Documentation Verification Report

ConcreteCategory

📁 Source: Mathlib/Algebra/Homology/ShortComplex/ConcreteCategory.lean

Statistics

MetricCount
DefinitionscyclesMk
1
Theoremsepi_iff_surjective, epi_iff_surjective', mono_iff_injective, mono_iff_injective', injective_f, surjective_g, δ_apply, δ_apply', exact_iff_exact_map_forget₂, exact_iff_of_hasForget, i_cyclesMk, zero_apply
12
Total13

CategoryTheory.Preadditive

Theorems

NameKindAssumesProvesValidatesDepends On
epi_iff_surjective 📖mathematicalCategoryTheory.Epi
AddCommGrpCat.carrier
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
AddCommGrpCat.epi_iff_surjective
CategoryTheory.Functor.map_epi
CategoryTheory.Functor.instPreservesEpimorphisms
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.epi_of_epi_map
CategoryTheory.Functor.reflectsEpimorphisms_of_faithful
CategoryTheory.forget₂_faithful
epi_iff_surjective' 📖mathematicalCategoryTheory.Epi
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.epimorphisms
CategoryTheory.HasForget₂.forget_comp
mono_iff_injective 📖mathematicalCategoryTheory.Mono
AddCommGrpCat.carrier
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
AddCommGrpCat.mono_iff_injective
CategoryTheory.Functor.map_mono
CategoryTheory.Functor.instPreservesMonomorphisms
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Functor.mono_of_mono_map
CategoryTheory.Functor.reflectsMonomorphisms_of_faithful
CategoryTheory.forget₂_faithful
mono_iff_injective' 📖mathematicalCategoryTheory.Mono
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.monomorphisms
CategoryTheory.HasForget₂.forget_comp

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
cyclesMk 📖CompOp
1 mathmath: i_cyclesMk

Theorems

NameKindAssumesProvesValidatesDepends On
exact_iff_exact_map_forget₂ 📖mathematicalExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Ab
AddCommGrpCat.instCategory
AddCommGrpCat.instPreadditive
map
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
exact_map_iff_of_faithful
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
CategoryTheory.forget₂_faithful
exact_iff_of_hasForget 📖mathematicalExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
DFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
X₁
X₂
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
f
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
exact_iff_exact_map_forget₂
ab_exact_iff
i_cyclesMk 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
X₃
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
g
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
cycles
hasLeftHomology_of_hasHomology
iCycles
cyclesMk
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
hasLeftHomology_of_hasHomology
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
abCyclesIso_inv_apply_iCycles
CategoryTheory.ConcreteCategory.comp_apply
hasLeftHomology_of_preserves
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
mapCyclesIso_hom_iCycles
zero_apply 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
X₂
X₃
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
g
X₁
f
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.Functor.map_comp
zero
CategoryTheory.Functor.map_zero

CategoryTheory.ShortComplex.ShortExact

Theorems

NameKindAssumesProvesValidatesDepends On
injective_f 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.carrier
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.f
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Preadditive.mono_iff_injective
mono_f
surjective_g 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
AddCommGrpCat.carrier
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
DFunLike.coe
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.g
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Preadditive.epi_iff_surjective
epi_g

CategoryTheory.ShortComplex.SnakeInput

Theorems

NameKindAssumesProvesValidatesDepends On
δ_apply 📖mathematicalDFunLike.coe
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
CategoryTheory.ConcreteCategory.hom
CategoryTheory.ShortComplex.g
L₀
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.ShortComplex.X₁
L₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
L₃
δ
CategoryTheory.ShortComplex.Hom.τ₁
v₂₃
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.Functor.preservesFiniteLimits_of_preservesHomology
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Abelian.has_finite_products
CategoryTheory.Abelian.has_kernels
CategoryTheory.HasForget₂.forget_comp
CategoryTheory.Limits.comp_preservesFiniteLimits
CategoryTheory.Limits.PreservesLimits.preservesFiniteLimits
AddCommGrpCat.forget_preservesLimits
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.congr_fun
snd_δ
CategoryTheory.Limits.Concrete.pullbackMk_fst
CategoryTheory.Limits.Concrete.pullbackMk_snd
CategoryTheory.ConcreteCategory.comp_apply
CategoryTheory.congr_arg
CategoryTheory.Preadditive.mono_iff_injective'
mono_L₂_f
φ₁_L₂_f
δ_apply' 📖mathematicalDFunLike.coe
CategoryTheory.Functor.obj
Ab
AddCommGrpCat.instCategory
CategoryTheory.forget₂
AddMonoidHom
AddCommGrpCat.carrier
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
AddCommGrpCat.str
AddMonoidHom.instFunLike
AddCommGrpCat.instConcreteCategoryAddMonoidHomCarrier
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
CategoryTheory.ConcreteCategory.hom
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.g
L₀
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.ShortComplex.X₁
L₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
L₃
δ
CategoryTheory.ShortComplex.Hom.τ₁
v₂₃
CategoryTheory.Functor.preservesZeroMorphisms_of_additive
CategoryTheory.HasForget₂.forget_comp
CategoryTheory.mono_iff_injective
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.Functor.instIsSplitMonoApp
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.ConcreteCategory.congr_hom
CategoryTheory.NatTrans.naturality
δ_apply

---

← Back to Index