Documentation Verification Report

Shift

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory/Shift.lean

Statistics

MetricCount
DefinitionscommShiftMapCochainComplex, mapCochainComplexShiftIso, instHasShiftInt, shiftEval, shiftFunctor, shiftFunctorAdd', shiftFunctorObjXIso, shiftFunctorZero', shift, commShiftQuotient, hasShift, instCommShiftIntUpMapHomotopyCategory
12
TheoremsmapCochainComplexShiftIso_hom_app_f, mapCochainComplexShiftIso_inv_app_f, mapHomologicalComplex_commShiftIso_eq, mapHomologicalComplex_commShiftIso_hom_app_f, mapHomologicalComplex_commShiftIso_inv_app_f, XIsoOfEq_shift, instAdditiveHomologicalComplexIntUpShiftFunctor, instAdditiveIntShiftFunctor, instLinearHomologicalComplexIntUpShiftFunctor, instLinearIntShiftFunctor, shiftEval_hom_app, shiftEval_inv_app, shiftFunctorAdd'_eq, shiftFunctorAdd'_hom_app_f, shiftFunctorAdd'_hom_app_f', shiftFunctorAdd'_inv_app_f, shiftFunctorAdd'_inv_app_f', shiftFunctorAdd_eq, shiftFunctorAdd_hom_app_f, shiftFunctorAdd_inv_app_f, shiftFunctorComm_hom_app_f, shiftFunctorZero'_hom_app_f, shiftFunctorZero'_inv_app_f, shiftFunctorZero_eq, shiftFunctorZero_hom_app_f, shiftFunctorZero_inv_app_f, shiftFunctor_map_f, shiftFunctor_map_f', shiftFunctor_obj_X, shiftFunctor_obj_X', shiftFunctor_obj_d, shiftFunctor_obj_d', instAdditiveIntUpShiftFunctor, instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic, instLinearIntUpShiftFunctor
36
Total48

CategoryTheory.Functor

Definitions

NameCategoryTheorems
commShiftMapCochainComplex 📖CompOp
6 mathmath: mapHomologicalComplex_commShiftIso_eq, instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, mapHomologicalComplex_commShiftIso_inv_app_f, mapHomologicalComplex_commShiftIso_hom_app_f, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, CochainComplex.mappingCone.map_δ
mapCochainComplexShiftIso 📖CompOp
3 mathmath: mapHomologicalComplex_commShiftIso_eq, mapCochainComplexShiftIso_inv_app_f, mapCochainComplexShiftIso_hom_app_f

Theorems

NameKindAssumesProvesValidatesDepends On
mapCochainComplexShiftIso_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
obj
HomologicalComplex
HomologicalComplex.instCategory
comp
CategoryTheory.shiftFunctor
Int.instAddMonoid
CochainComplex.instHasShiftInt
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
category
mapCochainComplexShiftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
—preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
mapCochainComplexShiftIso_inv_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
obj
HomologicalComplex
HomologicalComplex.instCategory
comp
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CochainComplex.instHasShiftInt
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
category
mapCochainComplexShiftIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
—preservesZeroMorphisms_of_additive
AddRightCancelSemigroup.toIsRightCancelAdd
mapHomologicalComplex_commShiftIso_eq 📖mathematical—CommShift.commShiftIso
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
mapHomologicalComplex
preservesZeroMorphisms_of_additive
Int.instAddMonoid
CochainComplex.instHasShiftInt
commShiftMapCochainComplex
mapCochainComplexShiftIso
—AddRightCancelSemigroup.toIsRightCancelAdd
preservesZeroMorphisms_of_additive
mapHomologicalComplex_commShiftIso_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
obj
HomologicalComplex
HomologicalComplex.instCategory
comp
CategoryTheory.shiftFunctor
Int.instAddMonoid
CochainComplex.instHasShiftInt
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
CommShift.commShiftIso
commShiftMapCochainComplex
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
—AddRightCancelSemigroup.toIsRightCancelAdd
preservesZeroMorphisms_of_additive
mapHomologicalComplex_commShiftIso_inv_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
obj
HomologicalComplex
HomologicalComplex.instCategory
comp
mapHomologicalComplex
preservesZeroMorphisms_of_additive
CategoryTheory.shiftFunctor
Int.instAddMonoid
CochainComplex.instHasShiftInt
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
category
CommShift.commShiftIso
commShiftMapCochainComplex
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
—AddRightCancelSemigroup.toIsRightCancelAdd
preservesZeroMorphisms_of_additive

