Documentation Verification Report

Localization

📁 Source: Mathlib/Algebra/Homology/Localization.lean

Statistics

MetricCount
DefinitionsinstLiftingHomologicalComplexHomologicalComplexUpToQuasiIsoQQuasiIsoCompMapHomologicalComplexMapHomologicalComplexUpToQuasiIso, instLiftingHomotopyCategoryHomologicalComplexUpToQuasiIsoQhQuasiIsoCompMapHomotopyCategoryMapHomologicalComplexUpToQuasiIso, mapHomologicalComplexUpToQuasiIso, mapHomologicalComplexUpToQuasiIsoFactors, mapHomologicalComplexUpToQuasiIsoFactorsh, mapHomologicalComplexUpToQuasiIsoLocalizerMorphism, QFactorsThroughHomotopy, strictUniversalPropertyFixedTargetQuotient, HomologicalComplexUpToQuasiIso, Q, Qh, homologyFunctor, homologyFunctorFactors, homologyFunctorFactorsh, quotientCompQhIso, quasiIso
16
TheoremsmapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor, mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, areEqualizedByLocalization, QFactorsThroughHomotopy_of_exists_prev, quotient_isLocalization, homologyFunctor_inverts_quasiIso, Q_inverts_homotopyEquivalences, Q_map_eq_of_homotopy, Qh_inverts_quasiIso, instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, instIsLocalizationHomotopyCategoryQhQuasiIso, isIso_Q_map_iff_mem_quasiIso, homologyFunctor_inverts_quasiIso, mem_quasiIso_iff, quasiIso_eq_quasiIso_map_quotient, quotient_map_mem_quasiIso_iff, respectsIso_quasiIso, instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences, instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences, instQFactorsThroughHomotopyDown, instQFactorsThroughHomotopyIntUp
23
Total39

CategoryTheory.Functor

Definitions

NameCategoryTheorems
instLiftingHomologicalComplexHomologicalComplexUpToQuasiIsoQQuasiIsoCompMapHomologicalComplexMapHomologicalComplexUpToQuasiIso 📖CompOp
instLiftingHomotopyCategoryHomologicalComplexUpToQuasiIsoQhQuasiIsoCompMapHomotopyCategoryMapHomologicalComplexUpToQuasiIso 📖CompOp
mapHomologicalComplexUpToQuasiIso 📖CompOp
2 mathmath: mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app
mapHomologicalComplexUpToQuasiIsoFactors 📖CompOp
2 mathmath: mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app
mapHomologicalComplexUpToQuasiIsoFactorsh 📖CompOp
2 mathmath: mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app
mapHomologicalComplexUpToQuasiIsoLocalizerMorphism 📖CompOp
1 mathmath: mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor

Theorems

NameKindAssumesProvesValidatesDepends On
mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app 📖mathematicalCategoryTheory.NatTrans.app
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplexUpToQuasiIso
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
comp
HomologicalComplexUpToQuasiIso.Qh
mapHomologicalComplexUpToQuasiIso
mapHomotopyCategory
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapHomologicalComplexUpToQuasiIsoFactorsh
obj
HomotopyCategory.quotient
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplexUpToQuasiIso.Q
map
HomologicalComplexUpToQuasiIso.quotientCompQhIso
mapHomologicalComplex
preservesZeroMorphisms_of_additive
mapHomologicalComplexUpToQuasiIsoFactors
CategoryTheory.Iso.inv
mapHomotopyCategoryFactors
preservesZeroMorphisms_of_additive
CategoryTheory.Localization.liftNatTrans_app
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
map_id
mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
HomologicalComplexUpToQuasiIso
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
obj
mapHomologicalComplexUpToQuasiIso
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplexUpToQuasiIso.Qh
HomotopyCategory.quotient
mapHomotopyCategory
CategoryTheory.NatTrans.app
comp
CategoryTheory.Iso.hom
CategoryTheory.Functor
category
mapHomologicalComplexUpToQuasiIsoFactorsh
HomologicalComplexUpToQuasiIso.Q
map
HomologicalComplexUpToQuasiIso.quotientCompQhIso
mapHomologicalComplex
preservesZeroMorphisms_of_additive
mapHomologicalComplexUpToQuasiIsoFactors
CategoryTheory.Iso.inv
mapHomotopyCategoryFactors
preservesZeroMorphisms_of_additive
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app
mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor 📖mathematicalCategoryTheory.LocalizerMorphism.functor
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
mapHomologicalComplexUpToQuasiIsoLocalizerMorphism
mapHomologicalComplex
preservesZeroMorphisms_of_additive
preservesZeroMorphisms_of_additive
mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomologicalComplexUpToQuasiIso
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex.quasiIso
comp
mapHomologicalComplex
preservesZeroMorphisms_of_additive
HomologicalComplexUpToQuasiIso.Q
preservesZeroMorphisms_of_additive
CategoryTheory.LocalizerMorphism.inverts
CategoryTheory.MorphismProperty.instIsLocalizationLocalization'Q'

