Documentation Verification Report

KProjective

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory/KProjective.lean

Statistics

MetricCount
DefinitionsIsKProjective, homotopyZero
2
TheoremshomotopyZero_def, leftOrthogonal, nonempty_homotopy_zero, instIsKProjectiveObjIntShiftFunctor, isKProjective_iff_leftOrthogonal, isKProjective_iff_of_iso, isKProjective_of_iso, isKProjective_of_op, isKProjective_of_projective, isKProjective_shift_iff, isKProjective
11
Total13

CochainComplex

Definitions

NameCategoryTheorems
IsKProjective 📖CompData
9 mathmath: CategoryTheory.ProjectiveResolution.instIsKProjectiveCochainComplex, isKProjective_of_projective, instIsKProjectiveObjIntShiftFunctor, HomotopyEquiv.isKProjective, isKProjective_iff_leftOrthogonal, isKProjective_iff_of_iso, isKProjective_shift_iff, isKProjective_of_op, isKProjective_of_iso

Theorems

NameKindAssumesProvesValidatesDepends On
instIsKProjectiveObjIntShiftFunctor 📖mathematicalIsKProjective
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddRightCancelSemigroup.toIsRightCancelAdd
isKProjective_iff_leftOrthogonal
CategoryTheory.ObjectProperty.prop_of_iso
CategoryTheory.ObjectProperty.instIsClosedUnderIsomorphismsLeftOrthogonal
CategoryTheory.ObjectProperty.le_shift
CategoryTheory.ObjectProperty.IsStableUnderShift.isStableUnderShiftBy
CategoryTheory.ObjectProperty.instIsStableUnderShiftLeftOrthogonal
CategoryTheory.ObjectProperty.IsTriangulated.toIsStableUnderShift
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
CategoryTheory.Abelian.hasBinaryBiproducts
HomotopyCategory.instIsTriangulatedIntUpSubcategoryAcyclic
isKProjective_iff_leftOrthogonal 📖mathematicalIsKProjective
CategoryTheory.ObjectProperty.leftOrthogonal
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomotopyCategory.instPreadditive
HomotopyCategory.subcategoryAcyclic
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
HomotopyCategory.quotient
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.quotient_obj_surjective
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
HomotopyCategory.eq_of_homotopy
HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
HomotopyCategory.instAdditiveHomologicalComplexQuotient
isKProjective_iff_of_iso 📖mathematicalIsKProjectiveAddRightCancelSemigroup.toIsRightCancelAdd
isKProjective_of_iso
isKProjective_of_iso 📖mathematicalIsKProjectiveAddRightCancelSemigroup.toIsRightCancelAdd
HomotopyEquiv.isKProjective
isKProjective_of_op 📖mathematicalIsKProjectiveAddRightCancelSemigroup.toIsRightCancelAdd
acyclic_op
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_preserves_terminal_object
CategoryTheory.Limits.hasZeroObject_op
HomologicalComplex.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.preservesLimit_of_createsLimit_and_hasLimit
CategoryTheory.Equivalence.isEquivalence_functor
HomologicalComplex.instHasLimit
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasTerminal_op_of_hasInitial
CategoryTheory.Limits.hasColimitsOfShape_discrete
CategoryTheory.Limits.hasFiniteCoproducts_of_hasFiniteColimits
CategoryTheory.Abelian.hasFiniteColimits
Finite.of_fintype
isKProjective_of_projective 📖mathematicalCategoryTheory.Projective
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
IsKProjectiveAddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Injective.instOppositeOpOfProjective
isStrictlyGE_iff
CategoryTheory.Limits.IsZero.op
isZero_of_isStrictlyLE
isKProjective_of_op
isKInjective_of_injective
isKProjective_shift_iff 📖mathematicalIsKProjective
CategoryTheory.Functor.obj
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddRightCancelSemigroup.toIsRightCancelAdd
isKProjective_of_iso
instIsKProjectiveObjIntShiftFunctor

CochainComplex.IsKProjective

Definitions

NameCategoryTheorems
homotopyZero 📖CompOp
1 mathmath: homotopyZero_def

Theorems

NameKindAssumesProvesValidatesDepends On
homotopyZero_def 📖mathematicalHomologicalComplex.Acyclic
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
homotopyZero
Nonempty.some
Homotopy
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.instZeroHom_1
nonempty_homotopy_zero
AddRightCancelSemigroup.toIsRightCancelAdd
nonempty_homotopy_zero
leftOrthogonal 📖mathematicalCategoryTheory.ObjectProperty.leftOrthogonal
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomotopyCategory.instPreadditive
HomotopyCategory.subcategoryAcyclic
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
HomotopyCategory.quotient
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.isKProjective_iff_leftOrthogonal
nonempty_homotopy_zero 📖mathematicalHomologicalComplex.Acyclic
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
Homotopy
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.instZeroHom_1

HomotopyEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
isKProjective 📖mathematicalCochainComplex.IsKProjectiveAddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.id_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.comp_zero

---

← Back to Index