CochainComplex

Definitions

NameCategoryTheorems
instHasShiftInt 📖CompOp
250 mathmath: HomotopyCategory.spectralObjectMappingCone_δ'_app, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁, triangleOfDegreewiseSplit_obj₁, mappingConeCompTriangleh_comm₁_assoc, HomComplex.Cochain.rightShiftAddEquiv_symm_apply, HomComplex.Cocycle.leftShiftAddEquiv_symm_apply, mappingConeCompTriangle_obj₂, isStrictlyGE_shift, shiftFunctorZero_eq, HomologicalComplex₂.totalShift₂Iso_hom_naturality_assoc, HomComplex.Cochain.leftShift_smul, mappingCone.triangle_mor₁, shiftShortComplexFunctorIso_hom_app_τ₂, shiftShortComplexFunctorIso_hom_app_τ₃, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, HomComplex.Cocycle.equivHomShift_symm_postcomp, instLinearIntFunctorSingleFunctors, mapBifunctorShift₂Iso_hom_naturality₂_assoc, HomComplex.Cochain.rightUnshift_neg, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_hom_app, mappingConeCompTriangle_mor₃, HomComplex.Cochain.shift_add, mappingCone.rotateHomotopyEquiv_comm₂_assoc, mapBifunctorShift₁Iso_hom_naturality₁_assoc, shiftShortComplexFunctorIso_add'_hom_app, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, instIsCompatibleWithShiftHomologicalComplexIntUpQuasiIso, HomComplex.Cochain.leftShiftLinearEquiv_apply, HomComplex.Cochain.shift_neg, ι_mapBifunctorShift₂Iso_hom_f_assoc, HomologicalComplex₂.ι_totalShift₁Iso_hom_f_assoc, HomComplex.Cocycle.equivHomShift'_symm_apply, mappingCone.inl_v_triangle_mor₃_f, XIsoOfEq_shift, HomologicalComplex₂.ι_totalShift₁Iso_inv_f, HomComplex.Cochain.rightUnshift_comp, HomComplex.Cochain.rightUnshift_units_smul, mappingCone.inr_triangleδ, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_eq, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, mappingConeCompHomotopyEquiv_comm₂_assoc, mappingConeCompHomotopyEquiv_hom_inv_id, HomComplex.Cochain.shift_zero, shiftFunctorZero_inv_app_f, HomologicalComplex₂.ι_totalShift₂Iso_inv_f_assoc, HomComplex.Cochain.leftShift_comp, triangleOfDegreewiseSplit_obj₂, MappingConeCompHomotopyEquiv.hom_inv_id_assoc, homologyFunctor_shift, isKInjective_shift_iff, HomComplex.Cochain.leftShift_rightShift_eq_negOnePow_rightShift_leftShift, HomComplex.Cochain.leftShift_rightShift, instAdditiveIntFunctorSingleFunctors, mappingConeCompHomotopyEquiv_comm₁, mappingCone.triangleMap_hom₂, mappingCone.rotateHomotopyEquiv_comm₂, homologySequenceδ_quotient_mapTriangle_obj_assoc, CategoryTheory.ProjectiveResolution.extMk_hom, mappingCone.triangleRotateShortComplex_X₂, HomComplex.Cochain.shift_smul, HomComplex.Cochain.leftShiftAddEquiv_apply, shiftShortComplexFunctor'_hom_app_τ₁, HomComplex.Cochain.rightShiftAddEquiv_apply, shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv, HomComplex.Cochain.leftUnshift_v, mappingConeCompHomotopyEquiv_comm₁_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, mappingCone.triangleRotateShortComplex_X₃, HomComplex.Cochain.rightShift_leftShift, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom, instLinearHomologicalComplexIntUpShiftFunctor, HomComplex.Cochain.leftUnshift_smul, instIsKInjectiveObjIntShiftFunctor, mappingConeCompTriangle_mor₃_naturality, CategoryTheory.Functor.instCommShiftCochainComplexIntDerivedCategoryHomMapDerivedCategoryFactors, HomComplex.Cochain.shiftLinearMap_apply, mappingCone.triangleRotateShortComplex_X₁, shiftFunctor_map_f', HomComplex.Cochain.rightShift_zero, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, quasiIso_shift_iff, HomComplex.Cochain.rightUnshift_v, shiftShortComplexFunctor'_hom_app_τ₂, shiftFunctorAdd'_inv_app_f', mapBifunctorHomologicalComplexShift₂Iso_inv_f_f, CategoryTheory.Functor.mapCochainComplexShiftIso_inv_app_f, shiftFunctorAdd'_eq, mapBifunctorShift₂Iso_hom_naturality₂, mappingCone.inl_v_triangle_mor₃_f_assoc, mappingConeCompTriangle_mor₁, mappingCone.inr_triangleδ_assoc, HomComplex.Cochain.leftShift_zero, triangleOfDegreewiseSplit_mor₂, mappingCone.inr_f_triangle_mor₃_f, mapBifunctorHomologicalComplexShift₂Iso_hom_f_f, triangleOfDegreewiseSplit_obj₃, mappingCone.triangle_mor₂, HomologicalComplex₂.ι_totalShift₁Iso_inv_f_assoc, HomComplex.Cocycle.leftUnshift_coe, MappingConeCompHomotopyEquiv.hom_inv_id, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, quasiIsoAt_shift_iff, HomComplex.Cocycle.equivHomShift_symm_apply, instIsKProjectiveObjIntShiftFunctor, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, HomComplex.Cochain.rightShift_smul, homOfDegreewiseSplit_f, shiftFunctorAdd_inv_app_f, HomologicalComplex₂.ι_totalShift₂Iso_hom_f_assoc, shiftShortComplexFunctorIso_hom_app_τ₁, shiftShortComplexFunctorIso_inv_app_τ₂, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_inv_app, mappingConeCompTriangle_obj₃, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_inv_app_f, HomComplex.Cocycle.rightShiftAddEquiv_symm_apply, HomComplex.Cochain.shift_units_smul, shiftFunctorAdd_eq, HomComplex.Cochain.leftShiftLinearEquiv_symm_apply, ι_mapBifunctorShift₂Iso_hom_f, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, mappingConeCompHomotopyEquiv_comm₂, HomComplex.CohomologyClass.toHom_bijective, HomComplex.Cochain.leftUnshift_add, mappingCone.rotateHomotopyEquiv_comm₃