Documentation Verification Report

HomotopyCofiber

📁 Source: Mathlib/Algebra/Homology/HomotopyCofiber.lean

Statistics

MetricCount
DefinitionsHasHomotopyCofiber, cylinder, desc, homotopyEquiv, homotopy₀₁, inlX, inrX, ι₀, ι₁, π, πCompι₀Homotopy, nullHomotopicMap, nullHomotopy, homotopyCofiber, X, XIso, XIsoBiprod, d, desc, descEquiv, fstX, inlX, inr, inrCompHomotopy, inrX, sndX
26
TheoremshasBinaryBiproduct, inlX_π, inlX_π_assoc, inrX_π, inrX_π_assoc, map_ι₀_eq_map_ι₁, ι₀_desc, ι₀_desc_assoc, ι₀_π, ι₀_π_assoc, ι₁_desc, ι₁_desc_assoc, ι₁_π, ι₁_π_assoc, inlX_nullHomotopy_f, inrX_nullHomotopy_f, nullHomotopicMap_eq, d_fstX, d_fstX_assoc, d_sndX, d_sndX_assoc, descSigma_ext_iff, desc_f, desc_f', eq_desc, ext_from_X, ext_from_X', ext_to_X, ext_to_X', inlX_d, inlX_d', inlX_d'_assoc, inlX_d_assoc, inlX_desc_f, inlX_desc_f_assoc, inlX_fstX, inlX_fstX_assoc, inlX_sndX, inlX_sndX_assoc, inrCompHomotopy_hom, inrCompHomotopy_hom_desc_hom, inrCompHomotopy_hom_desc_hom_assoc, inrCompHomotopy_hom_eq_zero, inrX_d, inrX_d_assoc, inrX_desc_f, inrX_desc_f_assoc, inrX_fstX, inrX_fstX_assoc, inrX_sndX, inrX_sndX_assoc, inr_desc, inr_desc_assoc, inr_f, shape, sndX_inrX, sndX_inrX_assoc, homotopyCofiber_X, homotopyCofiber_d, instHasHomotopyCofiberOfHasBinaryBiproducts, map_eq_of_inverts_homotopyEquivalences
61
Total87

HomologicalComplex

Definitions

NameCategoryTheorems
HasHomotopyCofiber 📖CompData
2 mathmath: CochainComplex.instHasHomotopyCofiberOfHasBinaryBiproductXHAddOfNat, instHasHomotopyCofiberOfHasBinaryBiproducts
cylinder 📖CompOp
16 mathmath: cylinder.πCompι₀Homotopy.nullHomotopicMap_eq, cylinder.ι₁_π, cylinder.inrX_π_assoc, cylinder.inlX_π, cylinder.ι₀_π, cylinder.inlX_π_assoc, cylinder.ι₀_π_assoc, cylinder.ι₁_π_assoc, cylinder.ι₀_desc, cylinder.inrX_π, cylinder.πCompι₀Homotopy.inrX_nullHomotopy_f, cylinder.ι₁_desc_assoc, cylinder.map_ι₀_eq_map_ι₁, cylinder.ι₁_desc, cylinder.ι₀_desc_assoc, cylinder.πCompι₀Homotopy.inlX_nullHomotopy_f
homotopyCofiber 📖CompOp
16 mathmath: homotopyCofiber.inrCompHomotopy_hom_desc_hom_assoc, homotopyCofiber.desc_f', homotopyCofiber_X, homotopyCofiber.inrCompHomotopy_hom, homotopyCofiber.inrCompHomotopy_hom_desc_hom, homotopyCofiber.inr_desc, homotopyCofiber.inr_desc_assoc, homotopyCofiber.inlX_desc_f_assoc, homotopyCofiber.eq_desc, homotopyCofiber.inrX_desc_f, homotopyCofiber.inrCompHomotopy_hom_eq_zero, homotopyCofiber_d, homotopyCofiber.desc_f, homotopyCofiber.inlX_desc_f, homotopyCofiber.inr_f, homotopyCofiber.inrX_desc_f_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
homotopyCofiber_X 📖mathematicalX
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
homotopyCofiber
homotopyCofiber.X
homotopyCofiber_d 📖mathematicald
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
homotopyCofiber
homotopyCofiber.d
instHasHomotopyCofiberOfHasBinaryBiproducts 📖mathematicalHasHomotopyCofiberCategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct

