Documentation Verification Report

HomologicalComplex

📁 Source: Mathlib/Algebra/Homology/ShortComplex/HomologicalComplex.lean

Statistics

MetricCount
DefinitionsisoHomologyι₀, isoHomologyπ₀, ExactAt, HasHomology, cycles, cyclesFunctor, cyclesIsKernel, cyclesIsoSc', cyclesMap, cyclesMapIso, descOpcycles, descOpcycles', fromOpcycles, gradedHomologyFunctor, homology, homologyFunctor, homologyFunctorIso, homologyFunctorIso', homologyIsCokernel, homologyIsKernel, homologyIsoSc', homologyMap, homologyMapIso, homologyι, homologyπ, iCycles, iCyclesIso, isoHomologyι, isoHomologyπ, isoSc', liftCycles, liftCycles', natIsoSc', natTransHomologyι, natTransHomologyπ, opcycles, opcyclesFunctor, opcyclesIsCokernel, opcyclesIsoSc', opcyclesMap, opcyclesMapIso, pOpcycles, pOpcyclesIso, sc, sc', shortComplexFunctor, shortComplexFunctor', toCycles
48
TheoremsisIso_descOpcycles_iff, isIso_homologyι₀, isoHomologyι₀_inv_naturality, isoHomologyι₀_inv_naturality_assoc, isIso_homologyπ₀, isIso_liftCycles_iff, isoHomologyπ₀_inv_naturality, isoHomologyπ₀_inv_naturality_assoc, isZero_homology, of_iso, acyclic_iff, acyclic_of_isZero, comp_liftCycles, comp_liftCycles_assoc, cyclesFunctor_map, cyclesFunctor_obj, cyclesIsoSc'_hom_iCycles, cyclesIsoSc'_hom_iCycles_assoc, cyclesIsoSc'_inv_iCycles, cyclesIsoSc'_inv_iCycles_assoc, cyclesMapIso_hom, cyclesMapIso_inv, cyclesMap_comp, cyclesMap_comp_assoc, cyclesMap_i, cyclesMap_i_assoc, cyclesMap_id, cyclesMap_zero, d_pOpcycles, d_pOpcycles_assoc, d_toCycles, d_toCycles_assoc, descOpcycles_comp, descOpcycles_comp_assoc, epi_homologyMap_of_epi_of_not_rel, exactAt_iff, exactAt_iff', exactAt_iff_isZero_homology, fromOpcycles_d, fromOpcycles_d_assoc, fromOpcycles_eq_zero, gradedHomologyFunctor_map, gradedHomologyFunctor_obj, hasHomology_of_iso, homologyFunctorIso_hom_app, homologyFunctorIso_inv_app, homologyFunctor_map, homologyFunctor_obj, homologyIsoSc'_hom_ι, homologyIsoSc'_hom_ι_assoc, homologyIsoSc'_inv_ι, homologyIsoSc'_inv_ι_assoc, homologyMapIso_hom, homologyMapIso_inv, homologyMap_add, homologyMap_comp, homologyMap_comp_assoc, homologyMap_id, homologyMap_neg, homologyMap_sub, homologyMap_zero, homology_π_ι, homology_π_ι_assoc, homologyι_comp_fromOpcycles, homologyι_comp_fromOpcycles_assoc, homologyι_descOpcycles_eq_zero_of_boundary, homologyι_descOpcycles_eq_zero_of_boundary_assoc, homologyι_naturality, homologyι_naturality_assoc, homologyπ_naturality, homologyπ_naturality_assoc, iCyclesIso_hom, iCyclesIso_hom_inv_id, iCyclesIso_hom_inv_id_assoc, iCyclesIso_inv_hom_id, iCyclesIso_inv_hom_id_assoc, iCycles_d, iCycles_d_assoc, instAdditiveHomologyFunctor, instEpiHomologyπ, instEpiOpcyclesMapOfF, instEpiPOpcycles, instMonoCyclesMapOfF, instMonoHomologyι, instMonoICycles, instPreservesZeroMorphismsCyclesFunctor, instPreservesZeroMorphismsHomologyFunctor, instPreservesZeroMorphismsOpcyclesFunctor, isIso_homologyι, isIso_homologyπ, isIso_iCycles, isIso_pOpcycles, isoHomologyι_hom, isoHomologyι_hom_inv_id, isoHomologyι_hom_inv_id_assoc, isoHomologyι_inv_hom_id, isoHomologyι_inv_hom_id_assoc, isoHomologyπ_hom, isoHomologyπ_hom_inv_id, isoHomologyπ_hom_inv_id_assoc, isoHomologyπ_inv_hom_id, isoHomologyπ_inv_hom_id_assoc, liftCycles_comp_cyclesMap, liftCycles_comp_cyclesMap_assoc, liftCycles_homologyπ_eq_zero_of_boundary, liftCycles_homologyπ_eq_zero_of_boundary_assoc, liftCycles_i, liftCycles_i_assoc, mono_homologyMap_of_mono_of_not_rel, natIsoSc'_hom_app_τ₁, natIsoSc'_hom_app_τ₂, natIsoSc'_hom_app_τ₃, natIsoSc'_inv_app_τ₁, natIsoSc'_inv_app_τ₂, natIsoSc'_inv_app_τ₃, natTransHomologyι_app, natTransHomologyπ_app, opcyclesFunctor_map, opcyclesFunctor_obj, opcyclesIsoSc'_inv_fromOpcycles, opcyclesIsoSc'_inv_fromOpcycles_assoc, opcyclesMapIso_hom, opcyclesMapIso_inv, opcyclesMap_comp, opcyclesMap_comp_assoc, opcyclesMap_comp_descOpcycles, opcyclesMap_comp_descOpcycles_assoc, opcyclesMap_id, opcyclesMap_zero, pOpcyclesIso_hom, pOpcyclesIso_hom_inv_id, pOpcyclesIso_hom_inv_id_assoc, pOpcyclesIso_inv_hom_id, pOpcyclesIso_inv_hom_id_assoc, pOpcycles_opcyclesIsoSc'_hom, pOpcycles_opcyclesIsoSc'_hom_assoc, pOpcycles_opcyclesIsoSc'_inv, pOpcycles_opcyclesIsoSc'_inv_assoc, p_descOpcycles, p_descOpcycles_assoc, p_fromOpcycles, p_fromOpcycles_assoc, p_opcyclesMap, p_opcyclesMap_assoc, shortComplexFunctor'_map_τ₁, shortComplexFunctor'_map_τ₂, shortComplexFunctor'_map_τ₃, shortComplexFunctor'_obj_X₁, shortComplexFunctor'_obj_X₂, shortComplexFunctor'_obj_X₃, shortComplexFunctor'_obj_f, shortComplexFunctor'_obj_g, shortComplexFunctor_map_τ₁, shortComplexFunctor_map_τ₂, shortComplexFunctor_map_τ₃, shortComplexFunctor_obj_X₁, shortComplexFunctor_obj_X₂, shortComplexFunctor_obj_X₃, shortComplexFunctor_obj_f, shortComplexFunctor_obj_g, toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, toCycles_cyclesIsoSc'_hom, toCycles_cyclesIsoSc'_hom_assoc, toCycles_eq_zero, toCycles_i, toCycles_i_assoc, π_homologyIsoSc'_hom, π_homologyIsoSc'_hom_assoc, π_homologyIsoSc'_inv, π_homologyIsoSc'_inv_assoc
171
Total219

ChainComplex

Definitions

NameCategoryTheorems
isoHomologyι₀ 📖CompOp
3 mathmath: isoHomologyι₀_inv_naturality_assoc, isoHomologyι₀_inv_naturality, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_descOpcycles_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
HomologicalComplex.opcycles
HomologicalComplex.descOpcycles
CategoryTheory.ShortComplex.Exact
CategoryTheory.Epi
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.comp_zero
HomologicalComplex.shape
next_nat_zero
zero_add
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.hasHomology_of_zeros
CategoryTheory.ShortComplex.quasiIso_iff_isIso_descOpcycles
CategoryTheory.ShortComplex.quasiIso_iff_of_zeros'
prev
isIso_homologyι₀ 📖mathematicalCategoryTheory.IsIso
HomologicalComplex.homology
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.opcycles
HomologicalComplex.homologyι
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.isIso_homologyι
HomologicalComplex.shape
next_nat_zero
zero_add
isoHomologyι₀_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.opcycles
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.homology
CategoryTheory.Iso.inv
isoHomologyι₀
HomologicalComplex.homologyMap
HomologicalComplex.opcyclesMap
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.cancel_mono
HomologicalComplex.instMonoHomologyι
CategoryTheory.Category.assoc
HomologicalComplex.homologyι_naturality
HomologicalComplex.isoHomologyι_inv_hom_id_assoc
HomologicalComplex.isoHomologyι_inv_hom_id
CategoryTheory.Category.comp_id
isoHomologyι₀_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.opcycles
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.homology
CategoryTheory.Iso.inv
isoHomologyι₀
HomologicalComplex.homologyMap
HomologicalComplex.opcyclesMap
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoHomologyι₀_inv_naturality

CochainComplex

Definitions

NameCategoryTheorems
isoHomologyπ₀ 📖CompOp
3 mathmath: isoHomologyπ₀_inv_naturality_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, isoHomologyπ₀_inv_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
isIso_homologyπ₀ 📖mathematicalCategoryTheory.IsIso
HomologicalComplex.cycles
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.homology
HomologicalComplex.homologyπ
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.isIso_homologyπ
HomologicalComplex.shape
prev_nat_zero
zero_add
isIso_liftCycles_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
HomologicalComplex.cycles
HomologicalComplex.liftCycles
CategoryTheory.ShortComplex.Exact
CategoryTheory.Mono
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Limits.comp_zero
HomologicalComplex.shape
prev_nat_zero
zero_add
CategoryTheory.Limits.zero_comp
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.hasHomology_of_zeros
CategoryTheory.ShortComplex.quasiIso_iff_isIso_liftCycles
CategoryTheory.ShortComplex.quasiIso_iff_of_zeros
next
isoHomologyπ₀_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.cycles
HomologicalComplex.homologyMap
CategoryTheory.Iso.inv
isoHomologyπ₀
HomologicalComplex.cyclesMap
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.cancel_epi
HomologicalComplex.instEpiHomologyπ
HomologicalComplex.homologyπ_naturality_assoc
HomologicalComplex.isoHomologyπ_hom_inv_id
CategoryTheory.Category.comp_id
HomologicalComplex.isoHomologyπ_hom_inv_id_assoc
isoHomologyπ₀_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.homology
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.homologyMap
HomologicalComplex.cycles
CategoryTheory.Iso.inv
isoHomologyπ₀
HomologicalComplex.cyclesMap
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
isoHomologyπ₀_inv_naturality

HomologicalComplex

Definitions

NameCategoryTheorems
ExactAt 📖MathDef
27 mathmath: exactAt_iff_isZero_homology, extend_exactAt, AlgebraicTopology.singularChainComplexFunctor_exactAt_of_totallyDisconnectedSpace, extend_exactAt_iff, CategoryTheory.Abelian.LeftResolution.exactAt_map_chainComplex_succ, ChainComplex.exactAt_succ_single_obj, CochainComplex.exactAt_succ_single_obj, exactAt_iff, exactAt_of_isSupported, CochainComplex.exactAt_of_isLE, exactAt_op_iff, IsSupportedOutside.exactAt, CochainComplex.isLE_iff, CochainComplex.exactAt_of_isGE, CochainComplex.isGE_iff, exactAt_iff_of_quasiIsoAt, CategoryTheory.InjectiveResolution.cocomplex_exactAt_succ, ChainComplex.alternatingConst_exactAt, exactAt_single_obj, IsSupported.exactAt, acyclic_iff, CategoryTheory.InjectiveResolution.ofCocomplex_exactAt_succ, CategoryTheory.ProjectiveResolution.ofComplex_exactAt_succ, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_exactAt, isSupported_iff, exactAt_iff', CategoryTheory.ProjectiveResolution.complex_exactAt_succ