_assoc, HomotopyCategory.instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic, HomComplex.Cochain.rightShift_units_smul, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, HomComplex.Cochain.rightUnshift_smul, HomComplex.Cocycle.equivHomShift'_apply, instQuasiIsoIntMapHomologicalComplexUpShiftFunctor, mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc, HomComplex.Cochain.δ_shift, shiftShortComplexFunctor'_hom_app_τ₃, HomologicalComplex₂.totalShift₁Iso_trans_totalShift₂Iso, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_flip_inv_app, CategoryTheory.InjectiveResolution.extMk_hom, HomComplex.Cochain.δ_rightUnshift, HomComplex.Cochain.leftUnshift_units_smul, HomComplex.Cochain.rightShiftLinearEquiv_apply, mappingCone.trianglehMapOfHomotopy_hom₃, HomComplex.Cocycle.shift_coe, isStrictlyLE_shift, mappingCone.trianglehMapOfHomotopy_hom₁, HomComplex.Cochain.δ_rightShift, HomologicalComplex₂.ι_totalShift₂Iso_inv_f, HomComplex.Cochain.leftShift_v, HomComplex.Cochain.rightUnshift_add, homologySequenceδ_quotient_mapTriangle_obj, mapBifunctorHomologicalComplexShift₁Iso_hom_f_f, HomotopyCategory.homologyFunctor_shiftMap_assoc, HomologicalComplex₂.totalShift₂Iso_hom_naturality, shiftFunctor_obj_X', HomComplex.Cochain.shift_v, shiftFunctorZero_hom_app_f, triangleOfDegreewiseSplit_mor₃, shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc, HomComplex.Cochain.shiftAddHom_apply, mappingCone.trianglehMapOfHomotopy_hom₂, HomComplex.Cochain.δ_leftUnshift, shiftFunctorAdd'_hom_app_f', HomComplex.Cochain.leftShift_add, HomComplex.Cochain.leftShift_comp_zero_cochain, mappingCone.triangleMapOfHomotopy_comm₃_assoc, shiftEval_hom_app, mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃, instHasMapBifunctorObjIntShiftFunctor_1, HomComplex.Cocycle.equivHomShift_comp, mappingCone.triangleRotateShortComplex_g, shiftFunctor_obj_d', instHasMapBifunctorObjIntShiftFunctor, CategoryTheory.Functor.mapHomologicalComplex_commShiftIso_hom_app_f, HomologicalComplex₂.totalShift₁Iso_hom_totalShift₂Iso_hom_assoc, ι_mapBifunctorShift₁Iso_hom_f_assoc, triangleOfDegreewiseSplit_mor₁, mapBifunctorHomologicalComplexShift₁Iso_inv_f_f, HomComplex.Cochain.leftShift_units_smul, HomotopyCategory.homologyShiftIso_hom_app, shiftFunctorAdd_hom_app_f, HomologicalComplex₂.totalShift₁Iso_hom_naturality_assoc, mapBifunctorShift₁Iso_trans_mapBifunctorShift₂Iso, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, shiftShortComplexFunctor'_inv_app_τ₃, mappingCone.inr_f_triangle_mor₃_f_assoc, mappingCone.triangleMap_hom₁, HomologicalComplex₂.