Documentation Verification Report

LocalCohomology

📁 Source: Mathlib/Algebra/Homology/LocalCohomology.lean

Statistics

MetricCount
DefinitionslocalCohomology, SelfLERadical, cast, castEquivalence, inhabited, isoOfSameRadical, diagram, diagramComp, idealPowersDiagram, idealPowersToSelfLERadical, instCategorySelfLERadical, isoOfFinal, isoOfSameRadical, isoSelfLERadical, ofDiagram, ofSelfLERadical, ringModIdeals, selfLERadicalDiagram
18
Theoremscast_isEquivalence, hasColimitDiagram, ideal_powers_initial
3
Total21

(root)

Definitions

NameCategoryTheorems
localCohomology 📖CompOp

localCohomology

Definitions

NameCategoryTheorems
SelfLERadical 📖CompOp
2 mathmath: ideal_powers_initial, SelfLERadical.cast_isEquivalence
diagram 📖CompOp
1 mathmath: hasColimitDiagram
diagramComp 📖CompOp
idealPowersDiagram 📖CompOp
idealPowersToSelfLERadical 📖CompOp
1 mathmath: ideal_powers_initial
instCategorySelfLERadical 📖CompOp
2 mathmath: ideal_powers_initial, SelfLERadical.cast_isEquivalence
isoOfFinal 📖CompOp
isoOfSameRadical 📖CompOp
isoSelfLERadical 📖CompOp
ofDiagram 📖CompOp
ofSelfLERadical 📖CompOp
ringModIdeals 📖CompOp
selfLERadicalDiagram 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
hasColimitDiagram 📖mathematicalCategoryTheory.Limits.HasColimit
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Functor
ModuleCat
CommRing.toRing
ModuleCat.moduleCategory
CategoryTheory.Functor.category
diagram
CategoryTheory.Limits.functorCategoryHasColimit
ModuleCat.HasColimit.instHasColimit
AddCommGrpCat.hasColimit
Opposite.small
UnivLE.small
univLE_of_max
UnivLE.self
ideal_powers_initial 📖mathematicalCategoryTheory.Functor.Initial
Opposite
CategoryTheory.Category.opposite
Preorder.smallCategory
Nat.instPreorder
SelfLERadical
instCategorySelfLERadical
idealPowersToSelfLERadical
CategoryTheory.zigzag_isConnected
IsScalarTower.right
Ideal.exists_pow_le_of_le_radical_of_fg
CategoryTheory.ObjectProperty.FullSubcategory.property
isNoetherian_def
Relation.ReflTransGen.single
le_total

localCohomology.SelfLERadical

Definitions

NameCategoryTheorems
cast 📖CompOp
1 mathmath: cast_isEquivalence
castEquivalence 📖CompOp
inhabited 📖CompOp
isoOfSameRadical 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cast_isEquivalence 📖mathematicalIdeal.radical
CommRing.toCommSemiring
CategoryTheory.Functor.IsEquivalence
localCohomology.SelfLERadical
localCohomology.instCategorySelfLERadical
cast
CategoryTheory.Equivalence.isEquivalence_functor

---

← Back to Index