HasHomology 📖MathDef
12 mathmath: restriction.hasHomology, instHasHomologyOppositeOp, instHasHomologyObjSingle, extend.hasHomology, instHasHomologyOppositeObjSymmOpFunctorOp, hasHomology_of_iso, CategoryTheory.ProjectiveResolution.hasHomology, instHasHomologyUnopOfOpposite, ChainComplex.instHasHomologyNatObjAlternatingConst, extend.instHasHomologyF, CategoryTheory.InjectiveResolution.hasHomology, instHasHomologyObjOppositeSymmUnopFunctorOp
cycles 📖CompOp
141 mathmath: π_homologyIsoSc'_hom, homologyπ_extendHomologyIso_hom, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, alternatingConst_iCycles_odd_comp_assoc, pOpcycles_opcyclesToCycles_iCycles_assoc, liftCycles_comp_cyclesMap, homologyπ_restrictionHomologyIso_inv_assoc, singleObjCyclesSelfIso_inv_iCycles, toCycles_i, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality_assoc, CochainComplex.isoHomologyπ₀_inv_naturality_assoc, opcyclesOpIso_inv_naturality_assoc, instMonoICycles, cyclesMap_comp_assoc, eq_liftCycles_homologyπ_up_to_refinements, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, singleObjCyclesSelfIso_inv_homologyπ, restrictionCyclesIso_hom_iCycles, truncLE'_d_eq_toCycles, d_toCycles_assoc, cyclesMap_id, opcyclesOpIso_inv_naturality, CategoryTheory.instIsIsoToRightDerivedZero', homologyπ_extendHomologyIso_inv, homologyπ_restrictionHomologyIso_inv, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, iCyclesIso_inv_hom_id, comp_liftCycles, cyclesOpIso_inv_naturality_assoc, extendCyclesIso_inv_iCycles_assoc, singleObjCyclesSelfIso_hom_naturality, singleObjCyclesSelfIso_inv_naturality_assoc, homologyι_opcyclesToCycles_assoc, cyclesOpNatIso_inv_app, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, cyclesIsoSc'_inv_iCycles_assoc, CategoryTheory.InjectiveResolution.instIsIsoToRightDerivedZero'Self, cyclesMap_comp, opcyclesToCycles_iCycles_assoc, homologyπ_singleObjHomologySelfIso_hom_assoc, opcyclesToCycles_naturality, iCycles_d, CochainComplex.isoHomologyπ₀_inv_naturality, isIso_homologyπ, opcyclesOpIso_hom_naturality_assoc, opcyclesToCycles_homologyπ, cyclesIsoSc'_hom_iCycles_assoc, homologyπ_naturality, homologyπ_naturality_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, opcyclesOpIso_hom_toCycles_op, extendCyclesIso_hom_naturality_assoc, alternatingConst_iCycles_even_comp_apply, d_toCycles, cyclesIsoSc'_inv_iCycles, truncLE'Map_f_eq_cyclesMap, instEpiHomologyπ, instMonoCyclesMapOfF, liftCycles_homologyπ_eq_zero_of_boundary, cyclesMap_i_assoc, singleObjCyclesSelfIso_inv_homologyπ_assoc, fromOpcycles_op_cyclesOpIso_inv_assoc, homologyπ_restrictionHomologyIso_hom, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality, liftCycles_i_assoc, i_cyclesMk, cyclesOpIso_inv_naturality, opcyclesOpIso_hom_naturality, π_homologyIsoSc'_hom_assoc, isoHomologyπ_hom, homologyπ_extendHomologyIso_inv_assoc, π_homologyIsoSc'_inv_assoc, isIso_iCycles, cyclesOpIso_hom_naturality_assoc, alternatingConst_iCycles_odd_comp, CochainComplex.isIso_liftCycles_iff, cycles_left_exact, extendCyclesIso_hom_iCycles, homologyπ_singleObjHomologySelfIso_hom, iCyclesIso_hom_inv_id, cyclesOpIso_hom_naturality, liftCycles_i, singleObjCyclesSelfIso_inv_iCycles_assoc, alternatingConst_iCycles_even_comp, toCycles_eq_zero, homology_π_ι_assoc, liftCycles_comp_cyclesMap_assoc, cyclesMap_zero, homologyπ_extendHomologyIso_hom_assoc, toCycles_comp_homologyπ, cyclesFunctor_obj, toCycles_cyclesIsoSc'_hom_assoc, CategoryTheory.ShortComplex.ShortExact.δ_eq, toCycles_comp_homologyπ_assoc, isoHomologyπ_hom_inv_id, extendCyclesIso_hom_naturality, restrictionCyclesIso_inv_iCycles_assoc, CategoryTheory.ShortComplex.ShortExact.δ_apply, cyclesMapIso_inv, singleObjCyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_inv_naturality, π_homologyIsoSc'_inv, cyclesIsoSc'_hom_iCycles, extendCyclesIso_inv_iCycles, restrictionCyclesIso_hom_iCycles_assoc, homology_π_ι, isoHomologyπ_inv_hom_id_assoc, alternatingConst_iCycles_odd_comp_apply, opcyclesToCycles_homologyπ_assoc, extendCyclesIso_hom_iCycles_assoc, opcyclesToCycles_naturality_assoc, singleObjCyclesSelfIso_hom_naturality_assoc, homologyι_opcyclesToCycles, cyclesOpNatIso_hom_app, iCyclesIso_inv_hom_id_assoc, toCycles_cyclesIsoSc'_hom, fromOpcycles_op_cyclesOpIso_inv, pOpcycles_opcyclesToCycles_iCycles, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, pOpcycles_opcyclesToCycles, iCycles_d_assoc, cyclesMap_i, iCyclesIso_hom, isoHomologyπ_hom_inv_id_assoc, pOpcycles_opcyclesToCycles_assoc, opcyclesOpIso_hom_toCycles_op_assoc, singleObjCyclesSelfIso_hom, iCyclesIso_hom_inv_id_assoc, alternatingConst_iCycles_even_comp_assoc, opcyclesToCycles_iCycles, CochainComplex.isIso_homologyπ₀, CochainComplex.liftCycles_shift_homologyπ_assoc, comp_liftCycles_assoc, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, toCycles_i_assoc, CochainComplex.liftCycles_shift_homologyπ, restrictionCyclesIso_inv_iCycles, cyclesMapIso_hom, homologyπ_restrictionHomologyIso_hom_assoc, liftCycles_homologyπ_eq_zero_of_boundary_assoc, isoHomologyπ_inv_hom_id
cyclesFunctor 📖CompOp
11 mathmath: cyclesFunctor_map, HomologySequence.snakeInput_v₂₃, cyclesOpNatIso_inv_app, natTransHomologyπ_app, natTransOpCyclesToCycles_app, HomologySequence.snakeInput_L₂, cyclesFunctor_obj, HomologySequence.snakeInput_v₁₂, HomologySequence.mapSnakeInput_f₂, cyclesOpNatIso_hom_app, instPreservesZeroMorphismsCyclesFunctor
cyclesIsKernel 📖CompOp
cyclesIsoSc' 📖CompOp
10 mathmath: π_homologyIsoSc'_hom, cyclesIsoSc'_inv_iCycles_assoc, cyclesIsoSc'_hom_iCycles_assoc, cyclesIsoSc'_inv_iCycles, π_homologyIsoSc'_hom_assoc, π_homologyIsoSc'_inv_assoc, toCycles_cyclesIsoSc'_hom_assoc, π_homologyIsoSc'_inv, cyclesIsoSc'_hom_iCycles, toCycles_cyclesIsoSc'_hom
cyclesMap 📖CompOp
37 mathmath: liftCycles_comp_cyclesMap, cyclesFunctor_map, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality_assoc, CochainComplex.isoHomologyπ₀_inv_naturality_assoc, opcyclesOpIso_inv_naturality_assoc, cyclesMap_comp_assoc, cyclesMap_id, opcyclesOpIso_inv_naturality, cyclesOpIso_inv_naturality_assoc, singleObjCyclesSelfIso_hom_naturality, singleObjCyclesSelfIso_inv_naturality_assoc, cyclesMap_comp, opcyclesToCycles_naturality, CochainComplex.isoHomologyπ₀_inv_naturality, opcyclesOpIso_hom_naturality_assoc, homologyπ_naturality, homologyπ_naturality_assoc, extendCyclesIso_hom_naturality_assoc, truncLE'Map_f_eq_cyclesMap, instMonoCyclesMapOfF, cyclesMap_i_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality, cyclesOpIso_inv_naturality, opcyclesOpIso_hom_naturality, cyclesOpIso_hom_naturality_assoc, cycles_left_exact, cyclesOpIso_hom_naturality, liftCycles_comp_cyclesMap_assoc, cyclesMap_zero, extendCyclesIso_hom_naturality, cyclesMapIso_inv, singleObjCyclesSelfIso_inv_naturality, opcyclesToCycles_naturality_assoc, singleObjCyclesSelfIso_hom_naturality_assoc, HomologySequence.composableArrows₃Functor_map, cyclesMap_i, cyclesMapIso_hom
cyclesMapIso 📖CompOp
2 mathmath: cyclesMapIso_inv, cyclesMapIso_hom
descOpcycles 📖CompOp
9 mathmath: opcyclesMap_comp_descOpcycles_assoc, descOpcycles_comp, descOpcycles_comp_assoc, ChainComplex.isIso_descOpcycles_iff, opcyclesMap_comp_descOpcycles, homologyι_descOpcycles_eq_zero_of_boundary_assoc, p_descOpcycles_assoc, homologyι_descOpcycles_eq_zero_of_boundary, p_descOpcycles
descOpcycles' 📖CompOp
fromOpcycles 📖CompOp
16 mathmath: opcyclesIsoSc'_inv_fromOpcycles, opcyclesIsoSc'_inv_fromOpcycles_assoc, p_fromOpcycles, fromOpcycles_d_assoc, fromOpcycles_eq_zero, homologyι_comp_fromOpcycles, opcyclesToCycles_iCycles_assoc, opcyclesOpIso_hom_toCycles_op, fromOpcycles_op_cyclesOpIso_inv_assoc, homologyι_comp_fromOpcycles_assoc, truncGE'_d_eq_fromOpcycles, fromOpcycles_op_cyclesOpIso_inv, p_fromOpcycles_assoc, fromOpcycles_d, opcyclesOpIso_hom_toCycles_op_assoc, opcyclesToCycles_iCycles
gradedHomologyFunctor 📖CompOp
2 mathmath: gradedHomologyFunctor_map, gradedHomologyFunctor_obj
homology 📖CompOp