ι_totalShift₂Iso_hom_f, HomComplex.CohomologyClass.toHom_mk_eq_zero_iff, shiftFunctorComm_hom_app_f, mappingConeHomOfDegreewiseSplitIso_inv_f, HomComplex.Cochain.leftShiftAddEquiv_symm_apply, HomComplex.Cochain.rightShift_neg, HomologicalComplex₂.totalShift₁Iso_hom_naturality, mappingConeCompTriangle_mor₃_naturality_assoc, mappingCone.triangleMapOfHomotopy_comm₃, DerivedCategory.singleFunctorsPostcompQIso_hom_hom, shiftShortComplexFunctor'_inv_app_τ₂, HomComplex.Cocycle.equivHomShift_symm_precomp, CategoryTheory.Functor.mapCochainComplexShiftIso_hom_app_f, shiftEval_inv_app, mapBifunctorShift₁Iso_hom_naturality₁, HomComplex.Cocycle.rightShiftAddEquiv_apply, HomComplex.Cocycle.equivHomShift_comp_shift, HomotopyCategory.homologyFunctor_shiftMap, HomComplex.Cochain.rightShiftLinearEquiv_symm_apply, shiftShortComplexFunctor'_inv_app_τ₁, shiftShortComplexFunctorIso_zero_add_hom_app, isKProjective_shift_iff, mappingCone.triangle_obj₂, mappingCone.triangleMap_hom₃, shiftShortComplexFunctorIso_inv_app_τ₃, mappingConeCompTriangle_mor₂, HomComplex.Cochain.rightShift_v, HomComplex.Cochain.rightUnshift_zero, mappingConeCompTriangleh_comm₁, HomComplex.Cocycle.leftShift_coe, HomComplex.Cochain.shift_v', DerivedCategory.mem_distTriang_iff, CategoryTheory.Functor.instCommShiftCochainComplexIntMapMap₂CochainComplex, HomComplex.Cochain.rightShift_add, ShiftSequence.shiftIso_inv_app, CategoryTheory.Functor.instCommShiftCochainComplexIntMapFlipMap₂CochainComplex, isGE_shift, CategoryTheory.Functor.commShiftIso_map₂CochainComplex_hom_app, mappingCone.triangleRotateShortComplex_f, HomComplex.Cocycle.rightUnshift_coe, mappingCone.rotateHomotopyEquiv_comm₃, HomComplex.Cochain.δ_leftShift, HomComplex.CohomologyClass.toHom_mk, HomComplex.Cocycle.leftShiftAddEquiv_apply, mappingConeHomOfDegreewiseSplitIso_hom_f, HomComplex.Cochain.leftShift_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, HomComplex.Cocycle.equivHomShift_apply, shiftShortComplexFunctorIso_inv_app_τ₁, HomComplex.Cochain.leftUnshift_neg, isLE_shift, mappingCone.triangle_obj₁, HomComplex.Cocycle.rightShift_coe, mappingConeCompHomotopyEquiv_hom_inv_id_assoc, HomComplex.Cochain.leftUnshift_zero, mappingCone.triangle_obj₃, HomComplex.CohomologyClass.homAddEquiv_apply, mappingConeCompTriangle_obj₁, instAdditiveHomologicalComplexIntUpShiftFunctor, HomologicalComplex₂.ι_totalShift₁Iso_hom_f, ι_mapBifunctorShift₁Iso_hom_f, ShiftSequence.shiftIso_hom_app, HomotopyCategory.instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, mappingCone.map_δ
shiftEval 📖CompOp
2 mathmath: shiftEval_hom_app, shiftEval_inv_app