HomologicalComplex.HasHomotopyCofiber

Theorems

NameKindAssumesProvesValidatesDepends On
hasBinaryBiproduct 📖mathematicalComplexShape.RelCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X

HomologicalComplex.cylinder

Definitions

NameCategoryTheorems
desc 📖CompOp
4 mathmath: ι₀_desc, ι₁_desc_assoc, ι₁_desc, ι₀_desc_assoc
homotopyEquiv 📖CompOp
homotopy₀₁ 📖CompOp
inlX 📖CompOp
3 mathmath: inlX_π, inlX_π_assoc, πCompι₀Homotopy.inlX_nullHomotopy_f
inrX 📖CompOp
3 mathmath: inrX_π_assoc, inrX_π, πCompι₀Homotopy.inrX_nullHomotopy_f
ι₀ 📖CompOp
8 mathmath: πCompι₀Homotopy.nullHomotopicMap_eq, ι₀_π, ι₀_π_assoc, ι₀_desc, πCompι₀Homotopy.inrX_nullHomotopy_f, map_ι₀_eq_map_ι₁, ι₀_desc_assoc, πCompι₀Homotopy.inlX_nullHomotopy_f
ι₁ 📖CompOp
5 mathmath: ι₁_π, ι₁_π_assoc, ι₁_desc_assoc, map_ι₀_eq_map_ι₁, ι₁_desc
π 📖CompOp
11 mathmath: πCompι₀Homotopy.nullHomotopicMap_eq, ι₁_π, inrX_π_assoc, inlX_π, ι₀_π, inlX_π_assoc, ι₀_π_assoc, ι₁_π_assoc, inrX_π, πCompι₀Homotopy.inrX_nullHomotopy_f, πCompι₀Homotopy.inlX_nullHomotopy_f
πCompι₀Homotopy 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
inlX_π 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.cylinder
inlX
HomologicalComplex.Hom.f
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.instHasBinaryBiproduct
Homotopy.zero
HomologicalComplex.homotopyCofiber.inlX_desc_f
add_zero
inlX_π_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.cylinder
inlX
HomologicalComplex.Hom.f
π
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inlX_π
inrX_π 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.cylinder
inrX
HomologicalComplex.Hom.f
π
CategoryTheory.Limits.biprod.desc
CategoryTheory.CategoryStruct.id
HomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.homotopyCofiber.inrX_desc_f
inrX_π_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.cylinder
inrX
HomologicalComplex.Hom.f
π
CategoryTheory.Limits.biprod.desc
CategoryTheory.CategoryStruct.id
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inrX_π
map_ι₀_eq_map_ι₁ 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
ComplexShape.Rel
CategoryTheory.MorphismProperty.IsInvertedBy
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.homotopyEquivalences
CategoryTheory.Functor.map
HomologicalComplex.cylinder
ι₀
ι₁
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Functor.map_comp
ι₀_π
CategoryTheory.Functor.map_id
ι₁_π
ι₀_desc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
ι₀
desc
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
HomologicalComplex.homotopyCofiber.inr_desc
CategoryTheory.Limits.biprod.inl_desc
ι₀_desc_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
ι₀
desc
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₀_desc
ι₀_π 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
ι₀
π
CategoryTheory.CategoryStruct.id
HomologicalComplex.instHasBinaryBiproduct
ι₀_desc
ι₀_π_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
ι₀
π
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ι₀_π
ι₁_desc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
ι₁
desc
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
HomologicalComplex.homotopyCofiber.inr_desc
CategoryTheory.Limits.biprod.inr_desc
ι₁_desc_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
ι₁
desc
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι₁_desc
ι₁_π 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
ι₁
π
CategoryTheory.CategoryStruct.id
HomologicalComplex.instHasBinaryBiproduct
ι₁_desc
ι₁_π_assoc 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
ι₁
π
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
ι₁_π