135 mathmath: exactAt_iff_isZero_homology, π_homologyIsoSc'_hom, homologyπ_extendHomologyIso_hom, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, isZero_single_obj_homology, homologyπ_restrictionHomologyIso_inv_assoc, homologyι_singleObjOpcyclesSelfIso_inv_assoc, extendHomologyIso_hom_naturality, extendHomologyIso_hom_naturality_assoc, CochainComplex.isoHomologyπ₀_inv_naturality_assoc, CochainComplex.mappingCone.homologySequenceδ_triangleh, eq_liftCycles_homologyπ_up_to_refinements, ChainComplex.isoHomologyι₀_inv_naturality_assoc, isoHomologyι_inv_hom_id, isoHomologyι_hom_inv_id, singleObjCyclesSelfIso_inv_homologyπ, CategoryTheory.ShortComplex.ShortExact.comp_δ, homologyι_singleObjOpcyclesSelfIso_inv, isoOfQuasiIsoAt_hom, extendHomologyIso_hom_homologyι_assoc, homologyπ_extendHomologyIso_inv, homologyπ_restrictionHomologyIso_inv, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, isoOfQuasiIsoAt_hom_inv_id, homologyι_opcyclesToCycles_assoc, homologyι_comp_fromOpcycles, homologyMap_neg, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, homologyπ_singleObjHomologySelfIso_hom_assoc, homologyMapIso_hom, CochainComplex.isoHomologyπ₀_inv_naturality, isoOfQuasiIsoAt_inv_hom_id, isIso_homologyπ, homologyIsoSc'_hom_ι_assoc, restrictionHomologyIso_inv_homologyι_assoc, isoHomologyι_hom, opcyclesToCycles_homologyπ, isIso_homologyMap_shortComplexTruncLE_g, homologyπ_naturality, homologyπ_naturality_assoc, isoOfQuasiIsoAt_inv_hom_id_assoc, instEpiHomologyπ, liftCycles_homologyπ_eq_zero_of_boundary, homologyMap_id, singleObjHomologySelfIso_inv_homologyι_assoc, homologyMap_add, singleObjCyclesSelfIso_inv_homologyπ_assoc, instIsIsoHomologyMapOfQuasiIsoAt, mono_homologyMap_shortComplexTruncLE_g, homologyOp_hom_naturality_assoc, homologyMap_comp, homologyπ_restrictionHomologyIso_hom, π_homologyIsoSc'_hom_assoc, isoHomologyπ_hom, homologyι_comp_fromOpcycles_assoc, restrictionHomologyIso_hom_homologyι, homologyπ_extendHomologyIso_inv_assoc, ChainComplex.isoHomologyι₀_inv_naturality, π_homologyIsoSc'_inv_assoc, instMonoHomologyι, HomologySequence.δ_naturality_assoc, restrictionHomologyIso_hom_homologyι_assoc, homologyMap_sub, homologyπ_singleObjHomologySelfIso_hom, CategoryTheory.ShortComplex.ShortExact.δ_comp_assoc, quasiIsoAt_iff_isIso_homologyMap, CategoryTheory.ShortComplex.ShortExact.homology_exact₃, homology_π_ι_assoc, homologyπ_extendHomologyIso_hom_assoc, homologyMap_zero, toCycles_comp_homologyπ, CategoryTheory.ShortComplex.ShortExact.δ_eq, toCycles_comp_homologyπ_assoc, homologyFunctorSingleIso_inv_app, isoHomologyπ_hom_inv_id, homologyι_naturality, ChainComplex.isIso_homologyι₀, singleObjHomologySelfIso_hom_naturality, gradedHomologyFunctor_obj, CategoryTheory.ShortComplex.ShortExact.δ_apply, homologyIsoSc'_inv_ι, restrictionHomologyIso_inv_homologyι, singleObjHomologySelfIso_hom_naturality_assoc, singleObjHomologySelfIso_inv_naturality_assoc, CochainComplex.isZero_of_isGE, CategoryTheory.ShortComplex.ShortExact.δ_comp, homologyι_descOpcycles_eq_zero_of_boundary_assoc, epi_homologyMap_shortComplexTruncLE_g, epi_homologyMap_of_epi_of_not_rel, CochainComplex.ConnectData.homologyMap_map_of_eq_succ, π_homologyIsoSc'_inv, singleObjHomologySelfIso_inv_naturality, HomologySequence.δ_naturality, homology_π_ι, isoHomologyπ_inv_hom_id_assoc, opcyclesToCycles_homologyπ_assoc, homologyFunctorIso_hom_app, homologyι_opcyclesToCycles, extendHomologyIso_inv_homologyι, homologyIsoSc'_inv_ι_assoc, CategoryTheory.ShortComplex.ShortExact.homology_exact₁, homologyι_descOpcycles_eq_zero_of_boundary, CochainComplex.ConnectData.homologyMap_map_of_eq_neg_succ, isoHomologyι_hom_inv_id_assoc, truncGE'.homologyι_truncGE'XIsoOpcycles_inv_d, ExactAt.isZero_homology, shortComplexTruncLE_shortExact_δ_eq_zero, mono_homologyMap_of_mono_of_not_rel, isoHomologyπ_hom_inv_id_assoc, homologyOp_hom_naturality, homologyIsoSc'_hom_ι, extendHomologyIso_inv_homologyι_assoc, isIso_homologyι, CochainComplex.isIso_homologyπ₀, homologyFunctorIso_inv_app, CochainComplex.liftCycles_shift_homologyπ_assoc, singleObjHomologySelfIso_inv_homologyι, homologyFunctor_obj, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, homologyFunctorSingleIso_hom_app, homologyMap_comp_assoc, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, isoHomologyι_inv_hom_id_assoc, extendHomologyIso_hom_homologyι, homologyMapIso_inv, CategoryTheory.ShortComplex.ShortExact.homology_exact₂, isoOfQuasiIsoAt_hom_inv_id_assoc, CochainComplex.liftCycles_shift_homologyπ, CochainComplex.isZero_of_isLE, homologyπ_restrictionHomologyIso_hom_assoc, homologyι_naturality_assoc, liftCycles_homologyπ_eq_zero_of_boundary_assoc, CategoryTheory.ShortComplex.ShortExact.comp_δ_assoc, isoHomologyπ_inv_hom_id
homologyFunctor 📖CompOp
42 mathmath: CochainComplex.mappingCone.homologySequenceδ_triangleh, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality_assoc, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_inv_naturality_assoc, HomologySequence.snakeInput_v₂₃, HomologySequence.mapSnakeInput_f₃, CochainComplex.homologyFunctor_shift, natTransHomologyπ_app, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_hom_naturality, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj_assoc, HomologySequence.snakeInput_v₀₁, CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality, instAdditiveHomologyFunctor, CategoryTheory.ProjectiveResolution.leftDerived_app_eq, homologyFunctor_map, instPreservesZeroMorphismsHomologyFunctor, CategoryTheory.InjectiveResolution.isoRightDerivedObj_hom_naturality_assoc, CategoryTheory.InjectiveResolution.isoRightDerivedObj_inv_naturality, HomologySequence.snakeInput_L₀, CategoryTheory.Functor.leftDerived_map_eq, homologyFunctorSingleIso_inv_app, HomologySequence.snakeInput_L₃, CochainComplex.homologySequenceδ_quotient_mapTriangle_obj, HomotopyCategory.homologyFunctor_shiftMap_assoc, CategoryTheory.Functor.rightDerived_map_eq, HomotopyCategory.homologyShiftIso_hom_app, natTransHomologyι_app, homologyFunctorIso_hom_app, HomotopyCategory.homologyFunctor_shiftMap, CategoryTheory.InjectiveResolution.isoRightDerivedObj_inv_naturality_assoc, CochainComplex.ShiftSequence.shiftIso_inv_app, CategoryTheory.ProjectiveResolution.isoLeftDerivedObj_inv_naturality, homologyFunctor_inverts_quasiIso, homologyFunctorIso_inv_app, CochainComplex.liftCycles_shift_homologyπ_assoc, homologyFunctor_obj, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, homologyFunctorSingleIso_hom_app, CategoryTheory.InjectiveResolution.rightDerived_app_eq, CochainComplex.liftCycles_shift_homologyπ, HomologySequence.mapSnakeInput_f₀, CochainComplex.ShiftSequence.shiftIso_hom_app
homologyFunctorIso 📖CompOp
2 mathmath: homologyFunctorIso_hom_app, homologyFunctorIso_inv_app
homologyFunctorIso' 📖CompOp
homologyIsCokernel 📖CompOp
homologyIsKernel 📖CompOp
homologyIsoSc' 📖CompOp
8 mathmath: π_homologyIsoSc'_hom, homologyIsoSc'_hom_ι_assoc, π_homologyIsoSc'_hom_assoc, π_homologyIsoSc'_inv_assoc, homologyIsoSc'_inv_ι, π_homologyIsoSc'_inv, homologyIsoSc'_inv_ι_assoc, homologyIsoSc'_hom_ι
homologyMap 📖CompOp
53 mathmath: Homotopy.homologyMap_eq, extendHomologyIso_hom_naturality, extendHomologyIso_hom_naturality_assoc, CochainComplex.isoHomologyπ₀_inv_naturality_assoc, CochainComplex.mappingCone.homologySequenceδ_triangleh, ChainComplex.isoHomologyι₀_inv_naturality_assoc, CategoryTheory.ShortComplex.ShortExact.comp_δ, isoOfQuasiIsoAt_hom, isoOfQuasiIsoAt_hom_inv_id, gradedHomologyFunctor_map, homologyMap_neg, homologyMapIso_hom, CochainComplex.isoHomologyπ₀_inv_naturality, isoOfQuasiIsoAt_inv_hom_id, isIso_homologyMap_shortComplexTruncLE_g, homologyπ_naturality, homologyπ_naturality_assoc, isoOfQuasiIsoAt_inv_hom_id_assoc, homologyMap_id, homologyMap_add, instIsIsoHomologyMapOfQuasiIsoAt, mono_homologyMap_shortComplexTruncLE_g, homologyOp_hom_naturality_assoc, homologyMap_comp, ChainComplex.isoHomologyι₀_inv_naturality, homologyFunctor_map, HomologySequence.δ_naturality_assoc, homologyMap_sub, CategoryTheory.ShortComplex.ShortExact.δ_comp_assoc, quasiIsoAt_iff_isIso_homologyMap, CategoryTheory.ShortComplex.ShortExact.homology_exact₃, homologyMap_zero, homologyι_naturality, singleObjHomologySelfIso_hom_naturality, singleObjHomologySelfIso_hom_naturality_assoc, singleObjHomologySelfIso_inv_naturality_assoc, CategoryTheory.ShortComplex.ShortExact.δ_comp, epi_homologyMap_shortComplexTruncLE_g, epi_homologyMap_of_epi_of_not_rel, CochainComplex.ConnectData.homologyMap_map_of_eq_succ, singleObjHomologySelfIso_inv_naturality, HomologySequence.δ_naturality, HomologySequence.composableArrows₃Functor_map, CategoryTheory.ShortComplex.ShortExact.homology_exact₁, CochainComplex.ConnectData.homologyMap_map_of_eq_neg_succ, mono_homologyMap_of_mono_of_not_rel, homologyOp_hom_naturality, homologyMap_comp_assoc, homologyMapIso_inv, CategoryTheory.ShortComplex.ShortExact.homology_exact₂, isoOfQuasiIsoAt_hom_inv_id_assoc, homologyι_naturality_assoc, CategoryTheory.ShortComplex.ShortExact.comp_δ_assoc
homologyMapIso 📖CompOp
2 mathmath: homologyMapIso_hom, homologyMapIso_inv
homologyι 📖CompOp
38 mathmath: singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, homologyι_singleObjOpcyclesSelfIso_inv_assoc, isoHomologyι_inv_hom_id, isoHomologyι_hom_inv_id, homologyι_singleObjOpcyclesSelfIso_inv, extendHomologyIso_hom_homologyι_assoc, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, homologyι_opcyclesToCycles_assoc, homologyι_comp_fromOpcycles, homologyIsoSc'_hom_ι_assoc, restrictionHomologyIso_inv_homologyι_assoc, isoHomologyι_hom, singleObjHomologySelfIso_inv_homologyι_assoc, homologyι_comp_fromOpcycles_assoc, restrictionHomologyIso_hom_homologyι, instMonoHomologyι, restrictionHomologyIso_hom_homologyι_assoc, homology_π_ι_assoc, homologyι_naturality, ChainComplex.isIso_homologyι₀, homologyIsoSc'_inv_ι, restrictionHomologyIso_inv_homologyι, homologyι_descOpcycles_eq_zero_of_boundary_assoc, homology_π_ι, natTransHomologyι_app, homologyι_opcyclesToCycles, extendHomologyIso_inv_homologyι, homologyIsoSc'_inv_ι_assoc, homologyι_descOpcycles_eq_zero_of_boundary, isoHomologyι_hom_inv_id_assoc, truncGE'.homologyι_truncGE'XIsoOpcycles_inv_d, homologyIsoSc'_hom_ι, extendHomologyIso_inv_homologyι_assoc, isIso_homologyι, singleObjHomologySelfIso_inv_homologyι, isoHomologyι_inv_hom_id_assoc, extendHomologyIso_hom_homologyι, homologyι_naturality_assoc
