Documentation Verification Report

QuasiIso

📁 Source: Mathlib/Algebra/Homology/QuasiIso.lean

Statistics

MetricCount
DefinitionsquasiIso, QuasiIsoAt, isoOfQuasiIsoAt
3
TheoremsquasiIsoAt₀_iff, quasiIsoAt₀_iff, instHasTwoOutOfThreePropertyQuasiIso, instIsMultiplicativeQuasiIso, instIsStableUnderRetractsQuasiIso, instRespectsIsoQuasiIso, mem_quasiIso_iff, quasiIsoAt_map_iff_of_preservesHomology, quasiIsoAt_map_of_preservesHomology, quasiIso_map_iff_of_preservesHomology, quasiIso_map_of_preservesHomology, quasiIsoAt_hom, quasiIsoAt_inv, quasiIso_hom, quasiIso_inv, quasiIsoAt, quasiIso, exactAt_iff_of_quasiIsoAt, homotopyEquivalences_le_quasiIso, instIsIsoHomologyMapOfQuasiIsoAt, isoOfQuasiIsoAt_hom, isoOfQuasiIsoAt_hom_inv_id, isoOfQuasiIsoAt_hom_inv_id_assoc, isoOfQuasiIsoAt_inv_hom_id, isoOfQuasiIsoAt_inv_hom_id_assoc, quasiIsoAt_comp, quasiIsoAt_iff, quasiIsoAt_iff', quasiIsoAt_iff_comp_left, quasiIsoAt_iff_comp_right, quasiIsoAt_iff_exactAt, quasiIsoAt_iff_exactAt', quasiIsoAt_iff_isIso_homologyMap, quasiIsoAt_of_comp_left, quasiIsoAt_of_comp_right, quasiIsoAt_of_isIso, quasiIsoAt_of_retract, quasiIso_comp, quasiIso_iff, quasiIso_iff_comp_left, quasiIso_iff_comp_right, quasiIso_iff_of_arrow_mk_iso, quasiIso_of_arrow_mk_iso, quasiIso_of_comp_left, quasiIso_of_comp_right, quasiIso_of_isIso, quasiIso_of_retractArrow
47
Total50

ChainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIsoAt₀_iff 📖mathematicalQuasiIsoAt
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.ShortComplex.QuasiIso
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
HomologicalComplex.shortComplexFunctor'
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
quasiIsoAt_iff'
prev
zero_add
next_nat_zero

CochainComplex

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIsoAt₀_iff 📖mathematicalQuasiIsoAt
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.ShortComplex.QuasiIso
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
HomologicalComplex.shortComplexFunctor'
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
quasiIsoAt_iff'
prev_nat_zero
next
zero_add

HomologicalComplex

Definitions

NameCategoryTheorems
quasiIso 📖CompOp
26 mathmath: DerivedCategory.instIsLocalizationCochainComplexIntQQuasiIsoUp, CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁, homotopyEquivalences_le_quasiIso, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app_assoc, instIsStableUnderRetractsQuasiIso, HomologicalComplexUpToQuasiIso.instIsLocalizationHomologicalComplexCompHomotopyCategoryQuotientQhQuasiIso, CochainComplex.instIsCompatibleWithShiftHomologicalComplexIntUpQuasiIso, mem_quasiIso_iff, HomologicalComplexUpToQuasiIso.Q_inverts_homotopyEquivalences, instRespectsIsoQuasiIso, CategoryTheory.Functor.mapHomologicalComplex_upToQuasiIso_Q_inverts_quasiIso, HomotopyCategory.quasiIso_eq_quasiIso_map_quotient, instIsMultiplicativeQuasiIso, HomologicalComplexUpToQuasiIso.Q_map_eq_of_homotopy, CategoryTheory.HasExt.hasSmallLocalizedShiftedHom_of_isLE_of_isGE, CategoryTheory.HasExt.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoOfIsGEOfIsLEOfNat, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoLocalizerMorphism_functor, CategoryTheory.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoObjCochainComplexCompSingleFunctorOfNatOfHasExt, HomologicalComplexUpToQuasiIso.Qh_inverts_quasiIso, instHasTwoOutOfThreePropertyQuasiIso, HomologicalComplexUpToQuasiIso.instIsLocalizationHomotopyCategoryQhQuasiIso, CategoryTheory.Functor.mapHomologicalComplexUpToQuasiIsoFactorsh_hom_app, ComplexShape.QFactorsThroughHomotopy.areEqualizedByLocalization, homologyFunctor_inverts_quasiIso, HomotopyCategory.quotient_map_mem_quasiIso_iff, HomologicalComplexUpToQuasiIso.isIso_Q_map_iff_mem_quasiIso

