Documentation Verification Report

Opposite

📁 Source: Mathlib/Algebra/Homology/Opposite.lean

Statistics

MetricCount
DefinitionscyclesOpIso, cyclesOpNatIso, homologyOp, homologyOpNatIso, homologyUnop, op, opCounitIso, opEquivalence, opFunctor, opInverse, opSymm, opUnitIso, opcyclesOpIso, opcyclesOpNatIso, unop, unopCounitIso, unopEquivalence, unopFunctor, unopInverse, unopSymm, unopUnitIso
21
Theoremsop, unop, op, unop, acyclic_op_iff, cyclesOpIso_hom_naturality, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_inv_naturality, cyclesOpIso_inv_naturality_assoc, cyclesOpNatIso_hom_app, cyclesOpNatIso_inv_app, exactAt_op_iff, fromOpcycles_op_cyclesOpIso_inv, fromOpcycles_op_cyclesOpIso_inv_assoc, homologyOp_hom_naturality, homologyOp_hom_naturality_assoc, instHasHomologyObjOppositeSymmUnopFunctorOp, instHasHomologyOppositeObjSymmOpFunctorOp, instHasHomologyOppositeOp, instHasHomologyUnopOfOpposite, instQuasiIsoAtMapOppositeSymmUnopFunctorOp, instQuasiIsoAtOppositeMapSymmOpFunctorOp, instQuasiIsoMapOppositeSymmUnopFunctorOp, instQuasiIsoOppositeMapSymmOpFunctorOp, opEquivalence_counitIso, opEquivalence_functor, opEquivalence_inverse, opEquivalence_unitIso, opFunctor_additive, opFunctor_map_f, opFunctor_obj, opInverse_map, opInverse_obj, opSymm_X, opSymm_d, op_X, op_d, opcyclesOpIso_hom_naturality, opcyclesOpIso_hom_naturality_assoc, opcyclesOpIso_hom_toCycles_op, opcyclesOpIso_hom_toCycles_op_assoc, opcyclesOpIso_inv_naturality, opcyclesOpIso_inv_naturality_assoc, quasiIsoAt_opFunctor_map_iff, quasiIsoAt_unopFunctor_map_iff, quasiIso_opFunctor_map_iff, quasiIso_unopFunctor_map_iff, unopEquivalence_counitIso, unopEquivalence_functor, unopEquivalence_inverse, unopEquivalence_unitIso, unopFunctor_additive, unopFunctor_map_f, unopFunctor_obj, unopInverse_map, unopInverse_obj, unopSymm_X, unopSymm_d, unop_X, unop_d, imageToKernel_op, imageToKernel_unop
62
Total83

