instHasShiftInt đ | CompOp | 250 mathmath: HomotopyCategory.spectralObjectMappingCone_δ'_app, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoXâCochainComplexMapSingleFunctorOfNatXâ, triangleOfDegreewiseSplit_objâ, mappingConeCompTriangleh_commâ_assoc, HomComplex.Cochain.rightShiftAddEquiv_symm_apply, HomComplex.Cocycle.leftShiftAddEquiv_symm_apply, mappingConeCompTriangle_objâ, isStrictlyGE_shift, shiftFunctorZero_eq, HomologicalComplexâ.totalShiftâIso_hom_naturality_assoc, HomComplex.Cochain.leftShift_smul, mappingCone.triangle_morâ, shiftShortComplexFunctorIso_hom_app_Ďâ, shiftShortComplexFunctorIso_hom_app_Ďâ, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, HomComplex.Cocycle.equivHomShift_symm_postcomp, instLinearIntFunctorSingleFunctors, mapBifunctorShiftâIso_hom_naturalityâ_assoc, HomComplex.Cochain.rightUnshift_neg, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_hom_app, mappingConeCompTriangle_morâ, HomComplex.Cochain.shift_add, mappingCone.rotateHomotopyEquiv_commâ_assoc, mapBifunctorShiftâIso_hom_naturalityâ_assoc, shiftShortComplexFunctorIso_add'_hom_app, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, instIsCompatibleWithShiftHomologicalComplexIntUpQuasiIso, HomComplex.Cochain.leftShiftLinearEquiv_apply, HomComplex.Cochain.shift_neg, Κ_mapBifunctorShiftâIso_hom_f_assoc, HomologicalComplexâ.Κ_totalShiftâIso_hom_f_assoc, HomComplex.Cocycle.equivHomShift'_symm_apply, mappingCone.inl_v_triangle_morâ_f, XIsoOfEq_shift, HomologicalComplexâ.Κ_totalShiftâIso_inv_f, HomComplex.Cochain.rightUnshift_comp, HomComplex.Cochain.rightUnshift_units_smul, mappingCone.inr_triangleδ, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_eq, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, mappingConeCompHomotopyEquiv_commâ_assoc, mappingConeCompHomotopyEquiv_hom_inv_id, HomComplex.Cochain.shift_zero, shiftFunctorZero_inv_app_f, HomologicalComplexâ.Κ_totalShiftâIso_inv_f_assoc, HomComplex.Cochain.leftShift_comp, triangleOfDegreewiseSplit_objâ, MappingConeCompHomotopyEquiv.hom_inv_id_assoc, homologyFunctor_shift, isKInjective_shift_iff, HomComplex.Cochain.leftShift_rightShift_eq_negOnePow_rightShift_leftShift, HomComplex.Cochain.leftShift_rightShift, instAdditiveIntFunctorSingleFunctors, mappingConeCompHomotopyEquiv_commâ, mappingCone.triangleMap_homâ, mappingCone.rotateHomotopyEquiv_commâ, homologySequenceδ_quotient_mapTriangle_obj_assoc, CategoryTheory.ProjectiveResolution.extMk_hom, mappingCone.triangleRotateShortComplex_Xâ, HomComplex.Cochain.shift_smul, HomComplex.Cochain.leftShiftAddEquiv_apply, shiftShortComplexFunctor'_hom_app_Ďâ, HomComplex.Cochain.rightShiftAddEquiv_apply, shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, HomComplex.Cochain.leftUnshift_v, mappingConeCompHomotopyEquiv_commâ_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, mappingCone.triangleRotateShortComplex_Xâ, HomComplex.Cochain.rightShift_leftShift, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom, instLinearHomologicalComplexIntUpShiftFunctor, HomComplex.Cochain.leftUnshift_smul, instIsKInjectiveObjIntShiftFunctor, mappingConeCompTriangle_morâ_naturality, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, HomComplex.Cochain.shiftLinearMap_apply, mappingCone.triangleRotateShortComplex_Xâ, shiftFunctor_map_f', HomComplex.Cochain.rightShift_zero, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, quasiIso_shift_iff, HomComplex.Cochain.rightUnshift_v, shiftShortComplexFunctor'_hom_app_Ďâ, shiftFunctorAdd'_inv_app_f', mapBifunctorHomologicalComplexShiftâIso_inv_f_f, CategoryTheory.Functor.mapCochainComplexShiftIso_inv_app_f, shiftFunctorAdd'_eq, mapBifunctorShiftâIso_hom_naturalityâ, mappingCone.inl_v_triangle_morâ_f_assoc, mappingConeCompTriangle_morâ, mappingCone.inr_triangleδ_assoc, HomComplex.Cochain.leftShift_zero, triangleOfDegreewiseSplit_morâ, mappingCone.inr_f_triangle_morâ_f, mapBifunctorHomologicalComplexShiftâIso_hom_f_f, triangleOfDegreewiseSplit_objâ, mappingCone.triangle_morâ, HomologicalComplexâ.Κ_totalShiftâIso_inv_f_assoc, HomComplex.Cocycle.leftUnshift_coe, MappingConeCompHomotopyEquiv.hom_inv_id, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, quasiIsoAt_shift_iff, HomComplex.Cocycle.equivHomShift_symm_apply, instIsKProjectiveObjIntShiftFunctor, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, HomComplex.Cochain.rightShift_smul, homOfDegreewiseSplit_f, shiftFunctorAdd_inv_app_f, HomologicalComplexâ.Κ_totalShiftâIso_hom_f_assoc, shiftShortComplexFunctorIso_hom_app_Ďâ, shiftShortComplexFunctorIso_inv_app_Ďâ, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_inv_app, mappingConeCompTriangle_objâ, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, HomComplex.Cocycle.rightShiftAddEquiv_symm_apply, HomComplex.Cochain.shift_units_smul, shiftFunctorAdd_eq, HomComplex.Cochain.leftShiftLinearEquiv_symm_apply, Κ_mapBifunctorShiftâIso_hom_f, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_homâ, mappingConeCompHomotopyEquiv_commâ, HomComplex.CohomologyClass.toHom_bijective, HomComplex.Cochain.leftUnshift_add, mappingCone.rotateHomotopyEquiv_commâ_assoc, HomotopyCategory.instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic, HomComplex.Cochain.rightShift_units_smul, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, HomComplex.Cochain.rightUnshift_smul, HomComplex.Cocycle.equivHomShift'_apply, instQuasiIsoIntMapHomologicalComplexUpShiftFunctor, mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ_assoc, HomComplex.Cochain.δ_shift, shiftShortComplexFunctor'_hom_app_Ďâ, HomologicalComplexâ.totalShiftâIso_trans_totalShiftâIso, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_flip_inv_app, CategoryTheory.InjectiveResolution.extMk_hom, HomComplex.Cochain.δ_rightUnshift, HomComplex.Cochain.leftUnshift_units_smul, HomComplex.Cochain.rightShiftLinearEquiv_apply, mappingCone.trianglehMapOfHomotopy_homâ, HomComplex.Cocycle.shift_coe, isStrictlyLE_shift, mappingCone.trianglehMapOfHomotopy_homâ, HomComplex.Cochain.δ_rightShift, HomologicalComplexâ.Κ_totalShiftâIso_inv_f, HomComplex.Cochain.leftShift_v, HomComplex.Cochain.rightUnshift_add, homologySequenceδ_quotient_mapTriangle_obj, mapBifunctorHomologicalComplexShiftâIso_hom_f_f, HomotopyCategory.homologyFunctor_shiftMap_assoc, HomologicalComplexâ.totalShiftâIso_hom_naturality, shiftFunctor_obj_X', HomComplex.Cochain.shift_v, shiftFunctorZero_hom_app_f, triangleOfDegreewiseSplit_morâ, shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, HomComplex.Cochain.shiftAddHom_apply, mappingCone.trianglehMapOfHomotopy_homâ, HomComplex.Cochain.