Documentation Verification Report

ShortExact

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory/ShortExact.lean

Statistics

MetricCount
DefinitionsdescShortComplex
1
TheoremshomologySequenceδ_quotient_mapTriangle_obj, homologySequenceδ_quotient_mapTriangle_obj_assoc, homologySequenceδ_triangleh, inl_v_descShortComplex_f, inl_v_descShortComplex_f_assoc, inr_descShortComplex, inr_descShortComplex_assoc, inr_f_descShortComplex_f, inr_f_descShortComplex_f_assoc, quasiIso_descShortComplex
10
Total11

CochainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
homologySequenceδ_quotient_mapTriangle_obj 📖mathematical—CategoryTheory.Functor.homologySequenceδ
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
HomotopyCategory.hasShift
HomotopyCategory.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
HomotopyCategory.instShiftSequenceIntUpHomologyFunctorOfNat
CategoryTheory.Functor.obj
CategoryTheory.Pretriangulated.Triangle
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
instHasShiftInt
CategoryTheory.Pretriangulated.triangleCategory
CategoryTheory.Functor.mapTriangle
HomotopyCategory.quotient
HomotopyCategory.commShiftQuotient
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.comp
CategoryTheory.Pretriangulated.Triangle.obj₃
CochainComplex
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
HomologicalComplex.homologyFunctor
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
HomotopyCategory.homologyFunctorFactors
CategoryTheory.Functor.shift
Int.instAddMonoid
instShiftSequenceHomologicalComplexIntUpHomologyFunctorOfNat
CategoryTheory.Functor.shiftMap
CategoryTheory.Pretriangulated.Triangle.mor₃
CategoryTheory.Iso.inv
—AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory.homologyFunctor_shiftMap
CategoryTheory.categoryWithHomology_of_abelian
homologySequenceδ_quotient_mapTriangle_obj_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomotopyCategory
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
CategoryTheory.Functor.shift
HomotopyCategory.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
Int.instAddMonoid
HomotopyCategory.hasShift
HomotopyCategory.instShiftSequenceIntUpHomologyFunctorOfNat
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.Pretriangulated.Triangle
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
instHasShiftInt
CategoryTheory.Pretriangulated.triangleCategory
CategoryTheory.Functor.mapTriangle
HomotopyCategory.quotient
HomotopyCategory.commShiftQuotient
CategoryTheory.Pretriangulated.Triangle.obj₁
CategoryTheory.Functor.homologySequenceδ
HomologicalComplex.homologyFunctor
CochainComplex
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
HomotopyCategory.homologyFunctorFactors
instShiftSequenceHomologicalComplexIntUpHomologyFunctorOfNat
CategoryTheory.Functor.shiftMap
CategoryTheory.Pretriangulated.Triangle.mor₃
CategoryTheory.Iso.inv
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologySequenceδ_quotient_mapTriangle_obj

CochainComplex.mappingCone

Definitions

NameCategoryTheorems
descShortComplex 📖CompOp
8 mathmath: homologySequenceδ_triangleh, inr_f_descShortComplex_f_assoc, inr_descShortComplex_assoc, quasiIso_descShortComplex, inl_v_descShortComplex_f_assoc, inr_descShortComplex, inl_v_descShortComplex_f, inr_f_descShortComplex_f