shiftFunctor 📖CompOp
40 mathmath: shiftShortComplexFunctorIso_hom_app_τ₂, shiftShortComplexFunctorIso_hom_app_τ₃, shiftShortComplexFunctorIso_add'_hom_app, ι_mapBifunctorShift₂Iso_hom_f_assoc, HomologicalComplex₂.ι_totalShift₁Iso_hom_f_assoc, mappingCone.inl_v_triangle_mor₃_f, HomologicalComplex₂.ι_totalShift₁Iso_inv_f, HomologicalComplex₂.ι_totalShift₂Iso_inv_f_assoc, shiftFunctor_obj_X, HomComplex.Cochain.leftUnshift_v, HomComplex.Cochain.rightUnshift_v, shiftFunctorAdd'_inv_app_f, mappingCone.inl_v_triangle_mor₃_f_assoc, instLinearIntShiftFunctor, shiftFunctorZero'_hom_app_f, HomologicalComplex₂.ι_totalShift₁Iso_inv_f_assoc, instAdditiveIntShiftFunctor, shiftFunctor_map_f, HomologicalComplex₂.ι_totalShift₂Iso_hom_f_assoc, shiftShortComplexFunctorIso_hom_app_τ₁, shiftShortComplexFunctorIso_inv_app_τ₂, ι_mapBifunctorShift₂Iso_hom_f, shiftFunctorZero'_inv_app_f, HomologicalComplex₂.ι_totalShift₂Iso_inv_f, HomComplex.Cochain.leftShift_v, HomComplex.Cochain.shift_v, ι_mapBifunctorShift₁Iso_hom_f_assoc, shiftFunctorAdd'_hom_app_f, HomologicalComplex₂.ι_totalShift₂Iso_hom_f, shiftShortComplexFunctorIso_zero_add_hom_app, shiftShortComplexFunctorIso_inv_app_τ₃, HomComplex.Cochain.rightShift_v, ShiftSequence.shiftIso_inv_app, liftCycles_shift_homologyπ_assoc, shiftShortComplexFunctorIso_inv_app_τ₁, shiftFunctor_obj_d, liftCycles_shift_homologyπ, HomologicalComplex₂.ι_totalShift₁Iso_hom_f, ι_mapBifunctorShift₁Iso_hom_f, ShiftSequence.shiftIso_hom_app
shiftFunctorAdd' 📖CompOp
4 mathmath: shiftFunctorAdd'_eq, shiftFunctorAdd'_inv_app_f, shiftFunctorAdd_eq, shiftFunctorAdd'_hom_app_f
shiftFunctorObjXIso 📖CompOp
21 mathmath: ι_mapBifunctorShift₂Iso_hom_f_assoc, HomologicalComplex₂.ι_totalShift₁Iso_hom_f_assoc, mappingCone.inl_v_triangle_mor₃_f, HomologicalComplex₂.ι_totalShift₁Iso_inv_f, HomologicalComplex₂.ι_totalShift₂Iso_inv_f_assoc, HomComplex.Cochain.leftUnshift_v, HomComplex.Cochain.rightUnshift_v, mappingCone.inl_v_triangle_mor₃_f_assoc, HomologicalComplex₂.ι_totalShift₁Iso_inv_f_assoc, HomologicalComplex₂.ι_totalShift₂Iso_hom_f_assoc, ι_mapBifunctorShift₂Iso_hom_f, HomologicalComplex₂.ι_totalShift₂Iso_inv_f, HomComplex.Cochain.leftShift_v, HomComplex.Cochain.shift_v, ι_mapBifunctorShift₁Iso_hom_f_assoc, HomologicalComplex₂.ι_totalShift₂Iso_hom_f, HomComplex.Cochain.rightShift_v, liftCycles_shift_homologyπ_assoc, liftCycles_shift_homologyπ, HomologicalComplex₂.ι_totalShift₁Iso_hom_f, ι_mapBifunctorShift₁Iso_hom_f
shiftFunctorZero' 📖CompOp
3 mathmath: shiftFunctorZero_eq, shiftFunctorZero'_hom_app_f, shiftFunctorZero'_inv_app_f