HomologicalComplex

Definitions

NameCategoryTheorems
cyclesOpIso 📖CompOp
8 mathmath: cyclesOpIso_inv_naturality_assoc, cyclesOpNatIso_inv_app, fromOpcycles_op_cyclesOpIso_inv_assoc, cyclesOpIso_inv_naturality, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_hom_naturality, cyclesOpNatIso_hom_app, fromOpcycles_op_cyclesOpIso_inv
cyclesOpNatIso 📖CompOp
2 mathmath: cyclesOpNatIso_inv_app, cyclesOpNatIso_hom_app
homologyOp 📖CompOp
2 mathmath: homologyOp_hom_naturality_assoc, homologyOp_hom_naturality
homologyOpNatIso 📖CompOp
homologyUnop 📖CompOp
op 📖CompOp
34 mathmath: op_d, opcyclesOpIso_inv_naturality_assoc, instHasHomologyOppositeOp, extend_op_d_assoc, isStrictlySupportedOutside_op_iff, opcyclesOpIso_inv_naturality, extend.XOpIso_hom_d_op, extend.XOpIso_hom_d_op_assoc, opFunctor_obj, cyclesOpIso_inv_naturality_assoc, Acyclic.op, cyclesOpNatIso_inv_app, opcyclesOpIso_hom_naturality_assoc, opcyclesOpIso_hom_toCycles_op, opFunctor_map_f, isSupportedOutside_op_iff, exactAt_op_iff, fromOpcycles_op_cyclesOpIso_inv_assoc, homologyOp_hom_naturality_assoc, cyclesOpIso_inv_naturality, opcyclesOpIso_hom_naturality, extend_op_d, isStrictlySupported_op_iff, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_hom_naturality, isSupported_op_iff, acyclic_op_iff, ExactAt.op, op_X, cyclesOpNatIso_hom_app, fromOpcycles_op_cyclesOpIso_inv, instIsStrictlySupportedOppositeOpOp, homologyOp_hom_naturality, opcyclesOpIso_hom_toCycles_op_assoc
opCounitIso 📖CompOp
1 mathmath: opEquivalence_counitIso
opEquivalence 📖CompOp
4 mathmath: opEquivalence_unitIso, opEquivalence_counitIso, opEquivalence_functor, opEquivalence_inverse
opFunctor 📖CompOp
21 mathmath: opcyclesOpIso_inv_naturality_assoc, opcyclesOpIso_inv_naturality, opFunctor_obj, cyclesOpIso_inv_naturality_assoc, cyclesOpNatIso_inv_app, opcyclesOpIso_hom_naturality_assoc, opFunctor_map_f, instQuasiIsoAtOppositeMapSymmOpFunctorOp, homologyOp_hom_naturality_assoc, cyclesOpIso_inv_naturality, opcyclesOpIso_hom_naturality, instHasHomologyOppositeObjSymmOpFunctorOp, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_hom_naturality, instQuasiIsoOppositeMapSymmOpFunctorOp, opEquivalence_functor, quasiIso_opFunctor_map_iff, cyclesOpNatIso_hom_app, opFunctor_additive, homologyOp_hom_naturality, quasiIsoAt_opFunctor_map_iff
opInverse 📖CompOp
3 mathmath: opInverse_obj, opEquivalence_inverse, opInverse_map
opSymm 📖CompOp
4 mathmath: opSymm_d, unopInverse_map, unopInverse_obj, opSymm_X
opUnitIso 📖CompOp
1 mathmath: opEquivalence_unitIso
opcyclesOpIso 📖CompOp
6 mathmath: opcyclesOpIso_inv_naturality_assoc, opcyclesOpIso_inv_naturality, opcyclesOpIso_hom_naturality_assoc, opcyclesOpIso_hom_toCycles_op, opcyclesOpIso_hom_naturality, opcyclesOpIso_hom_toCycles_op_assoc
opcyclesOpNatIso 📖CompOp
unop 📖CompOp
7 mathmath: unopFunctor_obj, unop_X, instHasHomologyUnopOfOpposite, unop_d, Acyclic.unop, unopFunctor_map_f, ExactAt.unop
unopCounitIso 📖CompOp
1 mathmath: unopEquivalence_counitIso
unopEquivalence 📖CompOp
4 mathmath: unopEquivalence_functor, unopEquivalence_unitIso, unopEquivalence_inverse, unopEquivalence_counitIso
unopFunctor 📖CompOp
9 mathmath: unopFunctor_obj, unopEquivalence_functor, instQuasiIsoAtMapOppositeSymmUnopFunctorOp, instQuasiIsoMapOppositeSymmUnopFunctorOp, quasiIsoAt_unopFunctor_map_iff, quasiIso_unopFunctor_map_iff, unopFunctor_map_f, unopFunctor_additive, instHasHomologyObjOppositeSymmUnopFunctorOp
unopInverse 📖CompOp
3 mathmath: unopInverse_map, unopInverse_obj, unopEquivalence_inverse
unopSymm 📖CompOp
4 mathmath: unopSymm_X, opInverse_obj, unopSymm_d, opInverse_map
unopUnitIso 📖CompOp
1 mathmath: unopEquivalence_unitIso