δ_leftUnshift, shiftFunctorAdd'_hom_app_f', HomComplex.Cochain.leftShift_add, HomComplex.Cochain.leftShift_comp_zero_cochain, mappingCone.triangleMapOfHomotopy_commâ_assoc, shiftEval_hom_app, mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_morâ, instHasMapBifunctorObjIntShiftFunctor_1, HomComplex.Cocycle.equivHomShift_comp, mappingCone.triangleRotateShortComplex_g, shiftFunctor_obj_d', instHasMapBifunctorObjIntShiftFunctor, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, HomologicalComplexâ.totalShiftâIso_hom_totalShiftâIso_hom_assoc, Κ_mapBifunctorShiftâIso_hom_f_assoc, triangleOfDegreewiseSplit_morâ, mapBifunctorHomologicalComplexShiftâIso_inv_f_f, HomComplex.Cochain.leftShift_units_smul, HomotopyCategory.homologyShiftIso_hom_app, shiftFunctorAdd_hom_app_f, HomologicalComplexâ.totalShiftâIso_hom_naturality_assoc, mapBifunctorShiftâIso_trans_mapBifunctorShiftâIso, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_homâ, shiftShortComplexFunctor'_inv_app_Ďâ, mappingCone.inr_f_triangle_morâ_f_assoc, mappingCone.triangleMap_homâ, HomologicalComplexâ.Κ_totalShiftâIso_hom_f, HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, shiftFunctorComm_hom_app_f, mappingConeHomOfDegreewiseSplitIso_inv_f, HomComplex.Cochain.leftShiftAddEquiv_symm_apply, HomComplex.Cochain.rightShift_neg, HomologicalComplexâ.totalShiftâIso_hom_naturality, mappingConeCompTriangle_morâ_naturality_assoc, mappingCone.triangleMapOfHomotopy_commâ, DerivedCategory.singleFunctorsPostcompQIso_hom_hom, shiftShortComplexFunctor'_inv_app_Ďâ, HomComplex.Cocycle.equivHomShift_symm_precomp, CategoryTheory.Functor.mapCochainComplexShiftIso_hom_app_f, shiftEval_inv_app, mapBifunctorShiftâIso_hom_naturalityâ, HomComplex.Cocycle.rightShiftAddEquiv_apply, HomComplex.Cocycle.equivHomShift_comp_shift, HomotopyCategory.homologyFunctor_shiftMap, HomComplex.Cochain.rightShiftLinearEquiv_symm_apply, shiftShortComplexFunctor'_inv_app_Ďâ, shiftShortComplexFunctorIso_zero_add_hom_app, isKProjective_shift_iff, mappingCone.triangle_objâ, mappingCone.triangleMap_homâ, shiftShortComplexFunctorIso_inv_app_Ďâ, mappingConeCompTriangle_morâ, HomComplex.Cochain.rightShift_v, HomComplex.Cochain.rightUnshift_zero, mappingConeCompTriangleh_commâ, HomComplex.Cocycle.leftShift_coe, HomComplex.Cochain.shift_v', DerivedCategory.mem_distTriang_iff, CategoryTheory.Functor.instCommShiftCochainComplexIntMapMapâCochainComplex, HomComplex.Cochain.rightShift_add, ShiftSequence.shiftIso_inv_app, CategoryTheory.Functor.instCommShiftCochainComplexIntMapFlipMapâCochainComplex, isGE_shift, CategoryTheory.Functor.commShiftIso_mapâCochainComplex_hom_app, mappingCone.triangleRotateShortComplex_f, HomComplex.Cocycle.rightUnshift_coe, mappingCone.rotateHomotopyEquiv_commâ, HomComplex.Cochain.δ_leftShift, HomComplex.CohomologyClass.toHom_mk, HomComplex.Cocycle.leftShiftAddEquiv_apply, mappingConeHomOfDegreewiseSplitIso_hom_f, HomComplex.Cochain.leftShift_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, HomComplex.Cocycle.equivHomShift_apply, shiftShortComplexFunctorIso_inv_app_Ďâ, HomComplex.Cochain.leftUnshift_neg, isLE_shift, mappingCone.triangle_objâ, HomComplex.Cocycle.rightShift_coe, mappingConeCompHomotopyEquiv_hom_inv_id_assoc, HomComplex.Cochain.leftUnshift_zero, mappingCone.triangle_objâ, HomComplex.CohomologyClass.homAddEquiv_apply, mappingConeCompTriangle_objâ, instAdditiveHomologicalComplexIntUpShiftFunctor, HomologicalComplexâ.Κ_totalShiftâIso_hom_f, Κ_mapBifunctorShiftâIso_hom_f, ShiftSequence.shiftIso_hom_app, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, mappingCone.map_δ
|