotopyCategory
HomologicalComplex.instCategory
instCategoryHomotopyCategory
HomologicalComplex.instPreadditive
instPreadditive
HomologicalComplex.instLinear
instLinear
quotient
—CategoryTheory.Quotient.linear_functor
homotopy_congruence
instAdditiveHomologicalComplexQuotientHomotopicFunctor
isZero_quotient_obj_iff 📖mathematical—CategoryTheory.Limits.IsZero
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
quotient
Homotopy
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
—CategoryTheory.Limits.IsZero.iff_id_eq_zero
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveHomologicalComplexQuotient
eq_of_homotopy
isoOfHomotopyEquiv_hom 📖mathematical—CategoryTheory.Iso.hom
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
quotient
isoOfHomotopyEquiv
CategoryTheory.Functor.map
HomotopyEquiv.hom
——
isoOfHomotopyEquiv_inv 📖mathematical—CategoryTheory.Iso.inv
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
quotient
isoOfHomotopyEquiv
CategoryTheory.Functor.map
HomotopyEquiv.inv
——
quot_mk_eq_quotient_map 📖mathematical—Quiver.Hom
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
CategoryTheory.HomRel.CompClosure
homotopic
CategoryTheory.Quotient.as
CategoryTheory.Functor.obj
HomotopyCategory
instCategoryHomotopyCategory
quotient
CategoryTheory.Functor.map
——
quotient_inverts_homotopyEquivalences 📖mathematical—CategoryTheory.MorphismProperty.IsInvertedBy
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex.homotopyEquivalences
quotient
—CategoryTheory.Iso.isIso_hom
quotient_map_eq_zero_iff 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.HasZeroMorphisms.zero
instPreadditive
Homotopy
HomologicalComplex.instZeroHom_1
—CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveHomologicalComplexQuotient
eq_of_homotopy
quotient_map_out 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
CategoryTheory.Quotient.as
homotopic
Quot.out
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.HomRel.CompClosure
—Quot.out_eq
quotient_map_out_comp_out 📖mathematical—CategoryTheory.Functor.map
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
CategoryTheory.Quotient.as
homotopic
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quot.out
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.HomRel.CompClosure
—CategoryTheory.Functor.map_comp
quotient_map_out
quotient_obj_as 📖mathematical—CategoryTheory.Quotient.as
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
homotopic
CategoryTheory.Functor.obj
HomotopyCategory
instCategoryHomotopyCategory
quotient
——
quotient_obj_surjective 📖mathematical—CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
——

SSet.Truncated

Definitions

NameCategoryTheorems
HomotopyCategory 📖CompOp
52 mathmath: HomotopyCategory.BinaryProduct.iso_inv_toFunctor, HomotopyCategory.descOfTruncation_comp, mapHomotopyCategory_homMk, SSet.instIsDiscreteHomotopyCategoryObjTruncatedOfNatNatTruncationSimplexCategoryStdSimplexMk, HomotopyCategory.BinaryProduct.inverse_map_mkHom_id_homMk, HomotopyCategory.instSubsingletonOfObjOppositeTruncatedOfNatNatOpMkSimplexCategoryLeLenMk, HomotopyCategory.mkNatTrans_app_mk, HomotopyCategory.BinaryProduct.functorCompInverseIso_inv_app, HomotopyCategory.BinaryProduct.functorCompInverseIso_hom_app, HomotopyCategory.multiplicativeClosure_morphismPropertyHomMk, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_fst, HomotopyCategory.lift_obj_mk, HomotopyCategory.BinaryProduct.inverse_comp_mapHomotopyCategory_snd, HomotopyCategory.instFullFreeReflOneTruncation₂QuotientFunctor, HomotopyCategory.mk_surjective, HomotopyCategory.BinaryProduct.left_unitality, HomotopyCategory.BinaryProduct.inverseCompFunctorIso_inv_app, HomotopyCategory.homMk_id, HomotopyCategory.BinaryProduct.iso_hom_toFunctor, HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_id, HomotopyCategory.BinaryProduct.mapHomotopyCategory_prod_id_comp_inverse, HomotopyCategory.BinaryProduct.functor_comp_inverse, HomotopyCategory.descOfTruncation_map_homMk, HomotopyCategory.BinaryProduct.inverse_map_mkHom_homMk_homMk, hoFunctor₂_naturality, HomotopyCategory.mkNatIso_inv_app_mk, HomotopyCategory.BinaryProduct.inverse_comp_functor, HomotopyCategory.homToNerveMk_app_one, HomotopyCategory.congr_arrowMk_homMk, mapHomotopyCategory_obj, HomotopyCategory.lift_map_homMk, HomotopyCategory.BinaryProduct.associativity'Iso_hom_app, HomotopyCategory.BinaryProduct.functor_obj, HomotopyCategory.mkNatIso_hom_app_mk, HomotopyCategory.BinaryProduct.square, HomotopyCategory.BinaryProduct.inverseCompFunctorIso_hom_app, HomotopyCategory.homToNerveMk_app_edge, HomotopyCategory.BinaryProduct.associativity, HomotopyCategory.BinaryProduct.right_unitality, HomotopyCategory.BinaryProduct.associativityIso_hom_app, HomotopyCategory.homMk_comp_homMk_assoc, HomotopyCategory.homToNerveMk_app_zero, HomotopyCategory.morphismPropertyHomMk_eq_strictMap, HomotopyCategory.homMk_comp_homMk, HomotopyCategory.homToNerveMk_comp, HomotopyCategory.BinaryProduct.functor_map, HomotopyCategory.subsingleton_hom, HomotopyCategory.BinaryProduct.id_prod_mapHomotopyCategory_comp_inverse, HomotopyCategory.descOfTruncation_obj_mk, HomotopyCategory.BinaryProduct.inverse_obj, HomotopyCategory.homToNerveMk_comp_assoc, HomotopyCategory.morphismProperty_eq_top

