Documentation Verification Report

Acyclic

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory/Acyclic.lean

Statistics

MetricCount
DefinitionssubcategoryAcyclic
1
TheoremsinstIsClosedUnderIsomorphismsIntUpSubcategoryAcyclic, instIsTriangulatedIntUpSubcategoryAcyclic, mem_subcategoryAcyclic_iff, quasiIso_eq_subcategoryAcyclic_W, quotient_obj_mem_subcategoryAcyclic_iff_acyclic, quotient_obj_mem_subcategoryAcyclic_iff_exactAt
6
Total7

HomotopyCategory

Definitions

NameCategoryTheorems
subcategoryAcyclic 📖CompOp
11 mathmath: CochainComplex.IsKInjective.rightOrthogonal, instIsTriangulatedIntUpSubcategoryAcyclic, quasiIso_eq_subcategoryAcyclic_W, CochainComplex.IsKProjective.leftOrthogonal, CochainComplex.isKProjective_iff_leftOrthogonal, mem_subcategoryAcyclic_iff, quotient_obj_mem_subcategoryAcyclic_iff_acyclic, CochainComplex.isKInjective_iff_rightOrthogonal, quotient_obj_mem_subcategoryAcyclic_iff_exactAt, instIsClosedUnderIsomorphismsIntUpSubcategoryAcyclic, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic

Theorems

NameKindAssumesProvesValidatesDepends On
instIsClosedUnderIsomorphismsIntUpSubcategoryAcyclic 📖mathematicalCategoryTheory.ObjectProperty.IsClosedUnderIsomorphisms
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
subcategoryAcyclic
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.instIsClosedUnderIsomorphismsHomologicalKernel
instIsTriangulatedIntUpSubcategoryAcyclic 📖mathematicalCategoryTheory.ObjectProperty.IsTriangulated
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
hasShift
instPreadditive
instAdditiveIntUpShiftFunctor
instPretriangulatedIntUp
CategoryTheory.Abelian.hasBinaryBiproducts
subcategoryAcyclic
AddRightCancelSemigroup.toIsRightCancelAdd
instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Functor.instIsTriangulatedHomologicalKernel
instIsHomologicalIntUpHomologyFunctor
mem_subcategoryAcyclic_iff 📖mathematicalsubcategoryAcyclic
CategoryTheory.Limits.IsZero
CategoryTheory.Functor.obj
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.mem_homologicalKernel_iff
CategoryTheory.categoryWithHomology_of_abelian
quasiIso_eq_subcategoryAcyclic_W 📖mathematicalquasiIso
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Abelian.toPreadditive
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.ObjectProperty.trW
HomotopyCategory
instCategoryHomotopyCategory
instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
hasShift
instPreadditive
instAdditiveIntUpShiftFunctor
instPretriangulatedIntUp
CategoryTheory.Abelian.hasBinaryBiproducts
subcategoryAcyclic
CategoryTheory.MorphismProperty.ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Functor.mem_homologicalKernel_trW_iff
instIsHomologicalIntUpHomologyFunctor
quotient_obj_mem_subcategoryAcyclic_iff_acyclic 📖mathematicalsubcategoryAcyclic
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
HomologicalComplex.Acyclic
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
quotient_obj_mem_subcategoryAcyclic_iff_exactAt
quotient_obj_mem_subcategoryAcyclic_iff_exactAt 📖mathematicalsubcategoryAcyclic
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
HomologicalComplex.ExactAt
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
mem_subcategoryAcyclic_iff
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.Iso.isZero_iff

---

← Back to Index