Documentation Verification Report

Triangulated

📁 Source: Mathlib/Algebra/Homology/HomotopyCategory/Triangulated.lean

Statistics

MetricCount
Definitionshom, homotopyInvHomId, inv, mappingConeCompHomotopyEquiv, mappingConeCompTriangle, mappingConeCompTriangleh
6
Theoremshom_inv_id, hom_inv_id_assoc, mappingConeCompHomotopyEquiv_comm₁, mappingConeCompHomotopyEquiv_comm₁_assoc, mappingConeCompHomotopyEquiv_comm₂, mappingConeCompHomotopyEquiv_comm₂_assoc, mappingConeCompHomotopyEquiv_hom_inv_id, mappingConeCompHomotopyEquiv_hom_inv_id_assoc, mappingConeCompTriangle_mor₁, mappingConeCompTriangle_mor₂, mappingConeCompTriangle_mor₃, mappingConeCompTriangle_mor₃_naturality, mappingConeCompTriangle_mor₃_naturality_assoc, mappingConeCompTriangle_obj₁, mappingConeCompTriangle_obj₂, mappingConeCompTriangle_obj₃, mappingConeCompTriangleh_comm₁, mappingConeCompTriangleh_comm₁_assoc, instIsTriangulatedIntUp, mappingConeCompTriangleh_distinguished
20
Total26

CochainComplex

Definitions

NameCategoryTheorems
mappingConeCompHomotopyEquiv 📖CompOp
8 mathmath: mappingConeCompTriangleh_comm₁_assoc, mappingConeCompHomotopyEquiv_comm₂_assoc, mappingConeCompHomotopyEquiv_hom_inv_id, mappingConeCompHomotopyEquiv_comm₁, mappingConeCompHomotopyEquiv_comm₁_assoc, mappingConeCompHomotopyEquiv_comm₂, mappingConeCompTriangleh_comm₁, mappingConeCompHomotopyEquiv_hom_inv_id_assoc
mappingConeCompTriangle 📖CompOp
19 mathmath: HomotopyCategory.spectralObjectMappingCone_δ'_app, mappingConeCompTriangleh_comm₁_assoc, mappingConeCompTriangle_obj₂, mappingConeCompTriangle_mor₃, mappingConeCompHomotopyEquiv_comm₂_assoc, mappingConeCompHomotopyEquiv_hom_inv_id, MappingConeCompHomotopyEquiv.hom_inv_id_assoc, mappingConeCompHomotopyEquiv_comm₁, mappingConeCompHomotopyEquiv_comm₁_assoc, mappingConeCompTriangle_mor₃_naturality, mappingConeCompTriangle_mor₁, MappingConeCompHomotopyEquiv.hom_inv_id, mappingConeCompTriangle_obj₃, mappingConeCompHomotopyEquiv_comm₂, mappingConeCompTriangle_mor₃_naturality_assoc, mappingConeCompTriangle_mor₂, mappingConeCompTriangleh_comm₁, mappingConeCompHomotopyEquiv_hom_inv_id_assoc, mappingConeCompTriangle_obj₁
mappingConeCompTriangleh 📖CompOp
3 mathmath: mappingConeCompTriangleh_comm₁_assoc, mappingConeCompTriangleh_comm₁, HomotopyCategory.mappingConeCompTriangleh_distinguished