Theorems

NameKindAssumesProvesValidatesDepends On
homologySequenceδ_triangleh 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instHasZeroMorphisms
CategoryTheory.Functor.homologySequenceδ
HomotopyCategory
instCategoryHomotopyCategory
HomotopyCategory.hasShift
HomotopyCategory.homologyFunctor
CategoryTheory.categoryWithHomology_of_abelian
HomotopyCategory.instShiftSequenceIntUpHomologyFunctorOfNat
triangleh
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Functor.comp
HomotopyCategory.quotient
CochainComplex.mappingCone
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
HomologicalComplex.homologyFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
HomotopyCategory.homologyFunctorFactors
HomologicalComplex.homology
CategoryTheory.ShortComplex.X₃
CategoryTheory.CategoryWithHomology.hasHomology
HomologicalComplex.sc
HomologicalComplex.homologyMap
descShortComplex
CategoryTheory.ShortComplex.ShortExact.δ
CategoryTheory.Iso.inv
—AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.Abelian.hasBinaryBiproducts
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.Functor.instIsSplitMonoApp
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.NatIso.inv_app_isIso
CategoryTheory.Iso.inv_hom_id_app_assoc
CategoryTheory.Functor.map_injective
CategoryTheory.Yoneda.yoneda_faithful
CategoryTheory.NatTrans.ext'
CategoryTheory.types_ext
CochainComplex.next
HomologicalComplex.eq_liftCycles_homologyπ_up_to_refinements
CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc
CategoryTheory.Category.comp_id
Mathlib.Tactic.Reassoc.eq_whisker'
HomologicalComplex.homologyπ_naturality_assoc
HomologicalComplex.liftCycles_comp_cyclesMap_assoc
decomp_to
CategoryTheory.Preadditive.add_comp
inl_v_descShortComplex_f
CategoryTheory.Limits.comp_zero
inr_f_descShortComplex_f
zero_add
HomologicalComplex.liftCycles.congr_simp
CategoryTheory.Preadditive.neg_comp
add_zero
CategoryTheory.Limits.zero_comp
inl_v_snd_v_assoc
inl_v_fst_v_assoc
CategoryTheory.Preadditive.comp_add
d_snd_v
inr_f_snd_v
neg_eq_zero
CategoryTheory.Preadditive.comp_neg
d_fst_v
inr_f_fst_v
inr_f_d
ext_to_iff
ComplexShape.next_eq'
CategoryTheory.ShortComplex.ShortExact.δ_eq
CochainComplex.liftCycles_shift_homologyπ_assoc
inl_v_triangle_mor₃_f_assoc
CategoryTheory.Iso.inv_hom_id
inr_f_triangle_mor₃_f_assoc
inl_v_descShortComplex_f 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.ShortComplex.X₁
CochainComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.ShortComplex.X₃
CochainComplex.HomComplex.Cochain.v
inl
HomologicalComplex.Hom.f
descShortComplex
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
inl_v_desc_f
inl_v_descShortComplex_f_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.ShortComplex.X₁
CochainComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CochainComplex.HomComplex.Cochain.v
inl
CategoryTheory.ShortComplex.X₃
HomologicalComplex.Hom.f
descShortComplex
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
—AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inl_v_descShortComplex_f
inr_descShortComplex 📖mathematical—CategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.X₂
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
CategoryTheory.ShortComplex.X₃
inr
descShortComplex
CategoryTheory.ShortComplex.g
—AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
inr_desc
inr_descShortComplex_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.ShortComplex.X₂
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
inr
CategoryTheory.ShortComplex.X₃
descShortComplex
CategoryTheory.ShortComplex.g
—AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_descShortComplex
inr_f_descShortComplex_f 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.ShortComplex.X₂
CochainComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.ShortComplex.X₃
HomologicalComplex.Hom.f
inr
descShortComplex
CategoryTheory.ShortComplex.g
—AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
inr_f_desc_f
inr_f_descShortComplex_f_assoc 📖mathematical—CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.ShortComplex.X₂
CochainComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
CochainComplex.mappingCone
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.Hom.f
inr
CategoryTheory.ShortComplex.X₃
descShortComplex
CategoryTheory.ShortComplex.g
—AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_f_descShortComplex_f
quasiIso_descShortComplex 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instHasZeroMorphisms
QuasiIso
CochainComplex.mappingCone
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
HomologicalComplex.X
CategoryTheory.ShortComplex.X₃
descShortComplex
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
HomologicalComplex.sc
—AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Abelian.hasBinaryBiproducts
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
quasiIsoAt_iff_isIso_homologyMap
CategoryTheory.NatTrans.naturality
CategoryTheory.NatTrans.naturality_assoc
HomologicalComplex.homologyMap_comp
inr_descShortComplex
homologySequenceδ_triangleh
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_app
CategoryTheory.Category.comp_id
CategoryTheory.Abelian.isIso_of_epi_of_isIso_of_isIso_of_mono
CategoryTheory.ComposableArrows.Exact.δlast
CategoryTheory.Functor.homologySequenceComposableArrows₅_exact
HomotopyCategory.instHasZeroObject
CategoryTheory.Abelian.hasZeroObject
HomotopyCategory.instAdditiveIntUpShiftFunctor
HomotopyCategory.instIsHomologicalIntUpHomologyFunctor
HomotopyCategory.mappingCone_triangleh_distinguished
HomologicalComplex.HomologySequence.composableArrows₅_exact
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.NatIso.hom_app_isIso
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.Functor.instIsSplitMonoApp
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsIso.of_isIso_comp_left

---

← Back to Index