ComplexShape

Definitions

NameCategoryTheorems
QFactorsThroughHomotopy 📖CompData
3 mathmath: instQFactorsThroughHomotopyIntUp, QFactorsThroughHomotopy_of_exists_prev, instQFactorsThroughHomotopyDown
strictUniversalPropertyFixedTargetQuotient 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
QFactorsThroughHomotopy_of_exists_prev 📖mathematicalRelQFactorsThroughHomotopyHomotopy.map_eq_of_inverts_homotopyEquivalences
CategoryTheory.Limits.HasBinaryBiproducts.has_binary_biproduct
HomologicalComplex.instHasHomotopyCofiberOfHasBinaryBiproducts
HomologicalComplex.instHasBinaryBiproduct
CategoryTheory.MorphismProperty.IsInvertedBy.of_le
CategoryTheory.Localization.inverts
CategoryTheory.Functor.q_isLocalization
homotopyEquivalences_le_quasiIso
quotient_isLocalization 📖mathematicalRelCategoryTheory.Functor.IsLocalization
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomotopyCategory
HomologicalComplex.instCategory
instCategoryHomotopyCategory
HomotopyCategory.quotient
HomologicalComplex.homotopyEquivalences
CategoryTheory.Functor.IsLocalization.mk'

ComplexShape.QFactorsThroughHomotopy

Theorems

NameKindAssumesProvesValidatesDepends On
areEqualizedByLocalization 📖mathematicalCategoryTheory.AreEqualizedByLocalization
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomologicalComplex.quasiIso

HomologicalComplex

Theorems

NameKindAssumesProvesValidatesDepends On
homologyFunctor_inverts_quasiIso 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
HomologicalComplex
instCategory
quasiIso
homologyFunctor
instIsIsoHomologyMapOfQuasiIsoAt
QuasiIso.quasiIsoAt
CategoryTheory.CategoryWithHomology.hasHomology
mem_quasiIso_iff

HomologicalComplexUpToQuasiIso

Definitions

NameCategoryTheorems
Q 📖CompOp
6 mathmath: CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, Q_inverts_homotopyEquivalences, CategoryTheory.Functor.mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, Q_map_eq_of_homotopy, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, isIso_Q_map_iff_mem_quasiIso
Qh 📖CompOp
5 mathmath: CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, Qh_inverts_quasiIso, instIsLocalizationHomotopyCategoryQhQuasiIso, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app
homologyFunctor 📖CompOp
homologyFunctorFactors 📖CompOp
homologyFunctorFactorsh 📖CompOp
quotientCompQhIso 📖CompOp
2 mathmath: CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app

Theorems

NameKindAssumesProvesValidatesDepends On
Q_inverts_homotopyEquivalences 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomologicalComplexUpToQuasiIso
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex.quasiIso
HomologicalComplex.homotopyEquivalences
Q
CategoryTheory.MorphismProperty.IsInvertedBy.of_le
CategoryTheory.Localization.inverts
CategoryTheory.MorphismProperty.instIsLocalizationLocalization'Q'
homotopyEquivalences_le_quasiIso
Q_map_eq_of_homotopy 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomologicalComplexUpToQuasiIso
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex.quasiIso
Q
CategoryTheory.AreEqualizedByLocalization.map_eq
ComplexShape.QFactorsThroughHomotopy.areEqualizedByLocalization
CategoryTheory.MorphismProperty.instIsLocalizationLocalization'Q'
Qh_inverts_quasiIso 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplexUpToQuasiIso
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
HomotopyCategory.quasiIso
Qh
CategoryTheory.Functor.map_surjective
HomotopyCategory.instFullHomologicalComplexQuotient
HomotopyCategory.quotient_map_mem_quasiIso_iff
isIso_Q_map_iff_mem_quasiIso
CategoryTheory.NatIso.isIso_map_iff
instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso 📖mathematicalCategoryTheory.Functor.IsLocalization
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplexUpToQuasiIso
HomologicalComplex.instCategory
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex.quasiIso
CategoryTheory.Functor.comp
HomotopyCategory
instCategoryHomotopyCategory
HomotopyCategory.quotient
Qh
CategoryTheory.Functor.IsLocalization.of_iso
CategoryTheory.MorphismProperty.instIsLocalizationLocalization'Q'
instIsLocalizationHomotopyCategoryQhQuasiIso 📖mathematicalCategoryTheory.Functor.IsLocalization
HomotopyCategory
HomologicalComplexUpToQuasiIso
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instCategoryHomotopyCategory
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
Qh
HomotopyCategory.quasiIso
CategoryTheory.Functor.IsLocalization.of_comp
instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso
homotopyEquivalences_le_quasiIso
HomotopyCategory.quasiIso_eq_quasiIso_map_quotient
isIso_Q_map_iff_mem_quasiIso 📖mathematicalCategoryTheory.IsIso
HomologicalComplexUpToQuasiIso
CategoryTheory.MorphismProperty.instCategoryLocalization'
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.quasiIso
CategoryTheory.Functor.obj
Q
CategoryTheory.Functor.map
CategoryTheory.CategoryWithHomology.hasHomology
HomologicalComplex.mem_quasiIso_iff
quasiIso_iff
quasiIsoAt_iff_isIso_homologyMap
CategoryTheory.NatIso.isIso_map_iff
CategoryTheory.Functor.map_isIso
CategoryTheory.Localization.inverts
CategoryTheory.MorphismProperty.instIsLocalizationLocalization'Q'

