Documentation Verification Report

FunctorEquivalence

πŸ“ Source: Mathlib/Algebra/Homology/ShortComplex/FunctorEquivalence.lean

Statistics

MetricCount
DefinitionscounitIso, functor, inverse, unitIso, functorEquivalence
5
TheoremscounitIso_hom_app_app_τ₁, counitIso_hom_app_app_Ο„β‚‚, counitIso_hom_app_app_τ₃, counitIso_inv_app_app_τ₁, counitIso_inv_app_app_Ο„β‚‚, counitIso_inv_app_app_τ₃, functor_map_app, functor_obj_map, functor_obj_obj, inverse_map_τ₁, inverse_map_Ο„β‚‚, inverse_map_τ₃, inverse_obj_X₁, inverse_obj_Xβ‚‚, inverse_obj_X₃, inverse_obj_f, inverse_obj_g, unitIso_hom_app_τ₁_app, unitIso_hom_app_Ο„β‚‚_app, unitIso_hom_app_τ₃_app, unitIso_inv_app_τ₁_app, unitIso_inv_app_Ο„β‚‚_app, unitIso_inv_app_τ₃_app, functorEquivalence_counitIso, functorEquivalence_functor, functorEquivalence_inverse, functorEquivalence_unitIso
27
Total32

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
functorEquivalence πŸ“–CompOp
4 mathmath: functorEquivalence_counitIso, functorEquivalence_functor, functorEquivalence_unitIso, functorEquivalence_inverse

Theorems

NameKindAssumesProvesValidatesDepends On
functorEquivalence_counitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.counitIso
CategoryTheory.ShortComplex
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
instCategory
functorEquivalence
FunctorEquivalence.counitIso
β€”β€”
functorEquivalence_functor πŸ“–mathematicalβ€”CategoryTheory.Equivalence.functor
CategoryTheory.ShortComplex
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
instCategory
functorEquivalence
FunctorEquivalence.functor
β€”β€”
functorEquivalence_inverse πŸ“–mathematicalβ€”CategoryTheory.Equivalence.inverse
CategoryTheory.ShortComplex
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
instCategory
functorEquivalence
FunctorEquivalence.inverse
β€”β€”
functorEquivalence_unitIso πŸ“–mathematicalβ€”CategoryTheory.Equivalence.unitIso
CategoryTheory.ShortComplex
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
instCategory
functorEquivalence
FunctorEquivalence.unitIso
β€”β€”

CategoryTheory.ShortComplex.FunctorEquivalence

Definitions

NameCategoryTheorems
counitIso πŸ“–CompOp
7 mathmath: counitIso_inv_app_app_τ₁, counitIso_inv_app_app_Ο„β‚‚, CategoryTheory.ShortComplex.functorEquivalence_counitIso, counitIso_inv_app_app_τ₃, counitIso_hom_app_app_τ₁, counitIso_hom_app_app_Ο„β‚‚, counitIso_hom_app_app_τ₃
functor πŸ“–CompOp
16 mathmath: counitIso_inv_app_app_τ₁, counitIso_inv_app_app_Ο„β‚‚, unitIso_inv_app_Ο„β‚‚_app, unitIso_inv_app_τ₁_app, CategoryTheory.ShortComplex.functorEquivalence_functor, unitIso_hom_app_τ₃_app, counitIso_inv_app_app_τ₃, functor_obj_map, counitIso_hom_app_app_τ₁, unitIso_inv_app_τ₃_app, functor_obj_obj, unitIso_hom_app_τ₁_app, functor_map_app, counitIso_hom_app_app_Ο„β‚‚, unitIso_hom_app_Ο„β‚‚_app, counitIso_hom_app_app_τ₃
inverse πŸ“–CompOp
21 mathmath: counitIso_inv_app_app_τ₁, counitIso_inv_app_app_Ο„β‚‚, unitIso_inv_app_Ο„β‚‚_app, unitIso_inv_app_τ₁_app, unitIso_hom_app_τ₃_app, inverse_obj_Xβ‚‚, counitIso_inv_app_app_τ₃, inverse_obj_X₃, inverse_map_τ₁, inverse_obj_X₁, counitIso_hom_app_app_τ₁, inverse_obj_f, unitIso_inv_app_τ₃_app, unitIso_hom_app_τ₁_app, counitIso_hom_app_app_Ο„β‚‚, CategoryTheory.ShortComplex.functorEquivalence_inverse, inverse_obj_g, unitIso_hom_app_Ο„β‚‚_app, counitIso_hom_app_app_τ₃, inverse_map_τ₃, inverse_map_Ο„β‚‚
unitIso πŸ“–CompOp
7 mathmath: unitIso_inv_app_Ο„β‚‚_app, unitIso_inv_app_τ₁_app, unitIso_hom_app_τ₃_app, unitIso_inv_app_τ₃_app, unitIso_hom_app_τ₁_app, CategoryTheory.ShortComplex.functorEquivalence_unitIso, unitIso_hom_app_Ο„β‚‚_app