Theorems

NameKindAssumesProvesValidatesDepends On
instHasTwoOutOfThreePropertyQuasiIso 📖mathematicalCategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty
HomologicalComplex
instCategory
quasiIso
CategoryTheory.MorphismProperty.IsMultiplicative.toIsStableUnderComposition
instIsMultiplicativeQuasiIso
CategoryTheory.CategoryWithHomology.hasHomology
mem_quasiIso_iff
quasiIso_iff_comp_right
quasiIso_iff_comp_left
instIsMultiplicativeQuasiIso 📖mathematicalCategoryTheory.MorphismProperty.IsMultiplicative
HomologicalComplex
instCategory
quasiIso
CategoryTheory.CategoryWithHomology.hasHomology
mem_quasiIso_iff
quasiIso_of_isIso
CategoryTheory.IsIso.id
quasiIso_comp
instIsStableUnderRetractsQuasiIso 📖mathematicalCategoryTheory.MorphismProperty.IsStableUnderRetracts
HomologicalComplex
instCategory
quasiIso
CategoryTheory.CategoryWithHomology.hasHomology
mem_quasiIso_iff
quasiIso_of_retractArrow
instRespectsIsoQuasiIso 📖mathematicalCategoryTheory.MorphismProperty.RespectsIso
HomologicalComplex
instCategory
quasiIso
CategoryTheory.MorphismProperty.respectsIso_of_isStableUnderComposition
CategoryTheory.MorphismProperty.HasTwoOutOfThreeProperty.toIsStableUnderComposition
instHasTwoOutOfThreePropertyQuasiIso
CategoryTheory.CategoryWithHomology.hasHomology
mem_quasiIso_iff
quasiIso_of_isIso
mem_quasiIso_iff 📖mathematicalquasiIso
QuasiIso
CategoryTheory.CategoryWithHomology.hasHomology
sc
quasiIsoAt_map_iff_of_preservesHomology 📖mathematicalQuasiIsoAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.map
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.ShortComplex.quasiIso_map_iff_of_preservesLeftHomology
CategoryTheory.ShortComplex.hasHomology_of_preserves'
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
quasiIsoAt_map_of_preservesHomology 📖mathematicalQuasiIsoAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.map
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
quasiIsoAt_iff
CategoryTheory.ShortComplex.quasiIso_map_of_preservesLeftHomology
CategoryTheory.ShortComplex.hasHomology_of_preserves'
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
quasiIso_map_iff_of_preservesHomology 📖mathematicalHasHomology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
QuasiIso
CategoryTheory.Functor.map
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
quasiIsoAt_map_iff_of_preservesHomology
quasiIso_map_of_preservesHomology 📖mathematicalHasHomology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.Functor.mapHomologicalComplex
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
QuasiIso
CategoryTheory.Functor.map
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
quasiIsoAt_map_of_preservesHomology
QuasiIso.quasiIsoAt

HomotopyEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIsoAt_hom 📖mathematicalQuasiIsoAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
hom
quasiIsoAt_iff
CategoryTheory.ShortComplex.quasiIso_iff
CategoryTheory.Iso.isIso_hom
quasiIsoAt_inv 📖mathematicalQuasiIsoAt
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
inv
quasiIsoAt_hom
quasiIso_hom 📖mathematicalHomologicalComplex.HasHomology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
QuasiIso
hom
quasiIsoAt_hom
quasiIso_inv 📖mathematicalHomologicalComplex.HasHomology
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
QuasiIso
inv
quasiIsoAt_inv

QuasiIso

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIsoAt 📖mathematicalHomologicalComplex.HasHomologyQuasiIsoAt

QuasiIsoAt

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIso 📖mathematicalCategoryTheory.ShortComplex.QuasiIso
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
HomologicalComplex.shortComplexFunctor
CategoryTheory.Functor.map

(root)

