Documentation Verification Report

SpectralObject

πŸ“ Source: Mathlib/Algebra/Homology/HomotopyCategory/SpectralObject.lean

Statistics

MetricCount
DefinitionscomposableArrowsFunctor, spectralObjectMappingCone
2
TheoremscomposableArrowsFunctor_map, composableArrowsFunctor_obj, spectralObjectMappingCone_Ξ΄'_app, spectralObjectMappingCone_ω₁
4
Total6

HomotopyCategory

Definitions

NameCategoryTheorems
composableArrowsFunctor πŸ“–CompOp
4 mathmath: spectralObjectMappingCone_Ξ΄'_app, composableArrowsFunctor_obj, composableArrowsFunctor_map, spectralObjectMappingCone_ω₁
spectralObjectMappingCone πŸ“–CompOp
2 mathmath: spectralObjectMappingCone_Ξ΄'_app, spectralObjectMappingCone_ω₁

Theorems

NameKindAssumesProvesValidatesDepends On
composableArrowsFunctor_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ComposableArrows
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrowsFunctor
CochainComplex.mappingCone.map
CategoryTheory.Functor.obj
CategoryTheory.ComposableArrows.map'
CategoryTheory.NatTrans.app
β€”AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
composableArrowsFunctor_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ComposableArrows
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrowsFunctor
CochainComplex.mappingCone
CategoryTheory.ComposableArrows.map'
β€”AddRightCancelSemigroup.toIsRightCancelAdd
spectralObjectMappingCone_Ξ΄'_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ComposableArrows
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
HomotopyCategory
instCategoryHomotopyCategory
CategoryTheory.Functor.comp
CategoryTheory.ComposableArrows.functorArrows
composableArrowsFunctor
quotient
CategoryTheory.shiftFunctor
Int.instAddMonoid
hasShift
CategoryTheory.Triangulated.SpectralObject.Ξ΄'
AddRightCancelSemigroup.toIsRightCancelAdd
instHasZeroObject
instPreadditive
instAdditiveIntUpShiftFunctor
instPretriangulatedIntUp
spectralObjectMappingCone
CategoryTheory.Pretriangulated.Triangle.mor₃
CategoryTheory.Functor.obj
CategoryTheory.Pretriangulated.Triangle
HomologicalComplex
CochainComplex.instHasShiftInt
CategoryTheory.Pretriangulated.triangleCategory
CategoryTheory.Functor.mapTriangle
commShiftQuotient
CochainComplex.mappingConeCompTriangle
CategoryTheory.ComposableArrows.map'
β€”AddRightCancelSemigroup.toIsRightCancelAdd
instHasZeroObject
instAdditiveIntUpShiftFunctor
spectralObjectMappingCone_ω₁ πŸ“–mathematicalβ€”CategoryTheory.Triangulated.SpectralObject.ω₁
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instCategoryHomotopyCategory
HomologicalComplex.instCategory
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
instHasZeroObject
hasShift
instPreadditive
instAdditiveIntUpShiftFunctor
instPretriangulatedIntUp
spectralObjectMappingCone
CategoryTheory.Functor.comp
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrowsFunctor
quotient
β€”AddRightCancelSemigroup.toIsRightCancelAdd
instHasZeroObject
instAdditiveIntUpShiftFunctor

---

← Back to Index