Theorems

NameKindAssumesProvesValidatesDepends On
XIsoOfEq_shift 📖mathematical—HomologicalComplex.XIsoOfEq
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
—AddRightCancelSemigroup.toIsRightCancelAdd
instAdditiveHomologicalComplexIntUpShiftFunctor 📖mathematical—CategoryTheory.Functor.Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomologicalComplex.instPreadditive
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
—AddRightCancelSemigroup.toIsRightCancelAdd
instAdditiveIntShiftFunctor
instAdditiveIntShiftFunctor 📖mathematical—CategoryTheory.Functor.Additive
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instPreadditive
shiftFunctor
—AddRightCancelSemigroup.toIsRightCancelAdd
instLinearHomologicalComplexIntUpShiftFunctor 📖mathematical—CategoryTheory.Functor.Linear
Ring.toSemiring
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomologicalComplex.instPreadditive
HomologicalComplex.instLinear
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
—AddRightCancelSemigroup.toIsRightCancelAdd
instLinearIntShiftFunctor 📖mathematical—CategoryTheory.Functor.Linear
Ring.toSemiring
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instPreadditive
HomologicalComplex.instLinear
shiftFunctor
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftEval_hom_app 📖mathematical—CategoryTheory.NatTrans.app
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
HomologicalComplex.eval
CategoryTheory.Iso.hom
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
shiftEval
HomologicalComplex.X
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftEval_inv_app 📖mathematical—CategoryTheory.NatTrans.app
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
HomologicalComplex.eval
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
CategoryTheory.Iso.inv
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
shiftEval
HomologicalComplex.X
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctorAdd'_eq 📖mathematical—CategoryTheory.shiftFunctorAdd'
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Int.instAddMonoid
instHasShiftInt
shiftFunctorAdd'
—CategoryTheory.Iso.ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.NatTrans.ext'
HomologicalComplex.hom_ext
shiftFunctorAdd'_hom_app_f'
shiftFunctorAdd'_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
shiftFunctor
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
shiftFunctorAdd'
HomologicalComplex.X
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctorAdd'_hom_app_f' 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorAdd'
HomologicalComplex.X
CategoryTheory.Discrete.as
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctorAdd'_eq_shiftFunctorAdd
shiftFunctorAdd_hom_app_f
shiftFunctorAdd'_inv_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
shiftFunctorAdd'
HomologicalComplex.X
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctorAdd'_inv_app_f' 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorAdd'
CategoryTheory.Iso.hom
HomologicalComplex.X
CategoryTheory.Discrete.as
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctorAdd'_eq_shiftFunctorAdd
shiftFunctorAdd_inv_app_f
shiftFunctorAdd_eq 📖mathematical—CategoryTheory.shiftFunctorAdd
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Int.instAddMonoid
instHasShiftInt
shiftFunctorAdd'
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctorAdd'_eq_shiftFunctorAdd
shiftFunctorAdd'_eq
shiftFunctorAdd_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddMonoid.toAddSemigroup
CategoryTheory.Functor.comp
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorAdd
HomologicalComplex.X
CategoryTheory.Discrete.as
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctorAdd_inv_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddMonoid.toAddSemigroup
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorAdd
CategoryTheory.Iso.hom
HomologicalComplex.X
CategoryTheory.Discrete.as
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctorComm_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.comp
CategoryTheory.shiftFunctor
AddCommMonoid.toAddMonoid
Int.instAddCommMonoid
instHasShiftInt
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorComm
HomologicalComplex.X
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.shiftFunctorComm_eq
shiftFunctorAdd'_inv_app_f'
shiftFunctorAdd'_hom_app_f'
CategoryTheory.eqToHom_trans
shiftFunctorZero'_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
shiftFunctor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
shiftFunctorZero'
HomologicalComplex.X
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctorZero'_inv_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.id
shiftFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
shiftFunctorZero'
HomologicalComplex.X
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctorZero_eq 📖mathematical—CategoryTheory.shiftFunctorZero
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
Int.instAddMonoid
instHasShiftInt
shiftFunctorZero'
—CategoryTheory.Iso.ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.NatTrans.ext'
HomologicalComplex.hom_ext
shiftFunctorZero_hom_app_f
shiftFunctorZero'_hom_app_f
shiftFunctorZero_hom_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorZero
HomologicalComplex.X
CategoryTheory.Discrete.as
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctorZero_inv_app_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.id
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.shiftFunctorZero
CategoryTheory.Iso.hom
HomologicalComplex.X
CategoryTheory.Discrete.as
HomologicalComplex.XIsoOfEq
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor_map_f 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.X
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Int.negOnePow
HomologicalComplex.d
CategoryTheory.Functor.map
CochainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor_map_f' 📖mathematical—HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
CategoryTheory.Functor.map
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor_obj_X 📖mathematical—HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor_obj_X' 📖mathematical—HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor_obj_d 📖mathematical—HomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Int.negOnePow
—AddRightCancelSemigroup.toIsRightCancelAdd
shiftFunctor_obj_d' 📖mathematical—HomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
Units
Int.instMonoid
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Discrete.as
Units.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
Int.negOnePow
—AddRightCancelSemigroup.toIsRightCancelAdd