Definitions

NameCategoryTheorems
QuasiIsoAt 📖CompData
38 mathmath: quasiIsoAt_iff_comp_right, quasiIsoAt_iff_exactAt, CochainComplex.quasiIso_truncLEMap_iff, HomologicalComplex.quasiIsoAt_extendMap_iff, HomologicalComplex.instQuasiIsoAtιTruncLEF, HomologicalComplex.instQuasiIsoAtMapOppositeSymmUnopFunctorOp, QuasiIso.quasiIsoAt, quasiIsoAt_comp, HomotopyEquiv.quasiIsoAt_inv, HomologicalComplex.truncLE'.quasiIsoAt_truncLE'ToRestriction, HomologicalComplex.quasiIsoAt_unopFunctor_map_iff, ChainComplex.quasiIsoAt₀_iff, HomologicalComplex.instQuasiIsoAtOppositeMapSymmOpFunctorOp, CochainComplex.quasiIso_truncGEMap_iff, quasiIsoAt_of_comp_right, HomologicalComplex.quasiIsoAt_shortComplexTruncLE_g, CochainComplex.quasiIsoAt_shift_iff, HomologicalComplex.quasiIsoAt_πTruncGE, quasiIso_iff, quasiIsoAt_iff_isIso_homologyMap, HomologicalComplex.quasiIsoAt_iff_evaluation, quasiIsoAt_iff', CochainComplex.quasiIsoAt₀_iff, HomologicalComplex.truncGE'.quasiIsoAt_restrictionToTruncGE', quasiIsoAt_of_retract, HomologicalComplex.quasiIsoAt_ιTruncLE, quasiIsoAt_iff_comp_left, HomotopyEquiv.quasiIsoAt_hom, HomologicalComplex.quasiIso_truncGEMap_iff, quasiIsoAt_iff, HomologicalComplex.quasiIsoAt_map_of_preservesHomology, quasiIsoAt_of_comp_left, quasiIsoAt_iff_exactAt', HomologicalComplex.quasiIsoAt_opFunctor_map_iff, quasiIsoAt_of_isIso, HomologicalComplex.instQuasiIsoAtπTruncGEF, HomologicalComplex.quasiIso_truncLEMap_iff, HomologicalComplex.quasiIsoAt_map_iff_of_preservesHomology
isoOfQuasiIsoAt 📖CompOp
5 mathmath: isoOfQuasiIsoAt_hom, isoOfQuasiIsoAt_hom_inv_id, isoOfQuasiIsoAt_inv_hom_id, isoOfQuasiIsoAt_inv_hom_id_assoc, isoOfQuasiIsoAt_hom_inv_id_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
exactAt_iff_of_quasiIsoAt 📖mathematicalHomologicalComplex.ExactAtquasiIsoAt_iff_exactAt
quasiIsoAt_iff_exactAt'
homotopyEquivalences_le_quasiIso 📖mathematicalCategoryTheory.MorphismProperty
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CategoryTheory.MorphismProperty.instCompleteBooleanAlgebra
HomologicalComplex.homotopyEquivalences
HomologicalComplex.quasiIso
CategoryTheory.CategoryWithHomology.hasHomology
HomotopyEquiv.quasiIso_hom
instIsIsoHomologyMapOfQuasiIsoAt 📖mathematicalCategoryTheory.IsIso
HomologicalComplex.homology
HomologicalComplex.homologyMap
isoOfQuasiIsoAt_hom 📖mathematicalCategoryTheory.Iso.hom
HomologicalComplex.homology
isoOfQuasiIsoAt
HomologicalComplex.homologyMap
isoOfQuasiIsoAt_hom_inv_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
HomologicalComplex.homologyMap
CategoryTheory.Iso.inv
isoOfQuasiIsoAt
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
isoOfQuasiIsoAt_hom_inv_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
HomologicalComplex.homologyMap
CategoryTheory.Iso.inv
isoOfQuasiIsoAt
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfQuasiIsoAt_hom_inv_id
isoOfQuasiIsoAt_inv_hom_id 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
CategoryTheory.Iso.inv
isoOfQuasiIsoAt
HomologicalComplex.homologyMap
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
isoOfQuasiIsoAt_inv_hom_id_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
CategoryTheory.Iso.inv
isoOfQuasiIsoAt
HomologicalComplex.homologyMap
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
isoOfQuasiIsoAt_inv_hom_id
quasiIsoAt_comp 📖mathematicalQuasiIsoAt
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
quasiIsoAt_iff
CategoryTheory.Functor.map_comp