homologyπ 📖CompOp
44 mathmath: π_homologyIsoSc'_hom, homologyπ_extendHomologyIso_hom, homologyπ_restrictionHomologyIso_inv_assoc, eq_liftCycles_homologyπ_up_to_refinements, singleObjCyclesSelfIso_inv_homologyπ, homologyπ_extendHomologyIso_inv, homologyπ_restrictionHomologyIso_inv, CategoryTheory.ShortComplex.ShortExact.δ_eq', natTransHomologyπ_app, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, homologyπ_singleObjHomologySelfIso_hom_assoc, isIso_homologyπ, opcyclesToCycles_homologyπ, homologyπ_naturality, homologyπ_naturality_assoc, instEpiHomologyπ, liftCycles_homologyπ_eq_zero_of_boundary, singleObjCyclesSelfIso_inv_homologyπ_assoc, homologyπ_restrictionHomologyIso_hom, π_homologyIsoSc'_hom_assoc, isoHomologyπ_hom, homologyπ_extendHomologyIso_inv_assoc, CategoryTheory.ShortComplex.ShortExact.δ_apply', π_homologyIsoSc'_inv_assoc, homologyπ_singleObjHomologySelfIso_hom, homology_π_ι_assoc, homologyπ_extendHomologyIso_hom_assoc, toCycles_comp_homologyπ, CategoryTheory.ShortComplex.ShortExact.δ_eq, toCycles_comp_homologyπ_assoc, isoHomologyπ_hom_inv_id, CategoryTheory.ShortComplex.ShortExact.δ_apply, π_homologyIsoSc'_inv, homology_π_ι, isoHomologyπ_inv_hom_id_assoc, opcyclesToCycles_homologyπ_assoc, isoHomologyπ_hom_inv_id_assoc, CochainComplex.isIso_homologyπ₀, CochainComplex.liftCycles_shift_homologyπ_assoc, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, CochainComplex.liftCycles_shift_homologyπ, homologyπ_restrictionHomologyIso_hom_assoc, liftCycles_homologyπ_eq_zero_of_boundary_assoc, isoHomologyπ_inv_hom_id
iCycles 📖CompOp
48 mathmath: singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, alternatingConst_iCycles_odd_comp_assoc, pOpcycles_opcyclesToCycles_iCycles_assoc, singleObjCyclesSelfIso_inv_iCycles, toCycles_i, instMonoICycles, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, restrictionCyclesIso_hom_iCycles, iCyclesIso_inv_hom_id, extendCyclesIso_inv_iCycles_assoc, cyclesIsoSc'_inv_iCycles_assoc, opcyclesToCycles_iCycles_assoc, iCycles_d, cyclesIsoSc'_hom_iCycles_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, alternatingConst_iCycles_even_comp_apply, cyclesIsoSc'_inv_iCycles, cyclesMap_i_assoc, liftCycles_i_assoc, i_cyclesMk, isIso_iCycles, alternatingConst_iCycles_odd_comp, extendCyclesIso_hom_iCycles, iCyclesIso_hom_inv_id, liftCycles_i, singleObjCyclesSelfIso_inv_iCycles_assoc, alternatingConst_iCycles_even_comp, homology_π_ι_assoc, restrictionCyclesIso_inv_iCycles_assoc, singleObjCyclesSelfIso_hom_assoc, cyclesIsoSc'_hom_iCycles, extendCyclesIso_inv_iCycles, restrictionCyclesIso_hom_iCycles_assoc, homology_π_ι, alternatingConst_iCycles_odd_comp_apply, extendCyclesIso_hom_iCycles_assoc, iCyclesIso_inv_hom_id_assoc, pOpcycles_opcyclesToCycles_iCycles, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, iCycles_d_assoc, cyclesMap_i, iCyclesIso_hom, singleObjCyclesSelfIso_hom, iCyclesIso_hom_inv_id_assoc, alternatingConst_iCycles_even_comp_assoc, opcyclesToCycles_iCycles, toCycles_i_assoc, restrictionCyclesIso_inv_iCycles
iCyclesIso 📖CompOp
5 mathmath: iCyclesIso_inv_hom_id, iCyclesIso_hom_inv_id, iCyclesIso_inv_hom_id_assoc, iCyclesIso_hom, iCyclesIso_hom_inv_id_assoc
isoHomologyι 📖CompOp
5 mathmath: isoHomologyι_inv_hom_id, isoHomologyι_hom_inv_id, isoHomologyι_hom, isoHomologyι_hom_inv_id_assoc, isoHomologyι_inv_hom_id_assoc
isoHomologyπ 📖CompOp
5 mathmath: isoHomologyπ_hom, isoHomologyπ_hom_inv_id, isoHomologyπ_inv_hom_id_assoc, isoHomologyπ_hom_inv_id_assoc, isoHomologyπ_inv_hom_id
isoSc' 📖CompOp
liftCycles 📖CompOp
13 mathmath: liftCycles_comp_cyclesMap, eq_liftCycles_homologyπ_up_to_refinements, comp_liftCycles, liftCycles_homologyπ_eq_zero_of_boundary, liftCycles_i_assoc, CochainComplex.isIso_liftCycles_iff, liftCycles_i, liftCycles_comp_cyclesMap_assoc, CategoryTheory.ShortComplex.ShortExact.δ_eq, CochainComplex.liftCycles_shift_homologyπ_assoc, comp_liftCycles_assoc, CochainComplex.liftCycles_shift_homologyπ, liftCycles_homologyπ_eq_zero_of_boundary_assoc
liftCycles' 📖CompOp
natIsoSc' 📖CompOp
14 mathmath: natIsoSc'_inv_app_τ₂, natIsoSc'_inv_app_τ₃, natIsoSc'_hom_app_τ₃, groupHomology.isoShortComplexH1_hom, natIsoSc'_hom_app_τ₂, groupHomology.isoShortComplexH1_inv, groupHomology.isoShortComplexH2_hom, groupCohomology.isoShortComplexH1_hom, groupCohomology.isoShortComplexH2_hom, groupHomology.isoShortComplexH2_inv, groupCohomology.isoShortComplexH1_inv, groupCohomology.isoShortComplexH2_inv, natIsoSc'_inv_app_τ₁, natIsoSc'_hom_app_τ₁
natTransHomologyι 📖CompOp
2 mathmath: HomologySequence.snakeInput_v₀₁, natTransHomologyι_app
natTransHomologyπ 📖CompOp
2 mathmath: HomologySequence.snakeInput_v₂₃, natTransHomologyπ_app
opcycles 📖CompOp
137 mathmath: pOpcycles_restrictionOpcyclesIso_hom_assoc, opcyclesMap_comp_descOpcycles_assoc, restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, truncGE.rightHomologyMapData_φQ, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, opcyclesMap_comp, pOpcycles_opcyclesToCycles_iCycles_assoc, pOpcycles_opcyclesIsoSc'_hom, pOpcycles_singleObjOpcyclesSelfIso_inv, opcyclesIsoSc'_inv_fromOpcycles, singleObjOpcyclesSelfIso_hom, opcyclesMapIso_inv, pOpcyclesIso_hom, homologyι_singleObjOpcyclesSelfIso_inv_assoc, instEpiOpcyclesMapOfF, opcyclesOpIso_inv_naturality_assoc, opcyclesIsoSc'_inv_fromOpcycles_assoc, p_fromOpcycles, ChainComplex.isoHomologyι₀_inv_naturality_assoc, isoHomologyι_inv_hom_id, isoHomologyι_hom_inv_id, pOpcycles_opcyclesIsoSc'_inv_assoc, opcyclesOpIso_inv_naturality, homologyι_singleObjOpcyclesSelfIso_inv, extendHomologyIso_hom_homologyι_assoc, fromOpcycles_d_assoc, pOpcycles_opcyclesIsoSc'_inv, cyclesOpIso_inv_naturality_assoc, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, d_pOpcycles, fromOpcycles_eq_zero, opcyclesMap_id, homologyι_opcyclesToCycles_assoc, pOpcycles_restrictionOpcyclesIso_inv, cyclesOpNatIso_inv_app, homologyι_comp_fromOpcycles, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, opcyclesMapIso_hom, opcyclesToCycles_iCycles_assoc, descOpcycles_comp, opcyclesToCycles_naturality, homologyIsoSc'_hom_ι_assoc, restrictionHomologyIso_inv_homologyι_assoc, isoHomologyι_hom, opcyclesOpIso_hom_naturality_assoc, opcyclesToCycles_homologyπ, p_opcyclesMap, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, descOpcycles_comp_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, opcyclesOpIso_hom_toCycles_op, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, pOpcyclesIso_inv_hom_id, CategoryTheory.ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self, d_pOpcycles_assoc, singleObjHomologySelfIso_inv_homologyι_assoc, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', ChainComplex.isIso_descOpcycles_iff, fromOpcycles_op_cyclesOpIso_inv_assoc, singleObjOpcyclesSelfIso_inv_naturality, cyclesOpIso_inv_naturality, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality, opcyclesOpIso_hom_naturality, opcycles_right_exact, homologyι_comp_fromOpcycles_assoc, opcyclesMap_comp_assoc, restrictionHomologyIso_hom_homologyι, ChainComplex.isoHomologyι₀_inv_naturality, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality_assoc, cyclesOpIso_hom_naturality_assoc, instMonoHomologyι, opcyclesMap_comp_descOpcycles, truncGE'_d_eq_fromOpcycles, restrictionHomologyIso_hom_homologyι_assoc, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, cyclesOpIso_hom_naturality, singleObjOpcyclesSelfIso_hom_naturality_assoc, pOpcycles_extendOpcyclesIso_hom_assoc, pOpcycles_extendOpcyclesIso_inv, homology_π_ι_assoc, truncGE'Map_f_eq_opcyclesMap, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, isIso_pOpcycles, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, homologyι_naturality, ChainComplex.isIso_homologyι₀, homologyIsoSc'_inv_ι, restrictionHomologyIso_inv_homologyι, pOpcyclesIso_hom_inv_id_assoc, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, pOpcycles_opcyclesIsoSc'_hom_assoc, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, p_descOpcycles_assoc, singleObjOpcyclesSelfIso_inv_naturality_assoc, pOpcycles_extendOpcyclesIso_hom, homology_π_ι, opcyclesToCycles_homologyπ_assoc, opcyclesFunctor_obj, opcyclesToCycles_naturality_assoc, homologyι_opcyclesToCycles, cyclesOpNatIso_hom_app, fromOpcycles_op_cyclesOpIso_inv, pOpcycles_opcyclesToCycles_iCycles, p_fromOpcycles_assoc, extendHomologyIso_inv_homologyι, pOpcycles_opcyclesToCycles, homologyIsoSc'_inv_ι_assoc, homologyι_descOpcycles_eq_zero_of_boundary, fromOpcycles_d, isoHomologyι_hom_inv_id_assoc, pOpcyclesIso_inv_hom_id_assoc, truncGE'.homologyι_truncGE'XIsoOpcycles_inv_d, opcyclesMap_zero, instEpiPOpcycles, pOpcycles_restrictionOpcyclesIso_inv_assoc, homologyIsoSc'_hom_ι, extendHomologyIso_inv_homologyι_assoc, pOpcycles_extendOpcyclesIso_inv_assoc, pOpcycles_opcyclesToCycles_assoc, opcyclesOpIso_hom_toCycles_op_assoc, pOpcyclesIso_hom_inv_id, isIso_homologyι, opcyclesToCycles_iCycles, singleObjHomologySelfIso_inv_homologyι, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero_eq, singleObjOpcyclesSelfIso_hom_assoc, isoHomologyι_inv_hom_id_assoc, singleObjOpcyclesSelfIso_hom_naturality, extendHomologyIso_hom_homologyι, p_opcyclesMap_assoc, p_descOpcycles, homologyι_naturality_assoc, pOpcycles_restrictionOpcyclesIso_hom, CategoryTheory.instIsIsoFromLeftDerivedZero'