Homotopy

Definitions

NameCategoryTheorems
shift 📖CompOp—

HomotopyCategory

Definitions

NameCategoryTheorems
commShiftQuotient 📖CompOp
8 mathmath: spectralObjectMappingCone_δ'_app, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, homologyFunctor_shiftMap_assoc, homologyShiftIso_hom_app, homologyFunctor_shiftMap, instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors
hasShift 📖CompOp
32 mathmath: spectralObjectMappingCone_δ'_app, CochainComplex.mappingConeCompTriangleh_comm₁_assoc, DerivedCategory.instCommShiftHomologicalComplexIntUpHomFunctorQuotientCompQhIso, CochainComplex.mappingCone.homologySequenceδ_triangleh, instIsHomologicalIntUpHomologyFunctor, instAdditiveIntUpShiftFunctor, CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, DerivedCategory.instIsTriangulatedHomotopyCategoryIntUpQh, mappingCone_triangleh_distinguished, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, instLinearIntUpShiftFunctor, Pretriangulated.distinguished_cocone_triangle, Pretriangulated.contractible_distinguished, instIsTriangulatedIntUpSubcategoryAcyclic, instIsTriangulatedIntUp, instIsTriangulatedIntUpMapHomotopyCategory, quasiIso_eq_subcategoryAcyclic_W, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₃, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₁, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, homologyFunctor_shiftMap_assoc, distinguished_iff_iso_trianglehOfDegreewiseSplit, CochainComplex.mappingCone.trianglehMapOfHomotopy_hom₂, spectralObjectMappingCone_ω₁, homologyShiftIso_hom_app, DerivedCategory.Qh_obj_singleFunctors_obj, Pretriangulated.rotate_distinguished_triangle, homologyFunctor_shiftMap, CochainComplex.mappingConeCompTriangleh_comm₁, mappingConeCompTriangleh_distinguished, instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhTrWSubcategoryAcyclic
instCommShiftIntUpMapHomotopyCategory 📖CompOp
3 mathmath: CategoryTheory.Functor.instCommShiftHomotopyCategoryIntUpDerivedCategoryHomMapDerivedCategoryFactorsh, instIsTriangulatedIntUpMapHomotopyCategory, instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveIntUpShiftFunctor 📖mathematical—CategoryTheory.Functor.Additive
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
instPreadditive
CategoryTheory.shiftFunctor
Int.instAddMonoid
hasShift
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.additive_of_iso
CategoryTheory.Functor.instAdditiveComp
CochainComplex.instAdditiveHomologicalComplexIntUpShiftFunctor
instAdditiveHomologicalComplexQuotient
CategoryTheory.Functor.additive_of_full_essSurj_comp
instFullHomologicalComplexQuotient
instEssSurjHomologicalComplexQuotient
instCommShiftHomologicalComplexIntUpHomFunctorMapHomotopyCategoryFactors 📖mathematical—CategoryTheory.NatTrans.CommShift
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomotopyCategory
HomologicalComplex.instCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.comp
quotient
CategoryTheory.Functor.mapHomotopyCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.mapHomotopyCategoryFactors
Int.instAddMonoid
CochainComplex.instHasShiftInt
hasShift
CategoryTheory.Functor.CommShift.comp
commShiftQuotient
instCommShiftIntUpMapHomotopyCategory
CategoryTheory.Functor.commShiftMapCochainComplex
—CategoryTheory.Quotient.liftCommShift_compatibility
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic
instIsCompatibleWithShiftHomologicalComplexIntUpHomotopic 📖mathematical—HomRel.IsCompatibleWithShift
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
homotopic
Int.instAddMonoid
CochainComplex.instHasShiftInt
—AddRightCancelSemigroup.toIsRightCancelAdd
instLinearIntUpShiftFunctor 📖mathematical—CategoryTheory.Functor.Linear
Ring.toSemiring
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
instPreadditive
instLinear
CategoryTheory.shiftFunctor
Int.instAddMonoid
hasShift
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.map_surjective
instFullHomologicalComplexQuotient
CategoryTheory.NatIso.naturality_1
CategoryTheory.Functor.map_smul
instLinearHomologicalComplexQuotient
CochainComplex.instLinearHomologicalComplexIntUpShiftFunctor
CategoryTheory.Linear.smul_comp
CategoryTheory.Functor.commShiftIso_hom_naturality
CategoryTheory.Linear.comp_smul
CategoryTheory.Iso.inv_hom_id_app_assoc

---

← Back to Index