| Name | Category | Theorems |
instShiftSequenceHomologicalComplexIntUpHomologyFunctorOfNat 📖 | CompOp | 8 mathmath: homologyFunctor_shift, homologySequenceδ_quotient_mapTriangle_obj_assoc, homologySequenceδ_quotient_mapTriangle_obj, HomotopyCategory.homologyFunctor_shiftMap_assoc, HomotopyCategory.homologyShiftIso_hom_app, HomotopyCategory.homologyFunctor_shiftMap, liftCycles_shift_homologyπ_assoc, liftCycles_shift_homologyπ
|
shiftShortComplexFunctor' 📖 | CompOp | 6 mathmath: shiftShortComplexFunctor'_hom_app_τ₁, shiftShortComplexFunctor'_hom_app_τ₂, shiftShortComplexFunctor'_hom_app_τ₃, shiftShortComplexFunctor'_inv_app_τ₃, shiftShortComplexFunctor'_inv_app_τ₂, shiftShortComplexFunctor'_inv_app_τ₁
|
shiftShortComplexFunctorIso 📖 | CompOp | 10 mathmath: shiftShortComplexFunctorIso_hom_app_τ₂, shiftShortComplexFunctorIso_hom_app_τ₃, shiftShortComplexFunctorIso_add'_hom_app, shiftShortComplexFunctorIso_hom_app_τ₁, shiftShortComplexFunctorIso_inv_app_τ₂, shiftShortComplexFunctorIso_zero_add_hom_app, shiftShortComplexFunctorIso_inv_app_τ₃, ShiftSequence.shiftIso_inv_app, shiftShortComplexFunctorIso_inv_app_τ₁, ShiftSequence.shiftIso_hom_app
|