Documentation Verification Report

Monoidal

📁 Source: Mathlib/Algebra/Homology/Monoidal.lean

Statistics

MetricCount
DefinitionsHasGoodTensor₁₂, HasGoodTensor₂₃, HasTensor, inducingFunctorData, associator, leftUnitor, leftUnitor', monoidalCategory, monoidalCategoryStruct, rightUnitor, rightUnitor', tensorHom, tensorObj, tensorUnit, tensorUnitIso, ιTensorObj
16
TheoremsinstHasGoodTensor₁₂OfHasGoodTensor₁₂TensorX, instHasGoodTensor₂₃OfHasGoodTensorTensor₂₃X, instHasTensorOfHasTensorX, instHasTensorTensorUnit, instHasTensorTensorUnit_1, instHasTensorXTensorUnit, instHasTensorXTensorUnit_1, leftUnitor'_inv, leftUnitor'_inv_comm, leftUnitor'_inv_comm_assoc, rightUnitor'_inv, rightUnitor'_inv_comm, tensor_unit_d₂, unit_tensor_d₁
14
Total30

HomologicalComplex

Definitions

NameCategoryTheorems
HasGoodTensor₁₂ 📖MathDef
1 mathmath: instHasGoodTensor₁₂OfHasGoodTensor₁₂TensorX
HasGoodTensor₂₃ 📖MathDef
1 mathmath: instHasGoodTensor₂₃OfHasGoodTensorTensor₂₃X
HasTensor 📖MathDef
3 mathmath: instHasTensorTensorUnit, instHasTensorOfHasTensorX, instHasTensorTensorUnit_1
associator 📖CompOp—
leftUnitor 📖CompOp—
leftUnitor' 📖CompOp
3 mathmath: leftUnitor'_inv_comm, leftUnitor'_inv_comm_assoc, leftUnitor'_inv
monoidalCategory 📖CompOp—
monoidalCategoryStruct 📖CompOp—
rightUnitor 📖CompOp—
rightUnitor' 📖CompOp
2 mathmath: rightUnitor'_inv, rightUnitor'_inv_comm
tensorHom 📖CompOp—
tensorObj 📖CompOp
5 mathmath: rightUnitor'_inv, leftUnitor'_inv_comm, leftUnitor'_inv_comm_assoc, leftUnitor'_inv, rightUnitor'_inv_comm
tensorUnit 📖CompOp
11 mathmath: rightUnitor'_inv, instHasTensorTensorUnit, leftUnitor'_inv_comm, instHasTensorXTensorUnit_1, leftUnitor'_inv_comm_assoc, tensor_unit_d₂, leftUnitor'_inv, instHasTensorTensorUnit_1, unit_tensor_d₁, instHasTensorXTensorUnit, rightUnitor'_inv_comm
tensorUnitIso 📖CompOp—
ιTensorObj 📖CompOp
2 mathmath: rightUnitor'_inv, leftUnitor'_inv