Theorems

NameKindAssumesProvesValidatesDepends On
counitIso_hom_app_app_τ₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Limits.instHasZeroMorphismsFunctor
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
β€”β€”
counitIso_hom_app_app_Ο„β‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.Ο„β‚‚
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Limits.instHasZeroMorphismsFunctor
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.Xβ‚‚
β€”β€”
counitIso_hom_app_app_τ₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.Limits.instHasZeroMorphismsFunctor
inverse
functor
CategoryTheory.Functor.id
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
β€”β€”
counitIso_inv_app_app_τ₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Limits.instHasZeroMorphismsFunctor
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
β€”β€”
counitIso_inv_app_app_Ο„β‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.Ο„β‚‚
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Limits.instHasZeroMorphismsFunctor
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.Xβ‚‚
β€”β€”
counitIso_inv_app_app_τ₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
CategoryTheory.Limits.instHasZeroMorphismsFunctor
inverse
functor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
counitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
β€”β€”
functor_map_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.map
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.evaluation
CategoryTheory.Functor.preservesZeroMorphisms_evaluation_obj
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.Functor.map
functor
CategoryTheory.Functor.mapShortComplex
β€”CategoryTheory.Functor.preservesZeroMorphisms_evaluation_obj
functor_obj_map πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.obj
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
functor
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.evaluation
CategoryTheory.Functor.preservesZeroMorphisms_evaluation_obj
β€”CategoryTheory.Functor.preservesZeroMorphisms_evaluation_obj
functor_obj_obj πŸ“–mathematicalβ€”CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
functor
CategoryTheory.ShortComplex.map
CategoryTheory.evaluation
CategoryTheory.Functor.preservesZeroMorphisms_evaluation_obj
β€”β€”
inverse_map_τ₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.comp
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.π₁
CategoryTheory.ShortComplex.Ο€β‚‚
CategoryTheory.ShortComplex.π₃
CategoryTheory.Functor.whiskerLeft
CategoryTheory.ShortComplex.π₁ToΟ€β‚‚
CategoryTheory.ShortComplex.Ο€β‚‚Toπ₃
CategoryTheory.Functor.map
inverse
CategoryTheory.Functor.whiskerRight
β€”β€”
inverse_map_Ο„β‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.Ο„β‚‚
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.comp
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.π₁
CategoryTheory.ShortComplex.Ο€β‚‚
CategoryTheory.ShortComplex.π₃
CategoryTheory.Functor.whiskerLeft
CategoryTheory.ShortComplex.π₁ToΟ€β‚‚
CategoryTheory.ShortComplex.Ο€β‚‚Toπ₃
CategoryTheory.Functor.map
inverse
CategoryTheory.Functor.whiskerRight
β€”β€”
inverse_map_τ₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.comp
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.π₁
CategoryTheory.ShortComplex.Ο€β‚‚
CategoryTheory.ShortComplex.π₃
CategoryTheory.Functor.whiskerLeft
CategoryTheory.ShortComplex.π₁ToΟ€β‚‚
CategoryTheory.ShortComplex.Ο€β‚‚Toπ₃
CategoryTheory.Functor.map
inverse
CategoryTheory.Functor.whiskerRight
β€”β€”
inverse_obj_X₁ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₁
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
inverse
CategoryTheory.Functor.comp
CategoryTheory.ShortComplex.π₁
β€”β€”
inverse_obj_Xβ‚‚ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
inverse
CategoryTheory.Functor.comp
CategoryTheory.ShortComplex.Ο€β‚‚
β€”β€”
inverse_obj_X₃ πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.X₃
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
inverse
CategoryTheory.Functor.comp
CategoryTheory.ShortComplex.π₃
β€”β€”
inverse_obj_f πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.f
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
inverse
CategoryTheory.Functor.whiskerLeft
CategoryTheory.ShortComplex.π₁
CategoryTheory.ShortComplex.Ο€β‚‚
CategoryTheory.ShortComplex.π₁ToΟ€β‚‚
β€”β€”
inverse_obj_g πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.g
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
inverse
CategoryTheory.Functor.whiskerLeft
CategoryTheory.ShortComplex.Ο€β‚‚
CategoryTheory.ShortComplex.π₃
CategoryTheory.ShortComplex.Ο€β‚‚Toπ₃
β€”β€”
unitIso_hom_app_τ₁_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.X₁
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Iso.hom
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unitIso_hom_app_Ο„β‚‚_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.ShortComplex.Hom.Ο„β‚‚
CategoryTheory.Iso.hom
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unitIso_hom_app_τ₃_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.X₃
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Iso.hom
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unitIso_inv_app_τ₁_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.X₁
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Iso.inv
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unitIso_inv_app_Ο„β‚‚_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.ShortComplex.Hom.Ο„β‚‚
CategoryTheory.Iso.inv
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”
unitIso_inv_app_τ₃_app πŸ“–mathematicalβ€”CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.X₃
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Limits.instHasZeroMorphismsFunctor
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.comp
functor
inverse
CategoryTheory.Functor.id
CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Iso.inv
unitIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
β€”β€”

---

← Back to Index