| Name | Category | Theorems |
homologyFunctor đ | CompOp | 11 mathmath: CochainComplex.mappingCone.homologySequenceδ_triangleh, instIsHomologicalIntUpHomologyFunctor, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, mem_quasiIso_iff, mem_subcategoryAcyclic_iff, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, homologyFunctor_shiftMap_assoc, homologyShiftIso_hom_app, instAdditiveHomologyFunctor, homologyFunctor_shiftMap, homologyFunctor_inverts_quasiIso
|
homologyFunctorFactors đ | CompOp | 6 mathmath: CochainComplex.mappingCone.homologySequenceδ_triangleh, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, homologyFunctor_shiftMap_assoc, homologyShiftIso_hom_app, homologyFunctor_shiftMap
|
homotopyEquivOfIso đ | CompOp | â |
homotopyOfEq đ | CompOp | â |
homotopyOutMap đ | CompOp | â |
instInhabitedOfHasZeroObject đ | CompOp | â |
instLinear đ | CompOp | 5 mathmath: instLinearIntUpShiftFunctor, instLinearIntUpSingleFunctor, CategoryTheory.instLinearHomotopyCategoryMapHomotopyCategory, DerivedCategory.instLinearHomotopyCategoryIntUpQh, instLinearHomologicalComplexQuotient
|
instPreadditive đ | CompOp | 37 mathmath: spectralObjectMappingCone_δ'_app, CategoryTheory.instAdditiveHomotopyCategoryMapHomotopyCategory, CochainComplex.IsKInjective.rightOrthogonal, instIsHomologicalIntUpHomologyFunctor, quotient_map_eq_zero_iff, instAdditiveIntUpShiftFunctor, DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh, mappingCone_triangleh_distinguished, DerivedCategory.instAdditiveHomotopyCategoryIntUpQh, instLinearIntUpShiftFunctor, instLinearIntUpSingleFunctor, instAdditiveIntUpSingleFunctor, Pretriangulated.contractible_distinguished, instIsTriangulatedIntUpSubcategoryAcyclic, instIsTriangulatedIntUp, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, instIsTriangulatedIntUpMapHomotopyCategory, quasiIso_eq_subcategoryAcyclic_W, CochainComplex.IsKProjective.leftOrthogonal, CategoryTheory.instLinearHomotopyCategoryMapHomotopyCategory, CochainComplex.isKProjective_iff_leftOrthogonal, distinguished_iff_iso_trianglehOfDegreewiseSplit, spectralObjectMappingCone_Ďâ, Pretriangulated.rotate_distinguished_triangle', CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, Pretriangulated.rotate_distinguished_triangle, instAdditiveHomologyFunctor, instAdditiveHomologicalComplexQuotient, Pretriangulated.invRotate_distinguished_triangle', DerivedCategory.instLinearHomotopyCategoryIntUpQh, CochainComplex.isKInjective_iff_rightOrthogonal, CochainComplex.HomComplex.CohomologyClass.toHom_mk, mappingConeCompTriangleh_distinguished, Pretriangulated.shift_distinguished_triangle, instLinearHomologicalComplexQuotient, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
|
instPreadditiveQuotientHomologicalComplexHomotopic đ | CompOp | 1 mathmath: instAdditiveHomologicalComplexQuotientHomotopicFunctor
|
isoOfHomotopyEquiv đ | CompOp | 2 mathmath: isoOfHomotopyEquiv_hom, isoOfHomotopyEquiv_inv
|
quotient đ | CompOp | 77 mathmath: spectralObjectMappingCone_δ'_app, CochainComplex.mappingConeCompTriangleh_commâ_assoc, quotient_map_out_comp_out, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality_assoc, CategoryTheory.ProjectiveResolution.iso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.iso_hom_naturality, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_inv_naturality, isZero_quotient_obj_iff, CochainComplex.mappingCone.homologySequenceδ_triangleh, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ_assoc, CochainComplex.IsKInjective.rightOrthogonal, quotient_inverts_homotopyEquivalences, CochainComplex.IsKInjective.Qh_map_bijective, CategoryTheory.NatTrans.mapHomotopyCategory_app, quotient_map_eq_zero_iff, instFullHomologicalComplexQuotient, isoOfHomotopyEquiv_hom, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality_assoc, instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences, eq_of_homotopy, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality_assoc, CochainComplex.mappingCone.rotateHomotopyEquiv_commâ, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, instEssSurjHomologicalComplexQuotient, quasiIso_eq_quasiIso_map_quotient, quot_mk_eq_quotient_map, CategoryTheory.ProjectiveResolution.iso_hom_naturality, instFullFunctorHomologicalComplexObjWhiskeringLeftQuotient, quotient_obj_surjective, instFaithfulFunctorHomologicalComplexObjWhiskeringLeftQuotient, CochainComplex.IsKProjective.Qh_map_bijective, CategoryTheory.InjectiveResolution.iso_hom_naturality_assoc, CochainComplex.HomComplex.CohomologyClass.toHom_bijective, instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality_assoc, CochainComplex.IsKProjective.leftOrthogonal, quotient_obj_as, CategoryTheory.ProjectiveResolution.leftDerivedToHomotopyCategory_app_eq, CochainComplex.isKProjective_iff_leftOrthogonal, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, homologyFunctor_shiftMap_assoc, CategoryTheory.Functor.mapHomotopyCategory_map, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_inv_naturality, CochainComplex.mappingCone.trianglehMapOfHomotopy_homâ, spectralObjectMappingCone_Ďâ, CategoryTheory.Functor.mapHomotopyCategory_obj, homologyShiftIso_hom_app, CategoryTheory.InjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedToHomotopyCategoryObj_hom_naturality, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, CochainComplex.HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, quotient_obj_singleFunctors_obj, ComplexShape.quotient_isLocalization, quotient_obj_mem_subcategoryAcyclic_iff_acyclic, instAdditiveHomologicalComplexQuotient, quotient_map_out, CategoryTheory.ProjectiveResolution.iso_inv_naturality, homologyFunctor_shiftMap, CochainComplex.mappingConeCompTriangleh_commâ, CategoryTheory.ProjectiveResolution.isoLeftDerivedToHomotopyCategoryObj_hom_naturality, CochainComplex.isKInjective_iff_rightOrthogonal, CategoryTheory.ProjectiveResolution.iso_inv_naturality_assoc, CategoryTheory.InjectiveResolution.rightDerivedToHomotopyCategory_app_eq, quotient_obj_mem_subcategoryAcyclic_iff_exactAt, CochainComplex.HomComplex.CohomologyClass.toHom_mk, quotient_map_mem_quasiIso_iff, CategoryTheory.InjectiveResolution.iso_inv_naturality, isoOfHomotopyEquiv_inv, CategoryTheory.Functor.mapDerivedCategoryFactorsh_hom_app, instLinearHomologicalComplexQuotient, CochainComplex.HomComplex.CohomologyClass.homAddEquiv_apply, instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors
|