HomologicalComplex.cylinder.πCompι₀Homotopy

Definitions

NameCategoryTheorems
nullHomotopicMap 📖CompOp
3 mathmath: nullHomotopicMap_eq, inrX_nullHomotopy_f, inlX_nullHomotopy_f
nullHomotopy 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
inlX_nullHomotopy_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.cylinder
HomologicalComplex.cylinder.inlX
HomologicalComplex.Hom.f
nullHomotopicMap
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instCategory
HomologicalComplex.instSubHom
HomologicalComplex.cylinder.π
HomologicalComplex.cylinder.ι₀
CategoryTheory.CategoryStruct.id
HomologicalComplex.instHasBinaryBiproduct
Homotopy.nullHomotopicMap'_f
HomologicalComplex.homotopyCofiber.d_sndX_assoc
CategoryTheory.Preadditive.add_comp
CategoryTheory.Category.assoc
CategoryTheory.Limits.biprod.lift_snd
CategoryTheory.Preadditive.neg_comp
CategoryTheory.Category.id_comp
CategoryTheory.Preadditive.comp_add
HomologicalComplex.homotopyCofiber.inlX_fstX_assoc
HomologicalComplex.homotopyCofiber.inlX_sndX_assoc
CategoryTheory.Limits.zero_comp
add_zero
CategoryTheory.Preadditive.comp_sub
HomologicalComplex.cylinder.inlX_π_assoc
CategoryTheory.Category.comp_id
zero_sub
Homotopy.nullHomotopicMap'_f_of_not_rel_right
inrX_nullHomotopy_f 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.biprod
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instHasZeroMorphisms
HomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.cylinder
HomologicalComplex.cylinder.inrX
HomologicalComplex.Hom.f
nullHomotopicMap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instSubHom
HomologicalComplex.cylinder.π
HomologicalComplex.cylinder.ι₀
CategoryTheory.CategoryStruct.id
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.Limits.biprod.hom_ext
CategoryTheory.Limits.biprod.lift_fst
CategoryTheory.Preadditive.sub_comp
CategoryTheory.Limits.BinaryBicone.inl_fst
CategoryTheory.Limits.BinaryBicone.inr_fst
sub_zero
CategoryTheory.Limits.biprod.lift_snd
CategoryTheory.Limits.BinaryBicone.inl_snd
CategoryTheory.Limits.BinaryBicone.inr_snd
zero_sub
Homotopy.nullHomotopicMap'_f
CategoryTheory.Category.assoc
HomologicalComplex.homotopyCofiber.inlX_d
CategoryTheory.Preadditive.comp_add
CategoryTheory.Preadditive.comp_neg
HomologicalComplex.homotopyCofiber.inrX_d_assoc
HomologicalComplex.homotopyCofiber.inrX_sndX_assoc
add_neg_cancel_left
CategoryTheory.Preadditive.comp_sub
HomologicalComplex.cylinder.inrX_π_assoc
CategoryTheory.Category.comp_id
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Limits.biprod.hom_ext'
HomologicalComplex.inl_biprodXIso_inv_assoc
HomologicalComplex.biprod_inl_snd_f_assoc
CategoryTheory.Limits.zero_comp
HomologicalComplex.biprod_inl_desc_f_assoc
CategoryTheory.Category.id_comp
sub_self
HomologicalComplex.inr_biprodXIso_inv_assoc
HomologicalComplex.biprod_inr_snd_f_assoc
HomologicalComplex.biprod_inr_desc_f_assoc
Homotopy.nullHomotopicMap'_f_of_not_rel_left
HomologicalComplex.homotopyCofiber.inlX_d'
nullHomotopicMap_eq 📖mathematicalCategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
ComplexShape.Rel
nullHomotopicMap
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.cylinder
HomologicalComplex.instSubHom
CategoryTheory.CategoryStruct.comp
HomologicalComplex.cylinder.π
HomologicalComplex.cylinder.ι₀
CategoryTheory.CategoryStruct.id
HomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.hom_ext
HomologicalComplex.homotopyCofiber.ext_from_X
inlX_nullHomotopy_f
inrX_nullHomotopy_f
HomologicalComplex.homotopyCofiber.ext_from_X'

