Documentation Verification Report

SingleFunctors

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory/SingleFunctors.lean

Statistics

MetricCount
DefinitionsmapCochainComplexSingleFunctor, singleFunctor, singleFunctors, singleFunctor, singleFunctorPostcompQuotientIso, singleFunctors, singleFunctorsPostcompQuotientIso
7
TheoremsinstAdditiveIntFunctorSingleFunctors, instFaithfulIntSingleFunctor, instFullIntSingleFunctor, instLinearIntFunctorSingleFunctors, singleFunctor_obj_d, instAdditiveIntUpSingleFunctor, instLinearIntUpSingleFunctor, quotient_obj_singleFunctors_obj
8
Total15

CategoryTheory.Functor

Definitions

NameCategoryTheorems
mapCochainComplexSingleFunctor 📖CompOp

CochainComplex

Definitions

NameCategoryTheorems
singleFunctor 📖CompOp
84 mathmath: CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁, HomComplex.Cochain.fromSingleMk_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_neg, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_add, HomComplex.Cocycle.fromSingleMk_add, CategoryTheory.InjectiveResolution.ι'_f_zero, HomComplex.Cochain.fromSingleEquiv_fromSingleMk, HomComplex.Cochain.δ_fromSingleMk, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_add, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_sub, HomComplex.Cochain.toSingleMk_neg, HomComplex.Cochain.toSingleMk_v, HomComplex.Cochain.toSingleMk_add, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_sub, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_sub, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_mk_hom, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_sub, HomComplex.Cochain.fromSingleMk_postcomp, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_symm_apply, HomComplex.Cochain.toSingleMk_v_eq_zero, DerivedCategory.to_singleFunctor_obj_eq_zero_of_injective, isSplitEpi_to_singleFunctor_obj_of_projective, HomComplex.Cocycle.toSingleMk_add, HomComplex.Cocycle.toSingleMk_mem_coboundaries_iff, CategoryTheory.ProjectiveResolution.extMk_hom, HomComplex.Cochain.fromSingleMk_v, HomComplex.Cochain.fromSingleMk_add, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_neg, HomComplex.Cocycle.toSingleMk_zero, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, HomComplex.Cocycle.toSingleMk_coe, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_π', singleFunctor_obj_d, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_zero, HomComplex.Cochain.fromSingleMk_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_zero, CategoryTheory.ProjectiveResolution.Hom.hom'_comp_π'_assoc, HomComplex.Cocycle.fromSingleMk_coe, CategoryTheory.ProjectiveResolution.π'_f_zero, HomComplex.Cocycle.fromSingleMk_neg, HomComplex.Cochain.δ_toSingleMk, HomComplex.Cochain.fromSingleMk_precomp, HomComplex.Cocycle.fromSingleMk_zero, CategoryTheory.InjectiveResolution.ι'_f_zero_assoc, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, CategoryTheory.InjectiveResolution.Hom.ι'_comp_hom'_assoc, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_add, isSplitMono_from_singleFunctor_obj_of_injective, HomComplex.Cochain.fromSingleMk_sub, DerivedCategory.from_singleFunctor_obj_eq_zero_of_projective, CategoryTheory.ProjectiveResolution.extAddEquivCohomologyClass_apply, HomComplex.Cocycle.toSingleMk_sub, CategoryTheory.InjectiveResolution.extMk_hom, HomComplex.Cocycle.fromSingleMk_sub, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_neg, instFullIntSingleFunctor, HomComplex.Cochain.toSingleMk_zero, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_extMk, CategoryTheory.InjectiveResolution.instQuasiIsoIntι', HomComplex.Cocycle.toSingleMk_neg, HomComplex.Cocycle.fromSingleMk_precomp, HomComplex.Cochain.toSingleMk_postcomp, CategoryTheory.ProjectiveResolution.instQuasiIsoIntπ', CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_add, HomotopyCategory.quotient_obj_singleFunctors_obj, HomComplex.Cochain.fromSingleMk_v_eq_zero, HomComplex.Cocycle.fromSingleMk_mem_coboundaries_iff, instIsStrictlyLEObjIntSingleFunctor, instIsStrictlyGEObjIntSingleFunctor, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_extMk, HomComplex.Cocycle.toSingleMk_postcomp, HomComplex.Cochain.toSingleEquiv_toSingleMk, HomComplex.Cocycle.fromSingleMk_postcomp, HomComplex.Cocycle.toSingleMk_precomp, CategoryTheory.InjectiveResolution.extEquivCohomologyClass_symm_mk_hom, HomComplex.Cochain.toSingleMk_sub, CategoryTheory.InjectiveResolution.Hom.ι'_comp_hom', CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_symm_apply, HomComplex.Cochain.toSingleMk_precomp, instFaithfulIntSingleFunctor, CategoryTheory.InjectiveResolution.extAddEquivCohomologyClass_apply, CategoryTheory.ProjectiveResolution.extEquivCohomologyClass_symm_neg
singleFunctors 📖CompOp
10 mathmath: instLinearIntFunctorSingleFunctors, DerivedCategory.singleFunctorsPostcompQIso_inv_hom, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, instAdditiveIntFunctorSingleFunctors, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, DerivedCategory.singleFunctorsPostcompQIso_hom_hom

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveIntFunctorSingleFunctors 📖mathematicalCategoryTheory.Functor.Additive
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instPreadditive
CategoryTheory.SingleFunctors.functor
Int.instAddMonoid
instHasShiftInt
singleFunctors
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instAdditiveSingle
instFaithfulIntSingleFunctor 📖mathematicalCategoryTheory.Functor.Faithful
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
singleFunctor
HomologicalComplex.instFaithfulSingle
instFullIntSingleFunctor 📖mathematicalCategoryTheory.Functor.Full
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
singleFunctor
HomologicalComplex.instFullSingle
instLinearIntFunctorSingleFunctors 📖mathematicalCategoryTheory.Functor.Linear
Ring.toSemiring
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.instPreadditive
HomologicalComplex.instLinear
CategoryTheory.SingleFunctors.functor
Int.instAddMonoid
instHasShiftInt
singleFunctors
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Linear.smul_comp
CategoryTheory.Linear.comp_smul
HomologicalComplex.hom_ext
smul_dite
smul_zero
singleFunctor_obj_d 📖mathematicalHomologicalComplex.d
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
singleFunctor
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd

HomotopyCategory

Definitions

NameCategoryTheorems
singleFunctor 📖CompOp
3 mathmath: instLinearIntUpSingleFunctor, instAdditiveIntUpSingleFunctor, quotient_obj_singleFunctors_obj
singleFunctorPostcompQuotientIso 📖CompOp
singleFunctors 📖CompOp
1 mathmath: DerivedCategory.Qh_obj_singleFunctors_obj
singleFunctorsPostcompQuotientIso 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
instAdditiveIntUpSingleFunctor 📖mathematicalCategoryTheory.Functor.Additive
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
instPreadditive
singleFunctor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.instAdditiveComp
CochainComplex.instAdditiveIntFunctorSingleFunctors
instAdditiveHomologicalComplexQuotient
instLinearIntUpSingleFunctor 📖mathematicalCategoryTheory.Functor.Linear
Ring.toSemiring
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
instPreadditive
instLinear
singleFunctor
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.instLinearComp
CochainComplex.instLinearIntFunctorSingleFunctors
instLinearHomologicalComplexQuotient
quotient_obj_singleFunctors_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
CochainComplex
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CochainComplex.singleFunctor
singleFunctor
AddRightCancelSemigroup.toIsRightCancelAdd

---

← Back to Index