| Name | Category | Theorems |
cyclesOpIso 📖 | CompOp | 8 mathmath: cyclesOpIso_inv_naturality_assoc, cyclesOpNatIso_inv_app, fromOpcycles_op_cyclesOpIso_inv_assoc, cyclesOpIso_inv_naturality, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_hom_naturality, cyclesOpNatIso_hom_app, fromOpcycles_op_cyclesOpIso_inv
|
cyclesOpNatIso 📖 | CompOp | 2 mathmath: cyclesOpNatIso_inv_app, cyclesOpNatIso_hom_app
|
homologyOp 📖 | CompOp | 2 mathmath: homologyOp_hom_naturality_assoc, homologyOp_hom_naturality
|
homologyOpNatIso 📖 | CompOp | — |
homologyUnop 📖 | CompOp | — |
op 📖 | CompOp | 34 mathmath: op_d, opcyclesOpIso_inv_naturality_assoc, instHasHomologyOppositeOp, extend_op_d_assoc, isStrictlySupportedOutside_op_iff, opcyclesOpIso_inv_naturality, extend.XOpIso_hom_d_op, extend.XOpIso_hom_d_op_assoc, opFunctor_obj, cyclesOpIso_inv_naturality_assoc, Acyclic.op, cyclesOpNatIso_inv_app, opcyclesOpIso_hom_naturality_assoc, opcyclesOpIso_hom_toCycles_op, opFunctor_map_f, isSupportedOutside_op_iff, exactAt_op_iff, fromOpcycles_op_cyclesOpIso_inv_assoc, homologyOp_hom_naturality_assoc, cyclesOpIso_inv_naturality, opcyclesOpIso_hom_naturality, extend_op_d, isStrictlySupported_op_iff, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_hom_naturality, isSupported_op_iff, acyclic_op_iff, ExactAt.op, op_X, cyclesOpNatIso_hom_app, fromOpcycles_op_cyclesOpIso_inv, instIsStrictlySupportedOppositeOpOp, homologyOp_hom_naturality, opcyclesOpIso_hom_toCycles_op_assoc
|
opCounitIso 📖 | CompOp | 1 mathmath: opEquivalence_counitIso
|
opEquivalence 📖 | CompOp | 4 mathmath: opEquivalence_unitIso, opEquivalence_counitIso, opEquivalence_functor, opEquivalence_inverse
|
opFunctor 📖 | CompOp | 21 mathmath: opcyclesOpIso_inv_naturality_assoc, opcyclesOpIso_inv_naturality, opFunctor_obj, cyclesOpIso_inv_naturality_assoc, cyclesOpNatIso_inv_app, opcyclesOpIso_hom_naturality_assoc, opFunctor_map_f, instQuasiIsoAtOppositeMapSymmOpFunctorOp, homologyOp_hom_naturality_assoc, cyclesOpIso_inv_naturality, opcyclesOpIso_hom_naturality, instHasHomologyOppositeObjSymmOpFunctorOp, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_hom_naturality, instQuasiIsoOppositeMapSymmOpFunctorOp, opEquivalence_functor, quasiIso_opFunctor_map_iff, cyclesOpNatIso_hom_app, opFunctor_additive, homologyOp_hom_naturality, quasiIsoAt_opFunctor_map_iff
|
opInverse 📖 | CompOp | 3 mathmath: opInverse_obj, opEquivalence_inverse, opInverse_map
|
opSymm 📖 | CompOp | 4 mathmath: opSymm_d, unopInverse_map, unopInverse_obj, opSymm_X
|
opUnitIso 📖 | CompOp | 1 mathmath: opEquivalence_unitIso
|
opcyclesOpIso 📖 | CompOp | 6 mathmath: opcyclesOpIso_inv_naturality_assoc, opcyclesOpIso_inv_naturality, opcyclesOpIso_hom_naturality_assoc, opcyclesOpIso_hom_toCycles_op, opcyclesOpIso_hom_naturality, opcyclesOpIso_hom_toCycles_op_assoc
|
opcyclesOpNatIso 📖 | CompOp | — |
unop 📖 | CompOp | 7 mathmath: unopFunctor_obj, unop_X, instHasHomologyUnopOfOpposite, unop_d, Acyclic.unop, unopFunctor_map_f, ExactAt.unop
|
unopCounitIso 📖 | CompOp | 1 mathmath: unopEquivalence_counitIso
|
unopEquivalence 📖 | CompOp | 4 mathmath: unopEquivalence_functor, unopEquivalence_unitIso, unopEquivalence_inverse, unopEquivalence_counitIso
|
unopFunctor 📖 | CompOp | 9 mathmath: unopFunctor_obj, unopEquivalence_functor, instQuasiIsoAtMapOppositeSymmUnopFunctorOp, instQuasiIsoMapOppositeSymmUnopFunctorOp, quasiIsoAt_unopFunctor_map_iff, quasiIso_unopFunctor_map_iff, unopFunctor_map_f, unopFunctor_additive, instHasHomologyObjOppositeSymmUnopFunctorOp
|
unopInverse 📖 | CompOp | 3 mathmath: unopInverse_map, unopInverse_obj, unopEquivalence_inverse
|
unopSymm 📖 | CompOp | 4 mathmath: unopSymm_X, opInverse_obj, unopSymm_d, opInverse_map
|
unopUnitIso 📖 | CompOp | 1 mathmath: unopEquivalence_unitIso
|