HomologicalComplex.homotopyCofiber

Definitions

NameCategoryTheorems
X 📖CompOp
28 mathmath: inlX_fstX, inrX_fstX_assoc, inrX_sndX_assoc, desc_f', HomologicalComplex.homotopyCofiber_X, inrX_d_assoc, inlX_sndX_assoc, inrX_fstX, sndX_inrX_assoc, inlX_desc_f_assoc, d_fstX, inrX_desc_f, inlX_sndX, inlX_d, shape, inlX_d'_assoc, d_sndX, inlX_d', inlX_fstX_assoc, inrX_d, inlX_d_assoc, desc_f, sndX_inrX, inlX_desc_f, d_sndX_assoc, inrX_sndX, d_fstX_assoc, inrX_desc_f_assoc
XIso 📖CompOp
XIsoBiprod 📖CompOp
d 📖CompOp
12 mathmath: inrX_d_assoc, d_fstX, inlX_d, shape, inlX_d'_assoc, d_sndX, inlX_d', inrX_d, inlX_d_assoc, HomologicalComplex.homotopyCofiber_d, d_sndX_assoc, d_fstX_assoc
desc 📖CompOp
11 mathmath: inrCompHomotopy_hom_desc_hom_assoc, desc_f', inrCompHomotopy_hom_desc_hom, inr_desc, inr_desc_assoc, inlX_desc_f_assoc, eq_desc, inrX_desc_f, desc_f, inlX_desc_f, inrX_desc_f_assoc
descEquiv 📖CompOp
fstX 📖CompOp
9 mathmath: inlX_fstX, inrX_fstX_assoc, inrX_fstX, d_fstX, d_sndX, inlX_fstX_assoc, desc_f, d_sndX_assoc, d_fstX_assoc
inlX 📖CompOp
11 mathmath: inlX_fstX, inrCompHomotopy_hom, inlX_sndX_assoc, inlX_desc_f_assoc, inlX_sndX, inlX_d, inlX_d'_assoc, inlX_d', inlX_fstX_assoc, inlX_d_assoc, inlX_desc_f
inr 📖CompOp
8 mathmath: inrCompHomotopy_hom_desc_hom_assoc, inrCompHomotopy_hom, inrCompHomotopy_hom_desc_hom, inr_desc, inr_desc_assoc, eq_desc, inrCompHomotopy_hom_eq_zero, inr_f
inrCompHomotopy 📖CompOp
5 mathmath: inrCompHomotopy_hom_desc_hom_assoc, inrCompHomotopy_hom, inrCompHomotopy_hom_desc_hom, eq_desc, inrCompHomotopy_hom_eq_zero
inrX 📖CompOp
15 mathmath: inrX_fstX_assoc, inrX_sndX_assoc, inrX_d_assoc, inrX_fstX, sndX_inrX_assoc, inrX_desc_f, inlX_d, inlX_d'_assoc, inlX_d', inrX_d, inlX_d_assoc, sndX_inrX, inrX_sndX, inr_f, inrX_desc_f_assoc
sndX 📖CompOp
10 mathmath: inrX_sndX_assoc, desc_f', inlX_sndX_assoc, sndX_inrX_assoc, inlX_sndX, d_sndX, desc_f, sndX_inrX, d_sndX_assoc, inrX_sndX