Theorems

NameKindAssumesProvesValidatesDepends On
acyclic_op_iff 📖mathematicalAcyclic
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
Acyclic.unop
Acyclic.op
cyclesOpIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
opcycles
cyclesMap
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.hom
op
cyclesOpIso
opcyclesMap
CategoryTheory.ShortComplex.cyclesOpIso_hom_naturality
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
cyclesOpIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
cycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
cyclesMap
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
opcycles
CategoryTheory.Iso.hom
op
cyclesOpIso
opcyclesMap
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesOpIso_hom_naturality
cyclesOpIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
opcycles
cycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
instHasHomologyOppositeOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
opcyclesMap
CategoryTheory.Iso.inv
cyclesOpIso
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
instHasHomologyOppositeObjSymmOpFunctorOp
cyclesMap
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.cyclesOpIso_inv_naturality
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
cyclesOpIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
opcycles
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
opcyclesMap
cycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
instHasHomologyOppositeOp
CategoryTheory.Iso.inv
cyclesOpIso
cyclesMap
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
CategoryTheory.Functor.map
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
instHasHomologyOppositeObjSymmOpFunctorOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesOpIso_inv_naturality
cyclesOpNatIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
opFunctor
cyclesFunctor
CategoryTheory.ShortComplex.instCategoryWithHomologyOpposite
CategoryTheory.Functor.op
opcyclesFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
cyclesOpNatIso
cycles
op
Opposite.unop
Opposite.op
opcycles
cyclesOpIso
CategoryTheory.ShortComplex.instCategoryWithHomologyOpposite
cyclesOpNatIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.op
opcyclesFunctor
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
opFunctor
cyclesFunctor
CategoryTheory.ShortComplex.instCategoryWithHomologyOpposite
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
cyclesOpNatIso
cycles
op
Opposite.unop
Opposite.op
opcycles
cyclesOpIso
CategoryTheory.ShortComplex.instCategoryWithHomologyOpposite
exactAt_op_iff 📖mathematicalExactAt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
ExactAt.unop
ExactAt.op
fromOpcycles_op_cyclesOpIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
X
opcycles
cycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
instHasHomologyOppositeOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
fromOpcycles
CategoryTheory.Iso.inv
cyclesOpIso
toCycles
instHasHomologyOppositeOp
CategoryTheory.ShortComplex.fromOpcycles_op_cyclesOpIso_inv
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
ComplexShape.next_eq'
toCycles_eq_zero
fromOpcycles_eq_zero
CategoryTheory.Limits.op_zero
CategoryTheory.Limits.zero_comp
fromOpcycles_op_cyclesOpIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
X
opcycles
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
fromOpcycles
cycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
instHasHomologyOppositeOp
CategoryTheory.Iso.inv
cyclesOpIso
toCycles
instHasHomologyOppositeOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fromOpcycles_op_cyclesOpIso_inv
homologyOp_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
homologyMap
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.hom
op
homologyOp
CategoryTheory.ShortComplex.homologyOpIso_hom_naturality
homologyOp_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
homology
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
homologyMap
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.hom
op
homologyOp
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyOp_hom_naturality
instHasHomologyObjOppositeSymmUnopFunctorOp 📖mathematicalHasHomology
ComplexShape.symm
CategoryTheory.Functor.obj
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
instCategory
unopFunctor
Opposite.op
instHasHomologyUnopOfOpposite
instHasHomologyOppositeObjSymmOpFunctorOp 📖mathematicalHasHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
instHasHomologyOppositeOp
instHasHomologyOppositeOp 📖mathematicalHasHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
CategoryTheory.ShortComplex.instHasHomologyOppositeOp
instHasHomologyUnopOfOpposite 📖mathematicalHasHomology
ComplexShape.symm
unop
CategoryTheory.ShortComplex.instHasHomologyUnopOfOpposite
instQuasiIsoAtMapOppositeSymmUnopFunctorOp 📖mathematicalQuasiIsoAt
ComplexShape.symm
CategoryTheory.Functor.obj
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
instCategory
unopFunctor
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instHasHomologyObjOppositeSymmUnopFunctorOp
instHasHomologyObjOppositeSymmUnopFunctorOp
quasiIsoAt_unopFunctor_map_iff
instQuasiIsoAtOppositeMapSymmOpFunctorOp 📖mathematicalQuasiIsoAt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeObjSymmOpFunctorOp
quasiIsoAt_opFunctor_map_iff
instQuasiIsoMapOppositeSymmUnopFunctorOp 📖mathematicalHasHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
QuasiIso
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
unopFunctor
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instHasHomologyObjOppositeSymmUnopFunctorOp
instHasHomologyObjOppositeSymmUnopFunctorOp
quasiIso_unopFunctor_map_iff
instQuasiIsoOppositeMapSymmOpFunctorOp 📖mathematicalHasHomologyQuasiIso
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeObjSymmOpFunctorOp
quasiIso_opFunctor_map_iff
opEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
opEquivalence
opCounitIso
opEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
opEquivalence
opFunctor
opEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
opEquivalence
opInverse
opEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
opEquivalence
opUnitIso
opFunctor_additive 📖mathematicalCategoryTheory.Functor.Additive
Opposite
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
CategoryTheory.instPreadditiveOpposite
instPreadditive
opFunctor
opFunctor_map_f 📖mathematicalHom.f
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
Opposite.unop
HomologicalComplex
CategoryTheory.Functor.map
instCategory
opFunctor
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
Quiver.Hom.unop
opFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
opFunctor
op
Opposite.unop
opInverse_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
opInverse
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
unopSymm
Quiver.Hom.unop
X
Hom.f
opInverse_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
opInverse
Opposite.op
unopSymm
opSymm_X 📖mathematicalX
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
opSymm
Opposite.op
ComplexShape.symm
opSymm_d 📖mathematicald
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
opSymm
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
ComplexShape.symm
op_X 📖mathematicalX
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
Opposite.op
op_d 📖mathematicald
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
opcyclesOpIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
cycles
opcyclesMap
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Iso.hom
op
opcyclesOpIso
cyclesMap
CategoryTheory.ShortComplex.opcyclesOpIso_hom_naturality
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
opcyclesOpIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
opcycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
opcyclesMap
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
cycles
CategoryTheory.Iso.hom
op
opcyclesOpIso
cyclesMap
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesOpIso_hom_naturality
opcyclesOpIso_hom_toCycles_op 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
instHasHomologyOppositeOp
Opposite.op
cycles
X
CategoryTheory.Iso.hom
opcyclesOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
toCycles
fromOpcycles
instHasHomologyOppositeOp
CategoryTheory.ShortComplex.opcyclesOpIso_hom_toCycles_op
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
ComplexShape.prev_eq'
toCycles_eq_zero
fromOpcycles_eq_zero
CategoryTheory.Limits.op_zero
CategoryTheory.Limits.comp_zero
opcyclesOpIso_hom_toCycles_op_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
opcycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
instHasHomologyOppositeOp
Opposite.op
cycles
CategoryTheory.Iso.hom
opcyclesOpIso
X
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
toCycles
fromOpcycles
instHasHomologyOppositeOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesOpIso_hom_toCycles_op
opcyclesOpIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
cycles
opcycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
instHasHomologyOppositeOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
cyclesMap
CategoryTheory.Iso.inv
opcyclesOpIso
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
instHasHomologyOppositeObjSymmOpFunctorOp
opcyclesMap
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.opcyclesOpIso_inv_naturality
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
opcyclesOpIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
cycles
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
cyclesMap
opcycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
op
instHasHomologyOppositeOp
CategoryTheory.Iso.inv
opcyclesOpIso
opcyclesMap
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
CategoryTheory.Functor.map
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeOp
instHasHomologyOppositeObjSymmOpFunctorOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesOpIso_inv_naturality
quasiIsoAt_opFunctor_map_iff 📖mathematicalQuasiIsoAt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeObjSymmOpFunctorOp
CategoryTheory.ShortComplex.quasiIso_opMap_iff
quasiIsoAt_unopFunctor_map_iff 📖mathematicalQuasiIsoAt
ComplexShape.symm
CategoryTheory.Functor.obj
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
instCategory
unopFunctor
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instHasHomologyObjOppositeSymmUnopFunctorOp
instHasHomologyObjOppositeSymmUnopFunctorOp
instHasHomologyOppositeObjSymmOpFunctorOp
quasiIsoAt_opFunctor_map_iff
quasiIso_opFunctor_map_iff 📖mathematicalHasHomologyQuasiIso
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
opFunctor
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instHasHomologyOppositeObjSymmOpFunctorOp
instHasHomologyOppositeObjSymmOpFunctorOp
quasiIso_unopFunctor_map_iff 📖mathematicalHasHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
QuasiIso
ComplexShape.symm
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
unopFunctor
Opposite.op
CategoryTheory.Functor.map
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instHasHomologyObjOppositeSymmUnopFunctorOp
instHasHomologyObjOppositeSymmUnopFunctorOp
unopEquivalence_counitIso 📖mathematicalCategoryTheory.Equivalence.counitIso
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
unopEquivalence
unopCounitIso
unopEquivalence_functor 📖mathematicalCategoryTheory.Equivalence.functor
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
unopEquivalence
unopFunctor
unopEquivalence_inverse 📖mathematicalCategoryTheory.Equivalence.inverse
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
unopEquivalence
unopInverse
unopEquivalence_unitIso 📖mathematicalCategoryTheory.Equivalence.unitIso
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
instCategory
unopEquivalence
unopUnitIso
unopFunctor_additive 📖mathematicalCategoryTheory.Functor.Additive
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
ComplexShape.symm
instCategory
CategoryTheory.instPreadditiveOpposite
instPreadditive
unopFunctor
unopFunctor_map_f 📖mathematicalHom.f
ComplexShape.symm
unop
Opposite.unop
HomologicalComplex
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.Functor.map
instCategory
unopFunctor
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
unopFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
Opposite
HomologicalComplex
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
instCategory
ComplexShape.symm
unopFunctor
unop
Opposite.unop
unopInverse_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
ComplexShape.symm
instCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unopInverse
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
opSymm
X
Hom.f
unopInverse_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
ComplexShape.symm
instCategory
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unopInverse
Opposite.op
opSymm
unopSymm_X 📖mathematicalX
unopSymm
Opposite.unop
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
unopSymm_d 📖mathematicald
unopSymm
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
unop_X 📖mathematicalX
ComplexShape.symm
unop
Opposite.unop
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unop_d 📖mathematicald
ComplexShape.symm
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite

