Documentation Verification Report

KInjective

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory/KInjective.lean

Statistics

MetricCount
DefinitionsIsKInjective, homotopyZero
2
TheoremshomotopyZero_def, nonempty_homotopy_zero, rightOrthogonal, instIsKInjectiveObjIntShiftFunctor, isKInjective_iff_of_iso, isKInjective_iff_rightOrthogonal, isKInjective_of_injective, isKInjective_of_injective_aux, isKInjective_of_iso, isKInjective_shift_iff, isKInjective
11
Total13

CochainComplex

Definitions

NameCategoryTheorems
IsKInjective 📖CompData
8 mathmath: isKInjective_of_injective, isKInjective_shift_iff, instIsKInjectiveObjIntShiftFunctor, isKInjective_of_iso, HomotopyEquiv.isKInjective, isKInjective_iff_of_iso, CategoryTheory.InjectiveResolution.instIsKInjectiveCochainComplex, isKInjective_iff_rightOrthogonal

Theorems

NameKindAssumesProvesValidatesDepends On
instIsKInjectiveObjIntShiftFunctor 📖mathematicalIsKInjective
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddRightCancelSemigroup.toIsRightCancelAdd
isKInjective_iff_rightOrthogonal
CategoryTheory.ObjectProperty.prop_of_iso
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsRightOrthogonal
CategoryTheory.ObjectProperty.le_shift
CategoryTheory.ObjectProperty.IsStableUnderShift.isStableUnderShiftBy
CategoryTheory.ObjectProperty.instIsStableUnderShiftRightOrthogonal
CategoryTheory.ObjectProperty.IsTriangulated.toIsStableUnderShift
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
isKInjective_iff_of_iso 📖mathematicalIsKInjectiveAddRightCancelSemigroup.toIsRightCancelAdd
isKInjective_of_iso
isKInjective_iff_rightOrthogonal 📖mathematicalIsKInjective
CategoryTheory.ObjectProperty.rightOrthogonal
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomotopyCategory.instPreadditive
HomotopyCategory.subcategoryAcyclic
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
HomotopyCategory.quotient
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.quotient_obj_surjective
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
HomotopyCategory.eq_of_homotopy
HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomotopyCategory.instAdditiveHomologicalComplexQuotient
isKInjective_of_injective 📖mathematicalCategoryTheory.Injective
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
IsKInjectiveAddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.IsZero.eq_of_tgt
isZero_of_isStrictlyGE
isKInjective_of_injective_aux
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
HomComplex.Cochain.single_v_eq_zero
HomComplex.Cochain.ofHom_zero
add_zero
HomComplex.Cochain.ext₀
neg_add_cancel
HomComplex.δ_v
HomComplex.Cochain.InductionUp.limitSequence_eqUpTo
isKInjective_of_injective_aux 📖mathematicalHomologicalComplex.ExactAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomComplex.Cochain.EqUpTo
HomComplex.δ
HomComplex.Cochain.ofHom
HomComplex.Cochain
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
HomComplex.instAddCommGroupCochain
HomComplex.Cochain.single
AddRightCancelSemigroup.toIsRightCancelAdd
add_zero
le_refl
CategoryTheory.Preadditive.comp_sub
neg_add_cancel
HomologicalComplex.Hom.comm
HomComplex.δ_v
one_smul
HomComplex.Cochain.ofHom_v
CategoryTheory.Preadditive.add_comp
CategoryTheory.Category.assoc
HomologicalComplex.d_comp_d
CategoryTheory.Limits.comp_zero
zero_add
sub_self
HomologicalComplex.d_comp_d_assoc
CategoryTheory.Limits.zero_comp
HomologicalComplex.exactAt_iff'
prev
add_sub_cancel_right
next
CategoryTheory.ShortComplex.Exact.comp_descToInjective
LE.le.lt_or_eq
HomComplex.δ_add
HomComplex.Cochain.add_v
add_eq_left
AddLeftCancelSemigroup.toIsLeftCancelAdd
HomComplex.Cochain.single_v_eq_zero
smul_zero
HomComplex.Cochain.single_v
CategoryTheory.Preadditive.comp_add
add_sub_cancel
isKInjective_of_iso 📖mathematicalIsKInjectiveAddRightCancelSemigroup.toIsRightCancelAdd
HomotopyEquiv.isKInjective
isKInjective_shift_iff 📖mathematicalIsKInjective
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddRightCancelSemigroup.toIsRightCancelAdd
isKInjective_of_iso
instIsKInjectiveObjIntShiftFunctor

CochainComplex.IsKInjective

Definitions

NameCategoryTheorems
homotopyZero 📖CompOp
1 mathmath: homotopyZero_def

Theorems

NameKindAssumesProvesValidatesDepends On
homotopyZero_def 📖mathematicalHomologicalComplex.Acyclic
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
homotopyZero
Nonempty.some
Homotopy
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.instZeroHom_1
nonempty_homotopy_zero
AddRightCancelSemigroup.toIsRightCancelAdd
nonempty_homotopy_zero
nonempty_homotopy_zero 📖mathematicalHomologicalComplex.Acyclic
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
Homotopy
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.instZeroHom_1
rightOrthogonal 📖mathematicalCategoryTheory.ObjectProperty.rightOrthogonal
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomotopyCategory.instPreadditive
HomotopyCategory.subcategoryAcyclic
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
HomotopyCategory.quotient
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.isKInjective_iff_rightOrthogonal

HomotopyEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isKInjective 📖mathematicalCochainComplex.IsKInjectiveAddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Limits.zero_comp

---

← Back to Index