(root)

Definitions

NameCategoryTheorems
HomotopyCategory 📖CompOp
127 mathmath: HomotopyCategory.spectralObjectMappingCone_δ'_app, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, HomotopyCategory.quotient_map_out_comp_out, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_id, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, CategoryTheory.ProjectiveResolution.iso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.iso_hom_naturality, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, HomotopyCategory.respectsIso_quasiIso, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality, HomotopyCategory.isZero_quotient_obj_iff, CochainComplex.mappingCone.homologySequenceδ_triangleh, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, CategoryTheory.instAdditiveHomotopyCategoryMapHomotopyCategory, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂_assoc, CochainComplex.IsKInjective.rightOrthogonal, HomotopyCategory.quotient_inverts_homotopyEquivalences, CochainComplex.IsKInjective.Qh_map_bijective, HomotopyCategory.instIsHomologicalIntUpHomologyFunctor, CategoryTheory.NatTrans.mapHomotopyCategory_app, HomotopyCategory.quotient_map_eq_zero_iff, HomotopyCategory.instFullHomologicalComplexQuotient, ComplexShape.Embedding.instFaithfulHomotopyCategoryExtendHomotopyFunctor, HomotopyCategory.isoOfHomotopyEquiv_hom, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, ComplexShape.Embedding.instFullHomotopyCategoryExtendHomotopyFunctor, CategoryTheory.NatTrans.mapHomotopyCategory_comp, HomotopyCategory.instAdditiveIntUpShiftFunctor, instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences, HomotopyCategory.eq_of_homotopy, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp_assoc, HomotopyCategory.mappingCone_triangleh_distinguished, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, HomotopyCategory.instEssSurjHomologicalComplexQuotient, HomotopyCategory.quasiIso_eq_quasiIso_map_quotient, HomotopyCategory.quot_mk_eq_quotient_map, DerivedCategory.instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.ProjectiveResolution.iso_hom_naturality, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp_assoc, HomotopyCategory.instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, DerivedCategory.instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso, HomotopyCategory.quotient_obj_surjective, HomotopyCategory.instLinearIntUpShiftFunctor, HomotopyCategory.Pretriangulated.distinguished_cocone_triangle, HomotopyCategory.instLinearIntUpSingleFunctor, HomotopyCategory.instAdditiveIntUpSingleFunctor, HomotopyCategory.Pretriangulated.contractible_distinguished, HomotopyCategory.instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, CochainComplex.IsKProjective.Qh_map_bijective, DerivedCategory.instEssSurjHomotopyCategoryIntUpQh, HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic, HomotopyCategory.instHasZeroObject, HomotopyCategory.instIsTriangulatedIntUp, DerivedCategory.instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.InjectiveResolution.iso_hom_naturality_assoc, CategoryTheory.NatTrans.mapHomotopyCategory_id, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, HomotopyCategory.instIsTriangulatedIntUpMapHomotopyCategory, HomotopyCategory.mem_quasiIso_iff, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences, DerivedCategory.instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W, CochainComplex.IsKProjective.leftOrthogonal, HomotopyCategory.quotient_obj_as, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp, CategoryTheory.instLinearHomotopyCategoryMapHomotopyCategory, CochainComplex.isKProjective_iff_leftOrthogonal, HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₃, HomotopyCategory.mem_subcategoryAcyclic_iff, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₁, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, HomotopyCategory.homologyFunctor_shiftMap_assoc, CategoryTheory.Functor.mapHomotopyCategory_map, HomotopyCategory.distinguished_iff_iso_trianglehOfDegreewiseSplit, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₂, HomotopyCategory.spectralObjectMappingCone_ω₁, CategoryTheory.Functor.mapHomotopyCategory_obj, HomotopyCategory.homologyShiftIso_hom_app, DerivedCategory.Qh_obj_singleFunctors_obj, CategoryTheory.InjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, DerivedCategory.instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, HomotopyCategory.Pretriangulated.rotate_distinguished_triangle, HomotopyCategory.quotient_obj_singleFunctors_obj, ComplexShape.quotient_isLocalization, HomotopyCategory.instAdditiveHomologyFunctor, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic, HomotopyCategory.instAdditiveHomologicalComplexQuotient, HomotopyCategory.quotient_map_out, CategoryTheory.ProjectiveResolution.iso_inv_naturality, HomotopyCategory.homologyFunctor_shiftMap, DerivedCategory.instLinearHomotopyCategoryIntUpQh, CochainComplex.mappingConeCompTriangleh_comm₁, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality, HomotopyCategory.homologyFunctor_inverts_quasiIso, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_id, CochainComplex.isKInjective_iff_rightOrthogonal, CategoryTheory.ProjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt, DerivedCategory.isIso_Qh_map_iff, CochainComplex.HomComplex.CohomologyClass.toHom_mk, HomotopyCategory.quotient_map_mem_quasiIso_iff, CategoryTheory.InjectiveResolution.iso_inv_naturality, HomotopyCategory.mappingConeCompTriangleh_distinguished, HomotopyCategory.isoOfHomotopyEquiv_inv, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, HomotopyCategory.instIsClosedUnderIsomorphismsIntUpSubcategoryAcyclic, HomotopyCategory.instLinearHomologicalComplexQuotient, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic, DerivedCategory.instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso
homotopic 📖CompOp
9 mathmath: HomotopyCategory.quotient_map_out_comp_out, HomotopyCategory.instAdditiveHomologicalComplexQuotientHomotopicFunctor, CategoryTheory.NatTrans.mapHomotopyCategory_app, HomotopyCategory.quot_mk_eq_quotient_map, HomotopyCategory.instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic, HomotopyCategory.quotient_obj_as, homotopy_congruence, CategoryTheory.Functor.mapHomotopyCategory_obj, HomotopyCategory.quotient_map_out
instCategoryHomotopyCategory 📖CompOp
127 mathmath: HomotopyCategory.spectralObjectMappingCone_δ'_app, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, HomotopyCategory.quotient_map_out_comp_out, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_id, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, CategoryTheory.ProjectiveResolution.iso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.iso_hom_naturality, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, HomotopyCategory.respectsIso_quasiIso, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality, HomotopyCategory.isZero_quotient_obj_iff, CochainComplex.mappingCone.homologySequenceδ_triangleh, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, CategoryTheory.instAdditiveHomotopyCategoryMapHomotopyCategory, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂_assoc, CochainComplex.IsKInjective.rightOrthogonal, HomotopyCategory.quotient_inverts_homotopyEquivalences, CochainComplex.IsKInjective.Qh_map_bijective, HomotopyCategory.instIsHomologicalIntUpHomologyFunctor, CategoryTheory.NatTrans.mapHomotopyCategory_app, HomotopyCategory.quotient_map_eq_zero_iff, HomotopyCategory.instFullHomologicalComplexQuotient, ComplexShape.Embedding.instFaithfulHomotopyCategoryExtendHomotopyFunctor, HomotopyCategory.isoOfHomotopyEquiv_hom, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, ComplexShape.Embedding.instFullHomotopyCategoryExtendHomotopyFunctor, CategoryTheory.NatTrans.mapHomotopyCategory_comp, HomotopyCategory.instAdditiveIntUpShiftFunctor, instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences, HomotopyCategory.eq_of_homotopy, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp_assoc, HomotopyCategory.mappingCone_triangleh_distinguished, CochainComplex.mappingCone.rotateHomotopyEquiv_comm₂, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, HomotopyCategory.instEssSurjHomologicalComplexQuotient, HomotopyCategory.quasiIso_eq_quasiIso_map_quotient, HomotopyCategory.quot_mk_eq_quotient_map, DerivedCategory.instAdditiveHomotopyCategoryIntUpQh, CategoryTheory.ProjectiveResolution.iso_hom_naturality, