Documentation Verification Report

HomologicalFunctor

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory/HomologicalFunctor.lean

Statistics

MetricCount
Definitions0
TheoremsinstIsHomologicalIntUpHomologyFunctor
1
Total1

HomotopyCategory

Theorems

NameKindAssumesProvesValidatesDepends On
instIsHomologicalIntUpHomologyFunctor 📖mathematicalCategoryTheory.Functor.IsHomological
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
hasShift
homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
instPreadditive
instAdditiveIntUpShiftFunctor
instPretriangulatedIntUp
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Functor.IsHomological.mk'
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instAdditiveHomologyFunctor
HomologicalComplex.instPreservesZeroMorphismsEval
CategoryTheory.Pretriangulated.isomorphic_distinguished
distinguished_iff_iso_trianglehOfDegreewiseSplit
HomologicalComplex.shortExact_of_degreewise_shortExact
CategoryTheory.ShortComplex.Splitting.shortExact
CategoryTheory.Functor.preservesZeroMorphisms_comp
instAdditiveHomologicalComplexQuotient
HomologicalComplex.instPreservesZeroMorphismsHomologyFunctor
CategoryTheory.ShortComplex.exact_iff_of_iso
CategoryTheory.ShortComplex.ShortExact.homology_exact₂

---

← Back to Index