CategoryTheory.ShortComplex.quasiIso_comp
quasiIsoAt_iff 📖mathematicalQuasiIsoAt
CategoryTheory.ShortComplex.QuasiIso
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
HomologicalComplex.shortComplexFunctor
CategoryTheory.Functor.map
QuasiIsoAt.quasiIso
quasiIsoAt_iff' 📖mathematicalComplexShape.prev
ComplexShape.next
QuasiIsoAt
CategoryTheory.ShortComplex.QuasiIso
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
HomologicalComplex.shortComplexFunctor'
CategoryTheory.Functor.map
quasiIsoAt_iff
CategoryTheory.ShortComplex.quasiIso_iff_of_arrow_mk_iso
quasiIsoAt_iff_comp_left 📖mathematicalQuasiIsoAt
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
quasiIsoAt_of_comp_left
quasiIsoAt_comp
quasiIsoAt_iff_comp_right 📖mathematicalQuasiIsoAt
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
quasiIsoAt_of_comp_right
quasiIsoAt_comp
quasiIsoAt_iff_exactAt 📖mathematicalHomologicalComplex.ExactAtQuasiIsoAtCategoryTheory.Limits.IsZero.of_iso
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.Limits.IsZero.eq_of_tgt
quasiIsoAt_iff_exactAt' 📖mathematicalHomologicalComplex.ExactAtQuasiIsoAtCategoryTheory.Limits.IsZero.of_iso
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.Limits.IsZero.eq_of_tgt
quasiIsoAt_iff_isIso_homologyMap 📖mathematicalQuasiIsoAt
CategoryTheory.IsIso
HomologicalComplex.homology
HomologicalComplex.homologyMap
quasiIsoAt_iff
CategoryTheory.ShortComplex.quasiIso_iff
quasiIsoAt_of_comp_left 📖mathematicalQuasiIsoAtquasiIsoAt_iff_isIso_homologyMap
CategoryTheory.IsIso.of_isIso_comp_left
HomologicalComplex.homologyMap_comp
quasiIsoAt_of_comp_right 📖mathematicalQuasiIsoAtquasiIsoAt_iff_isIso_homologyMap
CategoryTheory.IsIso.of_isIso_comp_right
HomologicalComplex.homologyMap_comp
quasiIsoAt_of_isIso 📖mathematicalQuasiIsoAtquasiIsoAt_iff
CategoryTheory.ShortComplex.quasiIso_of_isIso
CategoryTheory.Functor.map_isIso
quasiIsoAt_of_retract 📖mathematicalQuasiIsoAtquasiIsoAt_iff
CategoryTheory.ShortComplex.quasiIso_of_retract
quasiIso_comp 📖mathematicalHomologicalComplex.HasHomologyQuasiIso
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
quasiIsoAt_comp
QuasiIso.quasiIsoAt
quasiIso_iff 📖mathematicalHomologicalComplex.HasHomologyQuasiIso
QuasiIsoAt
QuasiIso.quasiIsoAt
quasiIso_iff_comp_left 📖mathematicalHomologicalComplex.HasHomologyQuasiIso
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
quasiIsoAt_iff_comp_left
QuasiIso.quasiIsoAt
quasiIso_iff_comp_right 📖mathematicalHomologicalComplex.HasHomologyQuasiIso
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
quasiIsoAt_iff_comp_right
QuasiIso.quasiIsoAt
quasiIso_iff_of_arrow_mk_iso 📖mathematicalHomologicalComplex.HasHomologyQuasiIsoquasiIso_iff_comp_left
quasiIso_of_isIso
CategoryTheory.Arrow.isIso_left
CategoryTheory.Iso.isIso_inv
QuasiIso.congr_simp
CategoryTheory.Arrow.w_mk_right
quasiIso_iff_comp_right
CategoryTheory.Arrow.isIso_right
quasiIso_of_arrow_mk_iso 📖mathematicalHomologicalComplex.HasHomologyQuasiIsoquasiIso_iff_of_arrow_mk_iso
quasiIso_of_comp_left 📖mathematicalHomologicalComplex.HasHomologyQuasiIsoquasiIso_iff_comp_left
quasiIso_of_comp_right 📖mathematicalHomologicalComplex.HasHomologyQuasiIsoquasiIso_iff_comp_right
quasiIso_of_isIso 📖mathematicalHomologicalComplex.HasHomologyQuasiIsoquasiIsoAt_of_isIso
quasiIso_of_retractArrow 📖mathematicalHomologicalComplex.HasHomologyQuasiIsoquasiIsoAt_of_retract
QuasiIso.quasiIsoAt

---

← Back to Index