Theorems

NameKindAssumesProvesValidatesDepends On
mappingConeCompHomotopyEquiv_comm₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
mappingCone
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
mappingCone.map
CategoryTheory.CategoryStruct.id
mappingCone.inr
HomotopyEquiv.inv
CategoryTheory.Pretriangulated.Triangle.obj₁
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
mappingConeCompHomotopyEquiv
CategoryTheory.Pretriangulated.Triangle.mor₂
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Category.id_comp
mappingCone.inr_desc
mappingCone.desc.congr_simp
mappingConeCompHomotopyEquiv_comm₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
mappingCone
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
mappingCone.map
CategoryTheory.CategoryStruct.id
mappingCone.inr
HomotopyEquiv.inv
CategoryTheory.Pretriangulated.Triangle.obj₁
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
mappingConeCompHomotopyEquiv
CategoryTheory.Pretriangulated.Triangle.mor₂
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mappingConeCompHomotopyEquiv_comm₁
mappingConeCompHomotopyEquiv_comm₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
mappingCone
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
mappingCone.triangle
HomotopyEquiv.hom
mappingConeCompHomotopyEquiv
CategoryTheory.Pretriangulated.Triangle.mor₃
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.hom_ext
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
add_zero
mappingCone.lift_f
CategoryTheory.Preadditive.add_comp
CategoryTheory.Category.assoc
mappingCone.inl_v_triangle_mor₃_f
CategoryTheory.Preadditive.comp_neg
CategoryTheory.Category.comp_id
mappingCone.inr_f_triangle_mor₃_f
CategoryTheory.Limits.comp_zero
mappingCone.ext_from_iff
mappingCone.inl_v_descCochain_v
HomComplex.Cochain.ofHom_v
mappingCone.inl_v_triangle_mor₃_f_assoc
CategoryTheory.Preadditive.neg_comp
CategoryTheory.Category.id_comp
mappingCone.inr_f_descCochain_v
neg_zero
mappingCone.inr_f_triangle_mor₃_f_assoc
CategoryTheory.Limits.zero_comp
mappingConeCompHomotopyEquiv_comm₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
mappingCone
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
HomotopyEquiv.hom
mappingConeCompHomotopyEquiv
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
mappingCone.triangle
CategoryTheory.Pretriangulated.Triangle.mor₃
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mappingConeCompHomotopyEquiv_comm₂
mappingConeCompHomotopyEquiv_hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
mappingCone
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
HomotopyEquiv.hom
mappingConeCompHomotopyEquiv
HomotopyEquiv.inv
CategoryTheory.CategoryStruct.id
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
MappingConeCompHomotopyEquiv.hom_inv_id
mappingConeCompHomotopyEquiv_hom_inv_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddRightCancelSemigroup.toIsRightCancelAdd
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
mappingCone
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
HomotopyEquiv.hom
mappingConeCompHomotopyEquiv
HomotopyEquiv.inv
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
mappingConeCompHomotopyEquiv_hom_inv_id
mappingConeCompTriangle_mor₁ 📖mathematicalCategoryTheory.Pretriangulated.Triangle.mor₁
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instHasShiftInt
mappingConeCompTriangle
mappingCone.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
mappingConeCompTriangle_mor₂ 📖mathematicalCategoryTheory.Pretriangulated.Triangle.mor₂
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instHasShiftInt
mappingConeCompTriangle
mappingCone.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.id
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
mappingConeCompTriangle_mor₃ 📖mathematicalCategoryTheory.Pretriangulated.Triangle.mor₃
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
mappingCone
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
mappingCone.triangle
CategoryTheory.Functor.map
mappingCone.inr
AddRightCancelSemigroup.toIsRightCancelAdd
mappingConeCompTriangle_mor₃_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
mappingCone
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
CategoryTheory.Pretriangulated.Triangle.obj₁
mappingConeCompTriangle
mappingCone.map
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.mk₂
CategoryTheory.ComposableArrows.naturality'
CategoryTheory.Pretriangulated.Triangle.mor₃
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.hom_ext
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.ComposableArrows.naturality'
CategoryTheory.Category.assoc
mappingCone.inr_f_desc_f
mappingCone.ext_from_iff
mappingCone.inl_v_desc_f_assoc
zero_add
add_zero
HomComplex.Cochain.zero_cochain_comp_v
HomComplex.Cochain.ofHom_v
mappingCone.inl_v_triangle_mor₃_f_assoc
CategoryTheory.Preadditive.neg_comp
CategoryTheory.Category.id_comp
CategoryTheory.Preadditive.comp_neg
mappingCone.inr_f_desc_f_assoc
mappingCone.inr_f_triangle_mor₃_f_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
mappingConeCompTriangle_mor₃_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
mappingCone
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
mappingCone.map
CategoryTheory.NatTrans.app
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
CategoryTheory.ComposableArrows.mk₂
CategoryTheory.ComposableArrows.naturality'
CategoryTheory.Functor.obj
CategoryTheory.shiftFunctor
Int.instAddMonoid
instHasShiftInt
CategoryTheory.Pretriangulated.Triangle.obj₁
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.mor₃
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.ComposableArrows.naturality'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mappingConeCompTriangle_mor₃_naturality
mappingConeCompTriangle_obj₁ 📖mathematicalCategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instHasShiftInt
mappingConeCompTriangle
mappingCone
AddRightCancelSemigroup.toIsRightCancelAdd
mappingConeCompTriangle_obj₂ 📖mathematicalCategoryTheory.Pretriangulated.Triangle.obj₂
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instHasShiftInt
mappingConeCompTriangle
mappingCone
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
AddRightCancelSemigroup.toIsRightCancelAdd
mappingConeCompTriangle_obj₃ 📖mathematicalCategoryTheory.Pretriangulated.Triangle.obj₃
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
instHasShiftInt
mappingConeCompTriangle
mappingCone
AddRightCancelSemigroup.toIsRightCancelAdd
mappingConeCompTriangleh_comm₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
instCategoryHomotopyCategory
CategoryTheory.Pretriangulated.Triangle.obj₂
HomotopyCategory.hasShift
mappingConeCompTriangleh
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory.quotient
mappingCone
CategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.mor₁
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Pretriangulated.Triangle.mor₂
CategoryTheory.Functor.map
HomotopyEquiv.hom
mappingConeCompHomotopyEquiv
mappingCone.inr
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
mappingConeCompHomotopyEquiv_hom_inv_id
CategoryTheory.Category.comp_id
mappingConeCompHomotopyEquiv_comm₁
mappingConeCompTriangle_mor₂
mappingConeCompTriangleh_comm₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
instCategoryHomotopyCategory
CategoryTheory.Pretriangulated.Triangle.obj₂
HomotopyCategory.hasShift
mappingConeCompTriangleh
CategoryTheory.Pretriangulated.Triangle.obj₃
CategoryTheory.Pretriangulated.Triangle.mor₂
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory.quotient
mappingCone
CategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
instHasShiftInt
mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.mor₁
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Functor.map
HomotopyEquiv.hom
mappingConeCompHomotopyEquiv
mappingCone.inr
AddRightCancelSemigroup.toIsRightCancelAdd
instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mappingConeCompTriangleh_comm₁