Theorems

NameKindAssumesProvesValidatesDepends On
d_fstX 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
d
fstX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
HomologicalComplex.d
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.neg_comp
CategoryTheory.Category.assoc
inlX_fstX
CategoryTheory.Category.comp_id
inrX_fstX
CategoryTheory.Limits.comp_zero
add_zero
ComplexShape.next_eq'
d_fstX_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
fstX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
HomologicalComplex.d
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_fstX
d_sndX 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
d
sndX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
fstX
HomologicalComplex.Hom.f
HomologicalComplex.d
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.neg_comp
CategoryTheory.Category.assoc
inlX_sndX
CategoryTheory.Limits.comp_zero
neg_zero
inrX_sndX
CategoryTheory.Category.comp_id
zero_add
d_sndX_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
sndX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
fstX
HomologicalComplex.Hom.f
HomologicalComplex.d
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_sndX
descSigma_ext_iff 📖mathematicalQuiver.Hom
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
Homotopy
CategoryTheory.CategoryStruct.comp
HomologicalComplex.instZeroHom_1
Homotopy.hom
Homotopy.ext
Homotopy.zero
desc_f 📖mathematicalComplexShape.RelHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.homotopyCofiber
desc
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.CategoryStruct.comp
fstX
Homotopy.hom
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.instZeroHom_1
sndX
ComplexShape.next_eq'
desc_f' 📖mathematicalComplexShape.Rel
ComplexShape.next
HomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.homotopyCofiber
desc
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
sndX
eq_desc 📖mathematicalComplexShape.Reldesc
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.homotopyCofiber
inr
Homotopy.trans
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
Homotopy.ofEq
Homotopy.compRight
inrCompHomotopy
HomologicalComplex.hom_ext
ext_from_X
inlX_desc_f
inrCompHomotopy_hom
add_zero
zero_add
inrX_desc_f
ext_from_X'
ext_from_X 📖ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
inrX
HomologicalComplex.HasHomotopyCofiber.hasBinaryBiproduct
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Limits.biprod.hom_ext'
CategoryTheory.Category.assoc
ComplexShape.next_eq'
ext_from_X' 📖ComplexShape.Rel
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
ext_to_X 📖ComplexShape.Rel
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
fstX
sndX
HomologicalComplex.HasHomotopyCofiber.hasBinaryBiproduct
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Limits.biprod.hom_ext
CategoryTheory.Category.assoc
ComplexShape.next_eq'
ext_to_X' 📖ComplexShape.Rel
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
sndX
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
inlX_d 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HomologicalComplex.d
HomologicalComplex.Hom.f
inrX
ext_to_X
CategoryTheory.Category.assoc
d_fstX
CategoryTheory.Preadditive.comp_neg
inlX_fstX_assoc
CategoryTheory.Preadditive.add_comp
CategoryTheory.Preadditive.neg_comp
inlX_fstX
CategoryTheory.Category.comp_id
inrX_fstX
CategoryTheory.Limits.comp_zero
add_zero
d_sndX
CategoryTheory.Preadditive.comp_add
inlX_sndX_assoc
CategoryTheory.Limits.zero_comp
inlX_sndX
neg_zero
inrX_sndX
zero_add
inlX_d' 📖mathematicalComplexShape.Rel
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
d
HomologicalComplex.Hom.f
inrX
ext_to_X'
CategoryTheory.Category.assoc
d_sndX
CategoryTheory.Preadditive.comp_add
inlX_fstX_assoc
inlX_sndX_assoc
CategoryTheory.Limits.zero_comp
add_zero
inrX_sndX
CategoryTheory.Category.comp_id
inlX_d'_assoc 📖mathematicalComplexShape.Rel
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
d
HomologicalComplex.Hom.f
inrX
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inlX_d'
inlX_d_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
HomologicalComplex.d
HomologicalComplex.Hom.f
inrX
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inlX_d
inlX_desc_f 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
HomologicalComplex.Hom.f
HomologicalComplex.homotopyCofiber
desc
Homotopy.hom
HomologicalComplex
HomologicalComplex.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
CategoryTheory.Preadditive.comp_add
inlX_fstX_assoc
inlX_sndX_assoc
CategoryTheory.Limits.zero_comp
add_zero
ComplexShape.next_eq'
inlX_desc_f_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
HomologicalComplex.Hom.f
HomologicalComplex.homotopyCofiber
desc
Homotopy.hom
HomologicalComplex
HomologicalComplex.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inlX_desc_f
inlX_fstX 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
fstX
CategoryTheory.CategoryStruct.id
HomologicalComplex.HasHomotopyCofiber.hasBinaryBiproduct
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.BinaryBicone.inl_fst
