Documentation Verification Report

Basic

📁 Source: Mathlib/Algebra/Homology/LeftResolution/Basic.lean

Statistics

MetricCount
DefinitionsF, chainComplex, chainComplexFunctor, chainComplexMap, chainComplexXIso, chainComplexXOneIso, chainComplexXZeroIso, π
8
TheoremschainComplexMap_comp, chainComplexMap_comp_assoc, chainComplexMap_f_0, chainComplexMap_f_1, chainComplexMap_f_succ_succ, chainComplexMap_id, chainComplexMap_zero, epi_π_app, exactAt_map_chainComplex_succ, map_chainComplex_d, map_chainComplex_d_1_0, map_chainComplex_d_1_0_assoc, π_naturality, π_naturality_assoc
14
Total22

CategoryTheory.Abelian.LeftResolution

Definitions

NameCategoryTheorems
F 📖CompOp
19 mathmath: karoubi.F_obj_p, epi_π_app, karoubi.F'_map_f, map_chainComplex_d, π_naturality_assoc, karoubi.F_map_f, chainComplexMap_f_1, karoubi.F'_obj_p, chainComplexMap_f_0, karoubi_F, instPreservesZeroMorphismsFReduced, instPreservesZeroMorphismsKaroubiFKaroubi, map_chainComplex_d_1_0, karoubi.F'_obj_X, π_naturality, chainComplexMap_f_succ_succ, karoubi.π'_app_f, map_chainComplex_d_1_0_assoc, karoubi.F_obj_X
chainComplex 📖CompOp
11 mathmath: chainComplexMap_zero, chainComplexMap_comp, chainComplexMap_id, exactAt_map_chainComplex_succ, map_chainComplex_d, chainComplexMap_f_1, chainComplexMap_comp_assoc, chainComplexMap_f_0, map_chainComplex_d_1_0, chainComplexMap_f_succ_succ, map_chainComplex_d_1_0_assoc
chainComplexFunctor 📖CompOp
chainComplexMap 📖CompOp
7 mathmath: chainComplexMap_zero, chainComplexMap_comp, chainComplexMap_id, chainComplexMap_f_1, chainComplexMap_comp_assoc, chainComplexMap_f_0, chainComplexMap_f_succ_succ
chainComplexXIso 📖CompOp
2 mathmath: map_chainComplex_d, chainComplexMap_f_succ_succ
chainComplexXOneIso 📖CompOp
3 mathmath: chainComplexMap_f_1, map_chainComplex_d_1_0, map_chainComplex_d_1_0_assoc
chainComplexXZeroIso 📖CompOp
3 mathmath: chainComplexMap_f_0, map_chainComplex_d_1_0, map_chainComplex_d_1_0_assoc
π 📖CompOp
9 mathmath: epi_π_app, map_chainComplex_d, π_naturality_assoc, karoubi_π, chainComplexMap_f_1, map_chainComplex_d_1_0, π_naturality, karoubi.π'_app_f, map_chainComplex_d_1_0_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
chainComplexMap_comp 📖mathematicalchainComplexMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplex
HomologicalComplex.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.map_comp_assoc
CategoryTheory.Limits.kernel.map.congr_simp
CategoryTheory.Limits.equalizer.hom_ext
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Limits.kernel.lift_ι_assoc
chainComplexMap_f_succ_succ
chainComplexMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplex
chainComplexMap
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
chainComplexMap_comp
chainComplexMap_f_0 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
chainComplex
chainComplexMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Functor.obj
F
CategoryTheory.Iso.hom
chainComplexXZeroIso
CategoryTheory.Functor.map
CategoryTheory.Iso.inv
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplexMap_f_1 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
chainComplex
chainComplexMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Functor.obj
F
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
π
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Iso.hom
chainComplexXOneIso
CategoryTheory.Functor.map
CategoryTheory.Limits.kernel.map
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.NatTrans.naturality
CategoryTheory.Iso.inv
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplexMap_f_succ_succ 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
chainComplex
chainComplexMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Functor.obj
F
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.map
HomologicalComplex.d
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Iso.hom
chainComplexXIso
CategoryTheory.Limits.kernel.map
CategoryTheory.Iso.inv
ChainComplex.mkHom_f_succ_succ
chainComplexMap_id 📖mathematicalchainComplexMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplex
HomologicalComplex.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.map_id
CategoryTheory.Category.id_comp
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.NatTrans.naturality
CategoryTheory.Limits.kernel.map.congr_simp
CategoryTheory.Limits.kernel.map_id
chainComplexMap_f_succ_succ
chainComplexMap_zero 📖mathematicalchainComplexMap
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
chainComplex
HomologicalComplex.instZeroHom
HomologicalComplex.hom_ext
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.NatTrans.naturality
CategoryTheory.Functor.preservesZeroMorphisms_of_full
CategoryTheory.Limits.kernel.map.congr_simp
CategoryTheory.Limits.kernel.map_zero
chainComplexMap_f_succ_succ
epi_π_app 📖mathematicalCategoryTheory.Epi
CategoryTheory.Functor.obj
CategoryTheory.Functor.comp
F
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
π
exactAt_map_chainComplex_succ 📖mathematicalHomologicalComplex.ExactAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_full
chainComplex
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.preservesZeroMorphisms_of_full
HomologicalComplex.exactAt_iff'
ComplexShape.prev_eq'
ChainComplex.next_nat_succ
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.exact_iff_epi_kernel_lift
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
CategoryTheory.cancel_mono
CategoryTheory.Limits.equalizer.ι_mono
CategoryTheory.Limits.kernel.lift_ι
map_chainComplex_d
CategoryTheory.Category.assoc
CategoryTheory.epi_comp
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Functor.map_isIso
CategoryTheory.Iso.isIso_hom
epi_π_app
map_chainComplex_d 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
chainComplex
HomologicalComplex.d
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
F
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Iso.hom
chainComplexXIso
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
π
CategoryTheory.Limits.kernel.ι
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Functor.map_preimage
CategoryTheory.Functor.map_comp
ChainComplex.mk'_d
map_chainComplex_d_1_0 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
chainComplex
HomologicalComplex.d
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
F
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
π
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Iso.hom
chainComplexXOneIso
CategoryTheory.Limits.kernel.ι
CategoryTheory.Iso.inv
chainComplexXZeroIso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
ChainComplex.mk'_d_1_0
CategoryTheory.Functor.map_preimage
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
map_chainComplex_d_1_0_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
chainComplex
CategoryTheory.Functor.map
HomologicalComplex.d
F
CategoryTheory.Limits.kernel
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
π
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Iso.hom
chainComplexXOneIso
CategoryTheory.Limits.kernel.ι
CategoryTheory.Iso.inv
chainComplexXZeroIso
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
map_chainComplex_d_1_0
π_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
F
CategoryTheory.Functor.id
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
π
CategoryTheory.NatTrans.naturality
π_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
F
CategoryTheory.Functor.map
CategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
CategoryTheory.Functor.id
π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_naturality

---

← Back to Index