HomotopyCategory

Definitions

NameCategoryTheorems
quasiIso 📖CompOp
12 mathmath: respectsIso_quasiIso, quasiIso_eq_quasiIso_map_quotient, DerivedCategory.instIsLocalizationHomotopyCategoryIntUpQhQuasiIso, DerivedCategory.instHasLeftCalculusOfFractionsHomotopyCategoryIntUpQuasiIso, mem_quasiIso_iff, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, quasiIso_eq_subcategoryAcyclic_W, HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso, homologyFunctor_inverts_quasiIso, DerivedCategory.isIso_Qh_map_iff, quotient_map_mem_quasiIso_iff, DerivedCategory.instHasRightCalculusOfFractionsHomotopyCategoryIntUpQuasiIso

Theorems

NameKindAssumesProvesValidatesDepends On
homologyFunctor_inverts_quasiIso 📖mathematicalCategoryTheory.MorphismProperty.IsInvertedBy
HomotopyCategory
instCategoryHomotopyCategory
quasiIso
homologyFunctor
mem_quasiIso_iff 📖mathematicalquasiIso
CategoryTheory.IsIso
CategoryTheory.Functor.obj
HomotopyCategory
instCategoryHomotopyCategory
homologyFunctor
CategoryTheory.Functor.map
quasiIso_eq_quasiIso_map_quotient 📖mathematicalquasiIso
CategoryTheory.MorphismProperty.map
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
HomologicalComplex.quasiIso
quotient
CategoryTheory.MorphismProperty.ext
CategoryTheory.Functor.map_surjective
instFullHomologicalComplexQuotient
CategoryTheory.MorphismProperty.map_mem_map
quotient_map_mem_quasiIso_iff
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
respectsIso_quasiIso
quotient_map_mem_quasiIso_iff 📖mathematicalquasiIso
CategoryTheory.Functor.obj
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HomologicalComplex.instCategory
HomotopyCategory
instCategoryHomotopyCategory
quotient
CategoryTheory.Functor.map
HomologicalComplex.quasiIso
CategoryTheory.NatIso.isIso_map_iff
CategoryTheory.CategoryWithHomology.hasHomology
respectsIso_quasiIso 📖mathematicalCategoryTheory.MorphismProperty.RespectsIso
HomotopyCategory
instCategoryHomotopyCategory
quasiIso
CategoryTheory.MorphismProperty.RespectsIso.of_respects_arrow_iso
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.isomorphisms

(root)

Definitions

NameCategoryTheorems
HomologicalComplexUpToQuasiIso 📖CompOp
9 mathmath: CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, HomologicalComplexUpToQuasiIso.Q_inverts_homotopyEquivalences, CategoryTheory.Functor.mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, HomologicalComplexUpToQuasiIso.Q_map_eq_of_homotopy, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, HomologicalComplexUpToQuasiIso.isIso_Q_map_iff_mem_quasiIso

Theorems

NameKindAssumesProvesValidatesDepends On
instIsLocalizationHomologicalComplexDownHomotopyCategoryQuotientHomotopyEquivalences 📖mathematicalCategoryTheory.Functor.IsLocalization
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
HomotopyCategory
HomologicalComplex.instCategory
instCategoryHomotopyCategory
HomotopyCategory.quotient
HomologicalComplex.homotopyEquivalences
ComplexShape.quotient_isLocalization
AddRightCancelSemigroup.toIsRightCancelAdd
instIsLocalizationHomologicalComplexIntUpHomotopyCategoryQuotientHomotopyEquivalences 📖mathematicalCategoryTheory.Functor.IsLocalization
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
HomotopyCategory
HomologicalComplex.instCategory
instCategoryHomotopyCategory
HomotopyCategory.quotient
HomologicalComplex.homotopyEquivalences
ComplexShape.quotient_isLocalization
AddRightCancelSemigroup.toIsRightCancelAdd
sub_add_cancel
instQFactorsThroughHomotopyDown 📖mathematicalComplexShape.QFactorsThroughHomotopy
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
ComplexShape.QFactorsThroughHomotopy_of_exists_prev
AddRightCancelSemigroup.toIsRightCancelAdd
instQFactorsThroughHomotopyIntUp 📖mathematicalComplexShape.QFactorsThroughHomotopy
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddGroup.toAddCancelMonoid
Int.instAddGroup
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Int.instRing
ComplexShape.QFactorsThroughHomotopy_of_exists_prev
AddRightCancelSemigroup.toIsRightCancelAdd
sub_add_cancel

---

← Back to Index