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp_assoc, HomotopyCategory.instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, DerivedCategory.instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso, HomotopyCategory.quotient_obj_surjective, HomotopyCategory.instLinearIntUpShiftFunctor, HomotopyCategory.Pretriangulated.distinguished_cocone_triangle, HomotopyCategory.instLinearIntUpSingleFunctor, HomotopyCategory.instAdditiveIntUpSingleFunctor, HomotopyCategory.Pretriangulated.contractible_distinguished, HomotopyCategory.instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, CochainComplex.IsKProjective.Qh_map_bijective, DerivedCategory.instEssSurjHomotopyCategoryIntUpQh, HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic, HomotopyCategory.instHasZeroObject, HomotopyCategory.instIsTriangulatedIntUp, DerivedCategory.instFaithfulFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CategoryTheory.InjectiveResolution.iso_hom_naturality_assoc, CategoryTheory.NatTrans.mapHomotopyCategory_id, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, HomotopyCategory.instIsTriangulatedIntUpMapHomotopyCategory, HomotopyCategory.mem_quasiIso_iff, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences, DerivedCategory.instEssSurjArrowHomotopyCategoryIntUpMapArrowQh, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, HomotopyCategory.quasiIso_eq_subcategoryAcyclic_W, CochainComplex.IsKProjective.leftOrthogonal, HomotopyCategory.quotient_obj_as, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, CategoryTheory.NatTrans.rightDerivedToHomotopyCategory_comp, CategoryTheory.instLinearHomotopyCategoryMapHomotopyCategory, CochainComplex.isKProjective_iff_leftOrthogonal, HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₃, HomotopyCategory.mem_subcategoryAcyclic_iff, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₁, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, HomotopyCategory.homologyFunctor_shiftMap_assoc, CategoryTheory.Functor.mapHomotopyCategory_map, HomotopyCategory.distinguished_iff_iso_trianglehOfDegreewiseSplit, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_comp, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₂, HomotopyCategory.spectralObjectMappingCone_ω₁, CategoryTheory.Functor.mapHomotopyCategory_obj, HomotopyCategory.homologyShiftIso_hom_app, DerivedCategory.Qh_obj_singleFunctors_obj, CategoryTheory.InjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, DerivedCategory.instFullFunctorHomotopyCategoryIntUpObjWhiskeringLeftQh, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, HomotopyCategory.Pretriangulated.rotate_distinguished_triangle, HomotopyCategory.quotient_obj_singleFunctors_obj, ComplexShape.quotient_isLocalization, HomotopyCategory.instAdditiveHomologyFunctor, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic, HomotopyCategory.instAdditiveHomologicalComplexQuotient, HomotopyCategory.quotient_map_out, CategoryTheory.ProjectiveResolution.iso_inv_naturality, HomotopyCategory.homologyFunctor_shiftMap, DerivedCategory.instLinearHomotopyCategoryIntUpQh, CochainComplex.mappingConeCompTriangleh_comm₁, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality, HomotopyCategory.homologyFunctor_inverts_quasiIso, CategoryTheory.NatTrans.leftDerivedToHomotopyCategory_id, CochainComplex.isKInjective_iff_rightOrthogonal, CategoryTheory.ProjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt, DerivedCategory.isIso_Qh_map_iff, CochainComplex.HomComplex.CohomologyClass.toHom_mk, HomotopyCategory.quotient_map_mem_quasiIso_iff, CategoryTheory.InjectiveResolution.iso_inv_naturality, HomotopyCategory.mappingConeCompTriangleh_distinguished, HomotopyCategory.isoOfHomotopyEquiv_inv, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, HomotopyCategory.instIsClosedUnderIsomorphismsIntUpSubcategoryAcyclic, HomotopyCategory.instLinearHomologicalComplexQuotient, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic, DerivedCategory.instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso

Theorems

NameKindAssumesProvesValidatesDepends On
homotopy_congruence 📖mathematical—CategoryTheory.Congruence
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
homotopic
——

---

← Back to Index