opcyclesFunctor 📖CompOp
11 mathmath: HomologySequence.snakeInput_L₁, cyclesOpNatIso_inv_app, opcyclesFunctor_map, HomologySequence.snakeInput_v₀₁, HomologySequence.mapSnakeInput_f₁, natTransOpCyclesToCycles_app, HomologySequence.snakeInput_v₁₂, opcyclesFunctor_obj, natTransHomologyι_app, cyclesOpNatIso_hom_app, instPreservesZeroMorphismsOpcyclesFunctor
opcyclesIsCokernel 📖CompOp
opcyclesIsoSc' 📖CompOp
10 mathmath: pOpcycles_opcyclesIsoSc'_hom, opcyclesIsoSc'_inv_fromOpcycles, opcyclesIsoSc'_inv_fromOpcycles_assoc, pOpcycles_opcyclesIsoSc'_inv_assoc, pOpcycles_opcyclesIsoSc'_inv, homologyIsoSc'_hom_ι_assoc, homologyIsoSc'_inv_ι, pOpcycles_opcyclesIsoSc'_hom_assoc, homologyIsoSc'_inv_ι_assoc, homologyIsoSc'_hom_ι
opcyclesMap 📖CompOp
35 mathmath: opcyclesMap_comp_descOpcycles_assoc, opcyclesMap_comp, opcyclesMapIso_inv, instEpiOpcyclesMapOfF, opcyclesOpIso_inv_naturality_assoc, ChainComplex.isoHomologyι₀_inv_naturality_assoc, opcyclesOpIso_inv_naturality, cyclesOpIso_inv_naturality_assoc, opcyclesMap_id, opcyclesFunctor_map, opcyclesMapIso_hom, opcyclesToCycles_naturality, opcyclesOpIso_hom_naturality_assoc, p_opcyclesMap, singleObjOpcyclesSelfIso_inv_naturality, cyclesOpIso_inv_naturality, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality, opcyclesOpIso_hom_naturality, opcycles_right_exact, opcyclesMap_comp_assoc, ChainComplex.isoHomologyι₀_inv_naturality, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality_assoc, cyclesOpIso_hom_naturality_assoc, opcyclesMap_comp_descOpcycles, cyclesOpIso_hom_naturality, singleObjOpcyclesSelfIso_hom_naturality_assoc, truncGE'Map_f_eq_opcyclesMap, homologyι_naturality, singleObjOpcyclesSelfIso_inv_naturality_assoc, opcyclesToCycles_naturality_assoc, HomologySequence.composableArrows₃Functor_map, opcyclesMap_zero, singleObjOpcyclesSelfIso_hom_naturality, p_opcyclesMap_assoc, homologyι_naturality_assoc
opcyclesMapIso 📖CompOp
2 mathmath: opcyclesMapIso_inv, opcyclesMapIso_hom
pOpcycles 📖CompOp
49 mathmath: pOpcycles_restrictionOpcyclesIso_hom_assoc, restrictionToTruncGE'_f_eq_iso_hom_pOpcycles_iso_inv, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, pOpcycles_opcyclesToCycles_iCycles_assoc, pOpcycles_opcyclesIsoSc'_hom, pOpcycles_singleObjOpcyclesSelfIso_inv, singleObjOpcyclesSelfIso_hom, pOpcyclesIso_hom, p_fromOpcycles, pOpcycles_opcyclesIsoSc'_inv_assoc, pOpcycles_opcyclesIsoSc'_inv, d_pOpcycles, pOpcycles_restrictionOpcyclesIso_inv, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, p_opcyclesMap, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, pOpcyclesIso_inv_hom_id, d_pOpcycles_assoc, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, pOpcycles_extendOpcyclesIso_hom_assoc, pOpcycles_extendOpcyclesIso_inv, homology_π_ι_assoc, restrictionToTruncGE'.f_eq_iso_hom_pOpcycles_iso_inv, isIso_pOpcycles, groupHomology.pOpcycles_comp_opcyclesIso_hom, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, pOpcyclesIso_hom_inv_id_assoc, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, pOpcycles_opcyclesIsoSc'_hom_assoc, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, p_descOpcycles_assoc, pOpcycles_extendOpcyclesIso_hom, homology_π_ι, pOpcycles_opcyclesToCycles_iCycles, p_fromOpcycles_assoc, pOpcycles_opcyclesToCycles, pOpcyclesIso_inv_hom_id_assoc, instEpiPOpcycles, pOpcycles_restrictionOpcyclesIso_inv_assoc, pOpcycles_extendOpcyclesIso_inv_assoc, pOpcycles_opcyclesToCycles_assoc, pOpcyclesIso_hom_inv_id, singleObjOpcyclesSelfIso_hom_assoc, p_opcyclesMap_assoc, p_descOpcycles, pOpcycles_restrictionOpcyclesIso_hom
pOpcyclesIso 📖CompOp
5 mathmath: pOpcyclesIso_hom, pOpcyclesIso_inv_hom_id, pOpcyclesIso_hom_inv_id_assoc, pOpcyclesIso_inv_hom_id_assoc, pOpcyclesIso_hom_inv_id
sc 📖CompOp
91 mathmath: truncGE.rightHomologyMapData_φQ, alternatingConst_iCycles_odd_comp_assoc, extend.homologyData'_left_H, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality_assoc, CochainComplex.mappingCone.homologySequenceδ_triangleh, eq_liftCycles_homologyπ_up_to_refinements, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, CochainComplex.HomComplex.leftHomologyData_K_coe, CategoryTheory.ShortComplex.ShortExact.comp_δ, mem_quasiIso_iff, CategoryTheory.instIsIsoToRightDerivedZero', CochainComplex.HomComplex.leftHomologyData_π_hom_apply, CategoryTheory.InjectiveResolution.toRightDerivedZero_eq, CochainComplex.HomComplex.leftHomologyData_i_hom_apply, CochainComplex.g_shortComplexTruncLEX₃ToTruncGE, quasiIso_iff_evaluation, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_assoc, CategoryTheory.InjectiveResolution.instIsIsoToRightDerivedZero'Self, isIso_homologyMap_shortComplexTruncLE_g, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, HomologySequence.quasiIso_τ₃, groupHomology.pOpcycles_comp_opcyclesIso_hom_apply, exactAt_iff, groupHomology.isoShortComplexH1_hom, alternatingConst_iCycles_even_comp_apply, CategoryTheory.ProjectiveResolution.instIsIsoFromLeftDerivedZero'Self, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', CochainComplex.quasiIso_shift_iff, g_shortComplexTruncLEX₃ToTruncGE, mono_homologyMap_shortComplexTruncLE_g, CategoryTheory.InjectiveResolution.toRightDerivedZero'_naturality, i_cyclesMk, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality, quasiIsoAt_shortComplexTruncLE_g, extend.homologyData'_right_H, CochainComplex.quasiIsoAt_shift_iff, CategoryTheory.ProjectiveResolution.fromLeftDerivedZero'_naturality_assoc, extend.homologyData'_iso, HomologySequence.δ_naturality_assoc, alternatingConst_iCycles_odd_comp, groupHomology.isoShortComplexH1_inv, extend.homologyData'_right_p, extend.homologyData'_left_i, CochainComplex.cm5b.instQuasiIsoIntP, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv_apply, CochainComplex.mappingCone.quasiIso_descShortComplex, CategoryTheory.ShortComplex.ShortExact.δ_comp_assoc, alternatingConst_iCycles_even_comp, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, CategoryTheory.ShortComplex.ShortExact.homology_exact₃, CochainComplex.instQuasiIsoIntMapHomologicalComplexUpShiftFunctor, groupHomology.isoShortComplexH2_hom, CategoryTheory.ShortComplex.ShortExact.δ_eq, groupHomology.pOpcycles_comp_opcyclesIso_hom, quasiIsoAt_iff_evaluation, groupHomology.coinvariantsMk_comp_opcyclesIso₀_inv, truncGE.rightHomologyMapData_φH, groupCohomology.isoShortComplexH1_hom, extend.homologyData'_right_ι, CochainComplex.HomComplex.leftHomologyData_H_coe, CategoryTheory.ShortComplex.ShortExact.δ_apply, groupHomology.pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.ShortExact.δ_comp, Rep.standardComplex.instQuasiIsoNatεToSingle₀, epi_homologyMap_shortComplexTruncLE_g, CategoryTheory.InjectiveResolution.instQuasiIsoIntι', Rep.FiniteCyclicGroup.resolution_quasiIso, extend.homologyData'_right_Q, HomologySequence.δ_naturality, groupCohomology.isoShortComplexH2_hom, alternatingConst_iCycles_odd_comp_apply, CategoryTheory.ProjectiveResolution.instQuasiIsoIntπ', CochainComplex.g_shortComplexTruncLEX₃ToTruncGE_assoc, HomologySequence.composableArrows₃_exact, groupHomology.isoShortComplexH2_inv, extend.homologyData'_left_π, extend.homologyData'_left_K, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, CategoryTheory.ShortComplex.ShortExact.homology_exact₁, instQuasiIsoShortComplexTruncLEX₃ToTruncGE, groupCohomology.isoShortComplexH1_inv, shortComplexTruncLE_shortExact_δ_eq_zero, alternatingConst_iCycles_even_comp_assoc, DerivedCategory.isIso_Q_map_iff_quasiIso, groupCohomology.isoShortComplexH2_inv, CochainComplex.liftCycles_shift_homologyπ_assoc, g_shortComplexTruncLEX₃ToTruncGE_assoc, CategoryTheory.ShortComplex.ShortExact.homology_exact₂, CochainComplex.liftCycles_shift_homologyπ, CategoryTheory.instIsIsoFromLeftDerivedZero', CategoryTheory.ShortComplex.ShortExact.comp_δ_assoc
sc' 📖CompOp
64 mathmath: π_homologyIsoSc'_hom, truncGE.rightHomologyMapData_φQ, pOpcycles_opcyclesIsoSc'_hom, extend.leftHomologyData_π, opcyclesIsoSc'_inv_fromOpcycles, extend.homologyData_left, extend.homologyData'_left_H, restriction.sc'Iso_inv_τ₃, opcyclesIsoSc'_inv_fromOpcycles_assoc, CochainComplex.HomComplex.leftHomologyData'_i, pOpcycles_opcyclesIsoSc'_inv_assoc, pOpcycles_opcyclesIsoSc'_inv, restriction.sc'Iso_inv_τ₁, cyclesIsoSc'_inv_iCycles_assoc, homologyIsoSc'_hom_ι_assoc, cyclesIsoSc'_hom_iCycles_assoc, restriction.sc'Iso_hom_τ₂, groupHomology.isoShortComplexH1_hom, cyclesIsoSc'_inv_iCycles, truncGE'.hasHomology_sc'_of_not_mem_boundary, truncGE'.homologyData_right_g', π_homologyIsoSc'_hom_assoc, extend.homologyData'_right_H, extend.rightHomologyData_p, π_homologyIsoSc'_inv_assoc, extend.leftHomologyData_H, extend.homologyData'_iso, extend.rightHomologyData_g', extend.rightHomologyData_ι, groupHomology.isoShortComplexH1_inv, extend.homologyData'_right_p, extend.homologyData'_left_i, groupHomology.isoShortComplexH2_hom, toCycles_cyclesIsoSc'_hom_assoc, extend.rightHomologyData_H, truncGE.rightHomologyMapData_φH, groupCohomology.isoShortComplexH1_hom, extend.homologyData'_right_ι, extend.leftHomologyData_i, CochainComplex.HomComplex.leftHomologyData'_K_coe, homologyIsoSc'_inv_ι, pOpcycles_opcyclesIsoSc'_hom_assoc, extend.homologyData'_right_Q, CochainComplex.HomComplex.leftHomologyData'_H_coe, π_homologyIsoSc'_inv, cyclesIsoSc'_hom_iCycles, extend.leftHomologyData_K, groupCohomology.isoShortComplexH2_hom, restriction.sc'Iso_inv_τ₂, CochainComplex.HomComplex.leftHomologyData'_π, groupHomology.isoShortComplexH2_inv, toCycles_cyclesIsoSc'_hom, extend.homologyData'_left_π, extend.homologyData'_left_K, extend.homologyData_iso, homologyIsoSc'_inv_ι_assoc, groupCohomology.isoShortComplexH1_inv, homologyIsoSc'_hom_ι, extend.homologyData_right, restriction.sc'Iso_hom_τ₃, groupCohomology.isoShortComplexH2_inv, exactAt_iff', extend.rightHomologyData_Q, restriction.sc'Iso_hom_τ₁