CochainComplex.MappingConeCompHomotopyEquiv

Definitions

NameCategoryTheorems
hom 📖CompOp
2 mathmath: hom_inv_id_assoc, hom_inv_id
homotopyInvHomId 📖CompOp
inv 📖CompOp
2 mathmath: hom_inv_id_assoc, hom_inv_id

Theorems

NameKindAssumesProvesValidatesDepends On
hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.mappingCone
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex.instHasShiftInt
CochainComplex.mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
hom
inv
CategoryTheory.CategoryStruct.id
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.hom_ext
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
add_zero
CochainComplex.mappingCone.lift_desc_f
CochainComplex.HomComplex.Cochain.zero_cochain_comp_v
CochainComplex.mappingCone.ext_from_iff
CategoryTheory.Preadditive.comp_add
CochainComplex.mappingCone.inl_v_descCochain_v_assoc
CochainComplex.HomComplex.Cochain.ofHom_v
CochainComplex.mappingCone.inr_f_snd_v_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.Category.comp_id
CochainComplex.mappingCone.inr_f_descCochain_v_assoc
CochainComplex.mappingCone.inr_f_desc_f
zero_add
hom_inv_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CochainComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.mappingCone
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.X
CategoryTheory.Pretriangulated.Triangle.obj₁
CochainComplex.instHasShiftInt
CochainComplex.mappingConeCompTriangle
CategoryTheory.Pretriangulated.Triangle.obj₂
CategoryTheory.Pretriangulated.Triangle.mor₁
hom
inv
AddRightCancelSemigroup.toIsRightCancelAdd
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
hom_inv_id

HomotopyCategory

Theorems

NameKindAssumesProvesValidatesDepends On
instIsTriangulatedIntUp 📖mathematicalCategoryTheory.IsTriangulated
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
instPreadditive
instHasZeroObject
hasShift
instAdditiveIntUpShiftFunctor
instPretriangulatedIntUp
CategoryTheory.IsTriangulated.mk'
AddRightCancelSemigroup.toIsRightCancelAdd
instHasZeroObject
instAdditiveIntUpShiftFunctor
CategoryTheory.Functor.map_surjective
instFullHomologicalComplexQuotient
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
mappingCone_triangleh_distinguished
CategoryTheory.Pretriangulated.TriangleMorphism.comm₂
CategoryTheory.Pretriangulated.TriangleMorphism.comm₃
CategoryTheory.Functor.map_id
CategoryTheory.Pretriangulated.isomorphic_distinguished
mappingConeCompTriangleh_distinguished
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Functor.commShiftIso_hom_naturality
mappingConeCompTriangleh_distinguished 📖mathematicalCategoryTheory.Pretriangulated.Triangle
HomotopyCategory
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
instCategoryHomotopyCategory
hasShift
Set
Set.instMembership
CategoryTheory.Pretriangulated.distinguishedTriangles
instHasZeroObject
instPreadditive
instAdditiveIntUpShiftFunctor
instPretriangulatedIntUp
CochainComplex.mappingConeCompTriangleh
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
CochainComplex.mappingConeCompTriangleh_comm₁
CategoryTheory.Functor.map_id
CategoryTheory.Functor.map_comp_assoc
CochainComplex.mappingConeCompHomotopyEquiv_comm₂

---

← Back to Index