inlX_fstX_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
fstX
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inlX_fstX
inlX_sndX 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
sndX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.HasHomotopyCofiber.hasBinaryBiproduct
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.BinaryBicone.inl_snd
ComplexShape.next_eq'
inlX_sndX_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inlX
sndX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inlX_sndX
inrCompHomotopy_hom 📖mathematicalComplexShape.RelHomotopy.hom
HomologicalComplex.homotopyCofiber
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
inr
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
inrCompHomotopy
inlX
inrCompHomotopy_hom_desc_hom 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.homotopyCofiber
Homotopy.hom
HomologicalComplex
HomologicalComplex.instCategory
inr
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
inrCompHomotopy
HomologicalComplex.Hom.f
desc
inrCompHomotopy_hom
desc_f
CategoryTheory.Preadditive.comp_add
inlX_fstX_assoc
inlX_sndX_assoc
CategoryTheory.Limits.zero_comp
add_zero
Homotopy.zero
inrCompHomotopy_hom_desc_hom_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.homotopyCofiber
Homotopy.hom
HomologicalComplex
HomologicalComplex.instCategory
inr
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
inrCompHomotopy
HomologicalComplex.Hom.f
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inrCompHomotopy_hom_desc_hom
inrCompHomotopy_hom_eq_zero 📖mathematicalComplexShape.RelHomotopy.hom
HomologicalComplex.homotopyCofiber
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
inr
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
HomologicalComplex.instZeroHom_1
inrCompHomotopy
HomologicalComplex.X
CategoryTheory.Limits.HasZeroMorphisms.zero
inrX_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
d
HomologicalComplex.d
ext_to_X
CategoryTheory.Category.assoc
d_fstX
CategoryTheory.Preadditive.comp_neg
inrX_fstX_assoc
CategoryTheory.Limits.zero_comp
neg_zero
inrX_fstX
CategoryTheory.Limits.comp_zero
d_sndX
CategoryTheory.Preadditive.comp_add
inrX_sndX_assoc
zero_add
inrX_sndX
CategoryTheory.Category.comp_id
ext_to_X'
shape
HomologicalComplex.shape
inrX_d_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
d
HomologicalComplex.d
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inrX_d
inrX_desc_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
HomologicalComplex.Hom.f
HomologicalComplex.homotopyCofiber
desc
CategoryTheory.Preadditive.comp_add
inrX_fstX_assoc
CategoryTheory.Limits.zero_comp
inrX_sndX_assoc
zero_add
inrX_desc_f_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
HomologicalComplex.Hom.f
HomologicalComplex.homotopyCofiber
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inrX_desc_f
inrX_fstX 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
fstX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.HasHomotopyCofiber.hasBinaryBiproduct
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.BinaryBicone.inr_fst
ComplexShape.next_eq'
inrX_fstX_assoc 📖mathematicalComplexShape.RelCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
fstX
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inrX_fstX
inrX_sndX 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
sndX
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.BinaryBicone.inr_snd
CategoryTheory.Iso.inv_hom_id
inrX_sndX_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X
inrX
sndX
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
inrX_sndX
inr_desc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.homotopyCofiber
inr
desc
HomologicalComplex.hom_ext
inrX_desc_f
inr_desc_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
HomologicalComplex.homotopyCofiber
inr
desc
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
inr_desc
inr_f 📖mathematicalHomologicalComplex.Hom.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.homotopyCofiber
inr
inrX
shape 📖mathematicalComplexShape.Reld
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
sndX_inrX 📖mathematicalComplexShape.Rel
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
sndX
inrX
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
sndX_inrX_assoc 📖mathematicalComplexShape.Rel
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
sndX
inrX
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
sndX_inrX

Homotopy

Theorems

NameKindAssumesProvesValidatesDepends On
map_eq_of_inverts_homotopyEquivalences 📖mathematicalComplexShape.Rel
CategoryTheory.Limits.HasBinaryBiproduct
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.X
CategoryTheory.MorphismProperty.IsInvertedBy
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.homotopyEquivalences
CategoryTheory.Functor.mapHomologicalComplex.instHasBinaryBiproduct
HomologicalComplex.cylinder.ι₀_desc
CategoryTheory.Functor.map_comp
HomologicalComplex.cylinder.map_ι₀_eq_map_ι₁
HomologicalComplex.cylinder.ι₁_desc

---

← Back to Index