shortComplexFunctor 📖CompOp
38 mathmath: truncGE.rightHomologyMapData_φQ, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₂, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₃, CochainComplex.shiftShortComplexFunctorIso_add'_hom_app, natIsoSc'_inv_app_τ₂, natIsoSc'_inv_app_τ₃, natIsoSc'_hom_app_τ₃, shortComplexFunctor_obj_X₂, groupHomology.isoShortComplexH1_hom, shortComplexFunctor_map_τ₁, shortComplexFunctor_map_τ₃, shortComplexFunctor_obj_f, natIsoSc'_hom_app_τ₂, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₁, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₂, QuasiIsoAt.quasiIso, groupHomology.isoShortComplexH1_inv, groupHomology.isoShortComplexH2_hom, shortComplexFunctor_obj_X₁, truncGE.rightHomologyMapData_φH, groupCohomology.isoShortComplexH1_hom, groupCohomology.isoShortComplexH2_hom, homologyFunctorIso_hom_app, shortComplexFunctor_map_τ₂, shortComplexFunctor_obj_g, groupHomology.isoShortComplexH2_inv, quasiIsoAt_iff, CochainComplex.shiftShortComplexFunctorIso_zero_add_hom_app, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₃, groupCohomology.isoShortComplexH1_inv, CochainComplex.ShiftSequence.shiftIso_inv_app, groupCohomology.isoShortComplexH2_inv, homologyFunctorIso_inv_app, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₁, natIsoSc'_inv_app_τ₁, natIsoSc'_hom_app_τ₁, shortComplexFunctor_obj_X₃, CochainComplex.ShiftSequence.shiftIso_hom_app
shortComplexFunctor' 📖CompOp
37 mathmath: shortComplexFunctor'_obj_X₁, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₂, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₃, natIsoSc'_inv_app_τ₂, shortComplexFunctor'_map_τ₂, natIsoSc'_inv_app_τ₃, natIsoSc'_hom_app_τ₃, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₁, ChainComplex.quasiIsoAt₀_iff, groupHomology.isoShortComplexH1_hom, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₂, shortComplexFunctor'_obj_X₂, shortComplexFunctor'_obj_X₃, shortComplexFunctor'_obj_g, natIsoSc'_hom_app_τ₂, CochainComplex.shiftShortComplexFunctorIso_hom_app_τ₁, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₂, groupHomology.isoShortComplexH1_inv, shortComplexFunctor'_map_τ₁, CochainComplex.shiftShortComplexFunctor'_hom_app_τ₃, groupHomology.isoShortComplexH2_hom, groupCohomology.isoShortComplexH1_hom, quasiIsoAt_iff', CochainComplex.quasiIsoAt₀_iff, groupCohomology.isoShortComplexH2_hom, shortComplexFunctor'_map_τ₃, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₃, groupHomology.isoShortComplexH2_inv, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₂, shortComplexFunctor'_obj_f, CochainComplex.shiftShortComplexFunctor'_inv_app_τ₁, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₃, groupCohomology.isoShortComplexH1_inv, groupCohomology.isoShortComplexH2_inv, CochainComplex.shiftShortComplexFunctorIso_inv_app_τ₁, natIsoSc'_inv_app_τ₁, natIsoSc'_hom_app_τ₁
toCycles 📖CompOp
16 mathmath: toCycles_i, truncLE'_d_eq_toCycles, d_toCycles_assoc, opcyclesOpIso_hom_toCycles_op, d_toCycles, fromOpcycles_op_cyclesOpIso_inv_assoc, toCycles_eq_zero, toCycles_comp_homologyπ, toCycles_cyclesIsoSc'_hom_assoc, toCycles_comp_homologyπ_assoc, toCycles_cyclesIsoSc'_hom, fromOpcycles_op_cyclesOpIso_inv, pOpcycles_opcyclesToCycles, pOpcycles_opcyclesToCycles_assoc, opcyclesOpIso_hom_toCycles_op_assoc, toCycles_i_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
acyclic_iff 📖mathematicalAcyclic
ExactAt
acyclic_of_isZero 📖mathematicalCategoryTheory.Limits.IsZero
HomologicalComplex
instCategory
Acyclicacyclic_iff
CategoryTheory.ShortComplex.exact_of_isZero_X₂
CategoryTheory.Functor.map_isZero
instPreservesZeroMorphismsEval
comp_liftCycles 📖mathematicalComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
cycles
liftCycles
CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
liftCycles_i
comp_liftCycles_assoc 📖mathematicalComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
cycles
liftCycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_liftCycles
cyclesFunctor_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
instCategory
cyclesFunctor
cyclesMap
cyclesFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
instCategory
cyclesFunctor
cycles
cyclesIsoSc'_hom_iCycles 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.ShortComplex.cycles
sc'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.X₂
CategoryTheory.Iso.hom
cyclesIsoSc'
CategoryTheory.ShortComplex.iCycles
iCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.cyclesMap_i
CategoryTheory.Category.comp_id
cyclesIsoSc'_hom_iCycles_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.ShortComplex.cycles
sc'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Iso.hom
cyclesIsoSc'
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.iCycles
iCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesIsoSc'_hom_iCycles
cyclesIsoSc'_inv_iCycles 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.cycles
sc'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
cycles
X
CategoryTheory.Iso.inv
cyclesIsoSc'
iCycles
CategoryTheory.ShortComplex.iCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.cyclesMap_i
CategoryTheory.Category.comp_id
cyclesIsoSc'_inv_iCycles_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.cycles
sc'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
cycles
CategoryTheory.Iso.inv
cyclesIsoSc'
X
iCycles
CategoryTheory.ShortComplex.iCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesIsoSc'_inv_iCycles
cyclesMapIso_hom 📖mathematicalCategoryTheory.Iso.hom
cycles
cyclesMapIso
cyclesMap
HomologicalComplex
instCategory
cyclesMapIso_inv 📖mathematicalCategoryTheory.Iso.inv
cycles
cyclesMapIso
cyclesMap
HomologicalComplex
instCategory
cyclesMap_comp 📖mathematicalcyclesMap
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
cycles
CategoryTheory.Functor.map_comp
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.cyclesMap_comp
cyclesMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
cyclesMap
HomologicalComplex
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesMap_comp
cyclesMap_i 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
X
cyclesMap
iCycles
Hom.f
CategoryTheory.ShortComplex.cyclesMap_i
cyclesMap_i_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
cyclesMap
X
iCycles
Hom.f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesMap_i
cyclesMap_id 📖mathematicalcyclesMap
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
cycles
CategoryTheory.ShortComplex.cyclesMap_id
cyclesMap_zero 📖mathematicalcyclesMap
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
cycles
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.cyclesMap_zero
d_pOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
d
pOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.f_pOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
ComplexShape.prev_eq'
shape
CategoryTheory.Limits.zero_comp
d_pOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
opcycles
pOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_pOpcycles
d_toCycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
cycles
d
toCycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
toCycles_i
d_comp_d
CategoryTheory.Limits.zero_comp
d_toCycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
cycles
toCycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
d_toCycles
descOpcycles_comp 📖mathematicalComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
descOpcycles
CategoryTheory.cancel_epi
instEpiPOpcycles
p_descOpcycles_assoc
p_descOpcycles
descOpcycles_comp_assoc 📖mathematicalComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
descOpcycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
descOpcycles_comp
epi_homologyMap_of_epi_of_not_rel 📖mathematicalComplexShape.RelCategoryTheory.Epi
homology
homologyMap
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.epimorphisms
shape
homologyι_naturality
CategoryTheory.MorphismProperty.epimorphisms.infer_property
instEpiOpcyclesMapOfF
exactAt_iff 📖mathematicalExactAt
CategoryTheory.ShortComplex.Exact
sc
exactAt_iff' 📖mathematicalComplexShape.prev
ComplexShape.next
ExactAt
CategoryTheory.ShortComplex.Exact
sc'
CategoryTheory.ShortComplex.exact_iff_of_iso
exactAt_iff_isZero_homology 📖mathematicalExactAt
CategoryTheory.Limits.IsZero
homology
exactAt_iff
CategoryTheory.ShortComplex.exact_iff_isZero_homology