Theorems

NameKindAssumesProvesValidatesDepends On
instHasGoodTensor₁₂OfHasGoodTensor₁₂TensorX 📖mathematicalCategoryTheory.GradedObject.HasGoodTensor₁₂Tensor
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HasGoodTensor₁₂——
instHasGoodTensor₂₃OfHasGoodTensorTensor₂₃X 📖mathematicalCategoryTheory.GradedObject.HasGoodTensorTensor₂₃
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HasGoodTensor₂₃——
instHasTensorOfHasTensorX 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.GradedObject.HasTensor
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
HasTensor——
instHasTensorTensorUnit 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.flip
HasTensor
tensorUnit
—instHasTensorXTensorUnit
instHasTensorTensorUnit_1 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
HasTensor
tensorUnit
—instHasTensorXTensorUnit_1
instHasTensorXTensorUnit 📖mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.flip
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.GradedObject.HasTensor
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorUnit
—CategoryTheory.GradedObject.hasTensor_of_iso
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.GradedObject.Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit
instHasTensorXTensorUnit_1 📖mathematicalCategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.GradedObject.HasTensor
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorUnit
—CategoryTheory.GradedObject.hasTensor_of_iso
CategoryTheory.Limits.HasZeroObject.hasInitial
CategoryTheory.GradedObject.Monoidal.instHasMapProdObjFunctorMapBifunctorCurriedTensorSingle₀TensorUnit_1
leftUnitor'_inv 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.flip
CategoryTheory.Iso.inv
CategoryTheory.pi
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorObj
tensorUnit
instHasTensorTensorUnit
leftUnitor'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.leftUnitor
HomologicalComplex
instCategory
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.MonoidalCategoryStruct.whiskerRight
singleObjXSelf
ιTensorObj
zero_add
—instHasTensorTensorUnit
zero_add
CategoryTheory.Limits.HasZeroObject.hasInitial
instHasTensorXTensorUnit
CategoryTheory.GradedObject.Monoidal.instHasTensorTensorUnit
CategoryTheory.GradedObject.Monoidal.leftUnitor_inv_apply
CategoryTheory.Category.assoc
CategoryTheory.Iso.cancel_iso_inv_left
CategoryTheory.GradedObject.Monoidal.ι_tensorHom
CategoryTheory.MonoidalCategory.tensorHom_id
CategoryTheory.MonoidalCategory.comp_whiskerRight_assoc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
leftUnitor'_inv_comm 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.flip
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorObj
tensorUnit
instHasTensorTensorUnit
CategoryTheory.Iso.inv
CategoryTheory.pi
leftUnitor'
d
—instHasTensorTensorUnit
zero_add
leftUnitor'_inv
CategoryTheory.Preadditive.comp_add
CategoryTheory.Category.assoc
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctor.ι_D₁
unit_tensor_d₁
CategoryTheory.Limits.comp_zero
mapBifunctor.ι_D₂
mapBifunctor.d₂_eq
ComplexShape.ε_zero
one_smul
CategoryTheory.MonoidalCategory.id_whiskerLeft
CategoryTheory.Iso.inv_hom_id_assoc
shape
CategoryTheory.Limits.zero_comp
leftUnitor'_inv_comm_assoc 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.flip
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorObj
tensorUnit
instHasTensorTensorUnit
CategoryTheory.Iso.inv
CategoryTheory.pi
leftUnitor'
d
—instHasTensorTensorUnit
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftUnitor'_inv_comm
rightUnitor'_inv 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Iso.inv
CategoryTheory.pi
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorObj
tensorUnit
instHasTensorTensorUnit_1
rightUnitor'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorObj
CategoryTheory.MonoidalCategory.toMonoidalCategoryStruct
CategoryTheory.MonoidalCategoryStruct.tensorUnit
CategoryTheory.MonoidalCategoryStruct.rightUnitor
HomologicalComplex
instCategory
single
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
CategoryTheory.MonoidalCategoryStruct.whiskerLeft
singleObjXSelf
ιTensorObj
add_zero
—instHasTensorTensorUnit_1
add_zero
CategoryTheory.Limits.HasZeroObject.hasInitial
instHasTensorXTensorUnit_1
CategoryTheory.GradedObject.Monoidal.instHasTensorTensorUnit_1
CategoryTheory.GradedObject.Monoidal.rightUnitor_inv_apply
CategoryTheory.Category.assoc
CategoryTheory.Iso.cancel_iso_inv_left
CategoryTheory.GradedObject.Monoidal.ι_tensorHom
CategoryTheory.MonoidalCategory.id_tensorHom
CategoryTheory.MonoidalCategory.whiskerLeft_comp_assoc
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
rightUnitor'_inv_comm 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorObj
tensorUnit
instHasTensorTensorUnit_1
CategoryTheory.Iso.inv
CategoryTheory.pi
rightUnitor'
d
—instHasTensorTensorUnit_1
add_zero
rightUnitor'_inv
CategoryTheory.Preadditive.comp_add
CategoryTheory.Category.assoc
mapBifunctor.ι_D₁
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
mapBifunctor.ι_D₂
tensor_unit_d₂
CategoryTheory.Limits.comp_zero
mapBifunctor.d₁_eq
one_smul
CategoryTheory.MonoidalCategory.whisker_exchange_assoc
CategoryTheory.MonoidalCategory.whiskerRight_id
CategoryTheory.Iso.inv_hom_id_assoc
shape
CategoryTheory.Limits.zero_comp
tensor_unit_d₂ 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
mapBifunctor.d₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorUnit
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.instTotalComplexShape
instHasTensorTensorUnit_1
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instHasTensorTensorUnit_1
mapBifunctor.d₂_eq
single_obj_d
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_comp
smul_zero
mapBifunctor.d₂_eq_zero'
mapBifunctor.d₂_eq_zero
unit_tensor_d₁ 📖mathematicalCategoryTheory.Functor.Additive
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.MonoidalCategory.curriedTensor
CategoryTheory.Limits.PreservesColimit
CategoryTheory.Discrete
CategoryTheory.discreteCategory
CategoryTheory.Functor.empty
CategoryTheory.Functor.flip
mapBifunctor.d₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
tensorUnit
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.functorCategoryPreadditive
ComplexShape.instTotalComplexShape
instHasTensorTensorUnit
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
mapBifunctor
CategoryTheory.Limits.HasZeroMorphisms.zero
—CategoryTheory.Functor.preservesZeroMorphisms_of_additive
instHasTensorTensorUnit
mapBifunctor.d₁_eq
single_obj_d
CategoryTheory.Functor.map_zero
CategoryTheory.Limits.zero_app
CategoryTheory.Limits.zero_comp
smul_zero
mapBifunctor.d₁_eq_zero'
mapBifunctor.d₁_eq_zero

HomologicalComplex.Monoidal

Definitions

NameCategoryTheorems
inducingFunctorData 📖CompOp—

---

← Back to Index