| Name | Category | Theorems |
CohomologyClass 📖 | CompOp | 46 mathmath: CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, CohomologyClass.equivOfIsKInjective_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, CohomologyClass.mk_surjective, CohomologyClass.mk_eq_zero_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, leftHomologyData_π_hom_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CohomologyClass.bijective_toSmallShiftedHom_of_isKProjective, CohomologyClass.bijective_toSmallShiftedHom_of_isKInjective, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, CohomologyClass.equivOfIsKInjective_symm_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CohomologyClass.mk_zero, CohomologyClass.toHom_bijective, CohomologyClass.mkAddMonoidHom_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, leftHomologyData_H_coe, CohomologyClass.descAddMonoidHom_cohomologyClass, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_extMk, CohomologyClass.equivOfIsKProjective_symm_apply, leftHomologyData'_H_coe, leftHomologyData'_π, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, CohomologyClass.mk_add, CohomologyClass.toHom_mk_eq_zero_iff, CohomologyClass.mk_sub, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_extMk, CohomologyClass.equivOfIsKProjective_apply, CohomologyClass.mk_neg, CohomologyClass.toHom_mk, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, CohomologyClass.homAddEquiv_apply, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg
|
coboundaries 📖 | CompOp | 5 mathmath: CohomologyClass.mk_eq_zero_iff, Cocycle.toSingleMk_mem_coboundaries_iff, mem_coboundaries_iff, CohomologyClass.toHom_mk_eq_zero_iff, Cocycle.fromSingleMk_mem_coboundaries_iff
|
homologyAddEquiv 📖 | CompOp | — |
instAddCommGroupCohomologyClass 📖 | CompOp | 33 mathmath: CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, CohomologyClass.mk_eq_zero_iff, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, leftHomologyData_π_hom_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CohomologyClass.mk_zero, CohomologyClass.toHom_bijective, CohomologyClass.mkAddMonoidHom_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, CohomologyClass.descAddMonoidHom_cohomologyClass, leftHomologyData'_π, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, CohomologyClass.mk_add, CohomologyClass.toHom_mk_eq_zero_iff, CohomologyClass.mk_sub, CohomologyClass.mk_neg, CohomologyClass.toHom_mk, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, CohomologyClass.homAddEquiv_apply, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg
|
leftHomologyData 📖 | CompOp | 4 mathmath: leftHomologyData_K_coe, leftHomologyData_π_hom_apply, leftHomologyData_i_hom_apply, leftHomologyData_H_coe
|
leftHomologyData' 📖 | CompOp | 4 mathmath: leftHomologyData'_i, leftHomologyData'_K_coe, leftHomologyData'_H_coe, leftHomologyData'_π
|