fromOpcycles_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
X
fromOpcycles
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.cancel_epi
instEpiPOpcycles
p_fromOpcycles_assoc
d_comp_d
CategoryTheory.Limits.comp_zero
fromOpcycles_d_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
X
fromOpcycles
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fromOpcycles_d
fromOpcycles_eq_zero 📖mathematicalComplexShape.RelfromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
opcycles
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.cancel_epi
instEpiPOpcycles
p_fromOpcycles
CategoryTheory.Limits.comp_zero
shape
gradedHomologyFunctor_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
instCategory
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
gradedHomologyFunctor
homologyMap
gradedHomologyFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.GradedObject
CategoryTheory.GradedObject.categoryOfGradedObjects
gradedHomologyFunctor
homology
hasHomology_of_iso 📖mathematicalHasHomologyCategoryTheory.ShortComplex.hasHomology_of_iso
homologyFunctorIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
HomologicalComplex
instCategory
homologyFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
CategoryTheory.ShortComplex.homologyFunctor
homologyFunctorIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
homology
homologyFunctorIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
HomologicalComplex
instCategory
homologyFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
CategoryTheory.ShortComplex.homologyFunctor
homologyFunctorIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
homology
homologyFunctor_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
instCategory
homologyFunctor
homologyMap
homologyFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
instCategory
homologyFunctor
homology
homologyIsoSc'_hom_ι 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.ShortComplex.homology
sc'
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Iso.hom
homologyIsoSc'
CategoryTheory.ShortComplex.homologyι
opcycles
homologyι
opcyclesIsoSc'
CategoryTheory.ShortComplex.homologyι_naturality
homologyIsoSc'_hom_ι_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.ShortComplex.homology
sc'
CategoryTheory.Iso.hom
homologyIsoSc'
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.homologyι
opcycles
homologyι
opcyclesIsoSc'
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyIsoSc'_hom_ι
homologyIsoSc'_inv_ι 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
sc'
homology
opcycles
CategoryTheory.Iso.inv
homologyIsoSc'
homologyι
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.homologyι
opcyclesIsoSc'
CategoryTheory.ShortComplex.homologyι_naturality
homologyIsoSc'_inv_ι_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
sc'
homology
CategoryTheory.Iso.inv
homologyIsoSc'
opcycles
homologyι
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.homologyι
opcyclesIsoSc'
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyIsoSc'_inv_ι
homologyMapIso_hom 📖mathematicalCategoryTheory.Iso.hom
homology
homologyMapIso
homologyMap
HomologicalComplex
instCategory
homologyMapIso_inv 📖mathematicalCategoryTheory.Iso.inv
homology
homologyMapIso
homologyMap
HomologicalComplex
instCategory
homologyMap_add 📖mathematicalhomologyMap
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instAddHom
homology
AddCommMagma.toAdd
AddCommSemigroup.toAddCommMagma
AddCommMonoid.toAddCommSemigroup
AddCommGroup.toAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.ShortComplex.homologyMap_add
homologyMap_comp 📖mathematicalhomologyMap
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
homology
CategoryTheory.Functor.map_comp
CategoryTheory.ShortComplex.homologyMap_comp
homologyMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
homologyMap
HomologicalComplex
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyMap_comp
homologyMap_id 📖mathematicalhomologyMap
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
homology
CategoryTheory.ShortComplex.homologyMap_id
homologyMap_neg 📖mathematicalhomologyMap
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instNegHom
homology
NegZeroClass.toNeg
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
CategoryTheory.Preadditive.homGroup
CategoryTheory.ShortComplex.homologyMap_neg
homologyMap_sub 📖mathematicalhomologyMap
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instSubHom
homology
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddCommGroup.toAddGroup
CategoryTheory.Preadditive.homGroup
CategoryTheory.ShortComplex.homologyMap_sub
homologyMap_zero 📖mathematicalhomologyMap
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
homology
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.homologyMap_zero
homology_π_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
opcycles
homologyπ
homologyι
X
iCycles
pOpcycles
CategoryTheory.ShortComplex.homology_π_ι
homology_π_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
homologyπ
opcycles
homologyι
X
iCycles
pOpcycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homology_π_ι
homologyι_comp_fromOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
opcycles
X
homologyι
fromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
homologyι_descOpcycles_eq_zero_of_boundary
CategoryTheory.Category.comp_id
homologyι_comp_fromOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
opcycles
homologyι
X
fromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyι_comp_fromOpcycles
homologyι_descOpcycles_eq_zero_of_boundary 📖mathematicalComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
homology
opcycles
homologyι
descOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.homologyι_descOpcycles_eq_zero_of_boundary
ComplexShape.next_eq'
d_comp_d_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.cancel_epi
instEpiPOpcycles
CategoryTheory.Limits.comp_zero
p_descOpcycles
shape
homologyι_descOpcycles_eq_zero_of_boundary_assoc 📖mathematicalComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
homology
opcycles
homologyι
descOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyι_descOpcycles_eq_zero_of_boundary
homologyι_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
opcycles
homologyMap
homologyι
opcyclesMap
CategoryTheory.ShortComplex.homologyι_naturality
homologyι_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
homologyMap
opcycles
homologyι
opcyclesMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyι_naturality
homologyπ_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
homologyπ
homologyMap
cyclesMap
CategoryTheory.ShortComplex.homologyπ_naturality
homologyπ_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
homologyπ
homologyMap
cyclesMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_naturality
iCyclesIso_hom 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.hom
cycles
iCyclesIso
iCycles
iCyclesIso_hom_inv_id 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
cycles
iCycles
CategoryTheory.Iso.inv
iCyclesIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
iCyclesIso_hom_inv_id_assoc 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
cycles
iCycles
CategoryTheory.Iso.inv
iCyclesIso
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
iCyclesIso_hom_inv_id
iCyclesIso_inv_hom_id 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
cycles
CategoryTheory.Iso.inv
iCyclesIso
iCycles
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
iCyclesIso_inv_hom_id_assoc 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
cycles
CategoryTheory.Iso.inv
iCyclesIso
iCycles
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
iCyclesIso_inv_hom_id
iCycles_d 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
X
iCycles
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.iCycles_g
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
ComplexShape.next_eq'
shape
CategoryTheory.Limits.comp_zero
iCycles_d_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
X
iCycles
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
iCycles_d
instAdditiveHomologyFunctor 📖mathematicalCategoryTheory.Functor.Additive
HomologicalComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
instCategory
instPreadditive
homologyFunctor
homologyMap_add
instEpiHomologyπ 📖mathematicalCategoryTheory.Epi
cycles
homology
homologyπ
CategoryTheory.ShortComplex.instEpiHomologyπ
instEpiOpcyclesMapOfF 📖mathematicalCategoryTheory.Epi
opcycles
opcyclesMap
CategoryTheory.epi_of_epi_fac
CategoryTheory.epi_comp
instEpiPOpcycles
p_opcyclesMap
instEpiPOpcycles 📖mathematicalCategoryTheory.Epi
X
opcycles
pOpcycles
CategoryTheory.ShortComplex.instEpiPOpcycles
instMonoCyclesMapOfF 📖mathematicalCategoryTheory.Mono
cycles
cyclesMap
CategoryTheory.mono_of_mono_fac
CategoryTheory.mono_comp
instMonoICycles
cyclesMap_i
instMonoHomologyι 📖mathematicalCategoryTheory.Mono
homology
opcycles
homologyι
CategoryTheory.ShortComplex.instMonoHomologyι
instMonoICycles 📖mathematicalCategoryTheory.Mono
cycles
X
iCycles
CategoryTheory.ShortComplex.instMonoICycles
instPreservesZeroMorphismsCyclesFunctor 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
HomologicalComplex
instCategory
instHasZeroMorphisms