HomologicalComplex.Acyclic

Theorems

NameKindAssumesProvesValidatesDepends On
op 📖mathematicalHomologicalComplex.AcyclicOpposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
HomologicalComplex.op
HomologicalComplex.ExactAt.op
unop 📖mathematicalHomologicalComplex.Acyclic
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
HomologicalComplex.unop
HomologicalComplex.ExactAt.unop

HomologicalComplex.ExactAt

Theorems

NameKindAssumesProvesValidatesDepends On
op 📖mathematicalHomologicalComplex.ExactAtOpposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
HomologicalComplex.op
CategoryTheory.ShortComplex.Exact.op
unop 📖mathematicalHomologicalComplex.ExactAt
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
ComplexShape.symm
HomologicalComplex.unop
CategoryTheory.ShortComplex.Exact.unop

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
imageToKernel_op 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
imageToKernel
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
Opposite.op
Quiver.Hom.op
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.instAbelianOpposite
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Limits.imageSubobject
CategoryTheory.Limits.image
CategoryTheory.Limits.kernelSubobject
CategoryTheory.Iso.hom
CategoryTheory.Iso.trans
CategoryTheory.Limits.imageSubobjectIso
CategoryTheory.Iso.symm
CategoryTheory.imageOpOp
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.cokernel.desc
CategoryTheory.Limits.factorThruImage
CategoryTheory.Iso.inv
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernelSubobjectIso
CategoryTheory.kernelOpOp
CategoryTheory.Subobject.eq_of_comp_arrow_eq
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
imageToKernel_arrow
CategoryTheory.imageUnopOp_inv_comp_op_factorThruImage
CategoryTheory.Category.assoc
CategoryTheory.Limits.kernelSubobject_arrow'
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Limits.cokernel.π_desc
imageToKernel_unop 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
imageToKernel
Opposite.unop
Quiver.Hom.unop
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Functor.obj
CategoryTheory.Subobject
Preorder.smallCategory
PartialOrder.toPreorder
CategoryTheory.instPartialOrderSubobject
CategoryTheory.Subobject.underlying
CategoryTheory.Limits.imageSubobject
CategoryTheory.Limits.image
CategoryTheory.instAbelianOpposite
CategoryTheory.Limits.kernelSubobject
CategoryTheory.Iso.hom
CategoryTheory.Iso.trans
CategoryTheory.Limits.imageSubobjectIso
CategoryTheory.Iso.symm
CategoryTheory.imageUnopUnop
CategoryTheory.Limits.cokernel
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
CategoryTheory.Limits.cokernel.desc
CategoryTheory.Limits.factorThruImage
CategoryTheory.Iso.inv
CategoryTheory.Limits.kernel
CategoryTheory.Limits.kernelSubobjectIso
CategoryTheory.kernelUnopUnop
CategoryTheory.Subobject.eq_of_comp_arrow_eq
CategoryTheory.Limits.HasImages.has_image
CategoryTheory.Limits.hasImages_of_hasStrongEpiMonoFactorisations
CategoryTheory.Abelian.instHasStrongEpiMonoFactorisations
CategoryTheory.Limits.HasKernels.has_limit
CategoryTheory.Abelian.has_kernels
CategoryTheory.Limits.HasCokernels.has_colimit
CategoryTheory.Abelian.has_cokernels
imageToKernel_arrow
CategoryTheory.Category.assoc
CategoryTheory.Limits.kernelSubobject_arrow'
CategoryTheory.Limits.kernel.lift_ι
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.factorThruImage_comp_imageUnopOp_inv
CategoryTheory.Limits.imageSubobject_arrow

---

← Back to Index