cyclesFunctor
cyclesMap_zero
instPreservesZeroMorphismsHomologyFunctor 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
HomologicalComplex
instCategory
instHasZeroMorphisms
homologyFunctor
homologyMap_zero
instPreservesZeroMorphismsOpcyclesFunctor 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
HomologicalComplex
instCategory
instHasZeroMorphisms
opcyclesFunctor
opcyclesMap_zero
isIso_homologyι 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
homology
opcycles
homologyι
CategoryTheory.ShortComplex.isIso_homologyι
isIso_homologyπ 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
cycles
homology
homologyπ
CategoryTheory.ShortComplex.isIso_homologyπ
isIso_iCycles 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
cycles
iCycles
CategoryTheory.ShortComplex.isIso_iCycles
isIso_pOpcycles 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
opcycles
pOpcycles
CategoryTheory.ShortComplex.isIso_pOpcycles
isoHomologyι_hom 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.hom
homology
opcycles
isoHomologyι
homologyι
isoHomologyι_hom_inv_id 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
homology
opcycles
homologyι
CategoryTheory.Iso.inv
isoHomologyι
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
isoHomologyι_hom_inv_id_assoc 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
homology
opcycles
homologyι
CategoryTheory.Iso.inv
isoHomologyι
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
isoHomologyι_hom_inv_id
isoHomologyι_inv_hom_id 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
homology
CategoryTheory.Iso.inv
isoHomologyι
homologyι
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
isoHomologyι_inv_hom_id_assoc 📖mathematicalComplexShape.next
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
homology
CategoryTheory.Iso.inv
isoHomologyι
homologyι
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
isoHomologyι_inv_hom_id
isoHomologyπ_hom 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.hom
cycles
homology
isoHomologyπ
homologyπ
isoHomologyπ_hom_inv_id 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
cycles
homology
homologyπ
CategoryTheory.Iso.inv
isoHomologyπ
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
isoHomologyπ_hom_inv_id_assoc 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
cycles
homology
homologyπ
CategoryTheory.Iso.inv
isoHomologyπ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
isoHomologyπ_hom_inv_id
isoHomologyπ_inv_hom_id 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
homology
cycles
CategoryTheory.Iso.inv
isoHomologyπ
homologyπ
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
isoHomologyπ_inv_hom_id_assoc 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
homology
cycles
CategoryTheory.Iso.inv
isoHomologyπ
homologyπ
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
isoHomologyπ_inv_hom_id
liftCycles_comp_cyclesMap 📖mathematicalComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
cycles
liftCycles
cyclesMap
Hom.f
CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
cyclesMap_i
liftCycles_i_assoc
liftCycles_i
liftCycles_comp_cyclesMap_assoc 📖mathematicalComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
cycles
liftCycles
cyclesMap
Hom.f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftCycles_comp_cyclesMap
liftCycles_homologyπ_eq_zero_of_boundary 📖mathematicalComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
cycles
homology
liftCycles
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.liftCycles_homologyπ_eq_zero_of_boundary
ComplexShape.prev_eq'
CategoryTheory.Category.assoc
d_comp_d
CategoryTheory.Limits.comp_zero
CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Limits.zero_comp
liftCycles_i
shape
liftCycles_homologyπ_eq_zero_of_boundary_assoc 📖mathematicalComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
cycles
liftCycles
homology
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftCycles_homologyπ_eq_zero_of_boundary
liftCycles_i 📖mathematicalComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
cycles
liftCycles
iCycles
CategoryTheory.ShortComplex.liftCycles_i
liftCycles_i_assoc 📖mathematicalComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
cycles
liftCycles
iCycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftCycles_i
mono_homologyMap_of_mono_of_not_rel 📖mathematicalComplexShape.RelCategoryTheory.Mono
homology
homologyMap
CategoryTheory.MorphismProperty.arrow_mk_iso_iff
CategoryTheory.MorphismProperty.RespectsIso.monomorphisms
shape
homologyπ_naturality
CategoryTheory.MorphismProperty.monomorphisms.infer_property
instMonoCyclesMapOfF
natIsoSc'_hom_app_τ₁ 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
shortComplexFunctor'
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
natIsoSc'
X
XIsoOfEq
natIsoSc'_hom_app_τ₂ 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
shortComplexFunctor'
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
natIsoSc'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
natIsoSc'_hom_app_τ₃ 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
shortComplexFunctor'
CategoryTheory.NatTrans.app
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
natIsoSc'
X
XIsoOfEq
natIsoSc'_inv_app_τ₁ 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
shortComplexFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
natIsoSc'
X
XIsoOfEq
natIsoSc'_inv_app_τ₂ 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
shortComplexFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
natIsoSc'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
X
natIsoSc'_inv_app_τ₃ 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
shortComplexFunctor
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
natIsoSc'
X
XIsoOfEq
natTransHomologyι_app 📖mathematicalCategoryTheory.NatTrans.app
HomologicalComplex
instCategory
homologyFunctor
opcyclesFunctor
natTransHomologyι
homologyι
natTransHomologyπ_app 📖mathematicalCategoryTheory.NatTrans.app
HomologicalComplex
instCategory
cyclesFunctor
homologyFunctor
natTransHomologyπ
homologyπ
opcyclesFunctor_map 📖mathematicalCategoryTheory.Functor.map
HomologicalComplex
instCategory
opcyclesFunctor
opcyclesMap
opcyclesFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
HomologicalComplex
instCategory
opcyclesFunctor
opcycles
opcyclesIsoSc'_inv_fromOpcycles 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.opcycles
sc'
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
opcycles
X
CategoryTheory.Iso.inv
opcyclesIsoSc'
fromOpcycles
CategoryTheory.ShortComplex.fromOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.cancel_epi
CategoryTheory.ShortComplex.instEpiPOpcycles
pOpcycles_opcyclesIsoSc'_inv_assoc
p_fromOpcycles
CategoryTheory.ShortComplex.p_fromOpcycles
opcyclesIsoSc'_inv_fromOpcycles_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.opcycles
sc'
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
opcycles
CategoryTheory.Iso.inv
opcyclesIsoSc'
X
fromOpcycles
CategoryTheory.ShortComplex.fromOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesIsoSc'_inv_fromOpcycles
opcyclesMapIso_hom 📖mathematicalCategoryTheory.Iso.hom
opcycles
opcyclesMapIso
opcyclesMap
HomologicalComplex
instCategory
opcyclesMapIso_inv 📖mathematicalCategoryTheory.Iso.inv
opcycles
opcyclesMapIso
opcyclesMap
HomologicalComplex
instCategory
opcyclesMap_comp 📖mathematicalopcyclesMap
CategoryTheory.CategoryStruct.comp
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
opcycles
CategoryTheory.Functor.map_comp
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.opcyclesMap_comp
opcyclesMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
opcyclesMap
HomologicalComplex
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesMap_comp
opcyclesMap_comp_descOpcycles 📖mathematicalComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
opcyclesMap
descOpcycles
Hom.f
CategoryTheory.cancel_epi
instEpiPOpcycles
p_opcyclesMap_assoc
p_descOpcycles
opcyclesMap_comp_descOpcycles_assoc 📖mathematicalComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
opcyclesMap
descOpcycles
Hom.f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesMap_comp_descOpcycles
opcyclesMap_id 📖mathematicalopcyclesMap
CategoryTheory.CategoryStruct.id
HomologicalComplex
CategoryTheory.Category.toCategoryStruct
instCategory
opcycles
CategoryTheory.ShortComplex.opcyclesMap_id
opcyclesMap_zero 📖mathematicalopcyclesMap
Quiver.Hom
HomologicalComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
opcycles
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.opcyclesMap_zero
pOpcyclesIso_hom 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.hom
opcycles
pOpcyclesIso
pOpcycles
pOpcyclesIso_hom_inv_id 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
pOpcycles
CategoryTheory.Iso.inv
pOpcyclesIso
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
pOpcyclesIso_hom_inv_id_assoc 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
pOpcycles
CategoryTheory.Iso.inv
pOpcyclesIso
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcyclesIso_hom_inv_id
pOpcyclesIso_inv_hom_id 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
CategoryTheory.Iso.inv
pOpcyclesIso
pOpcycles
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
pOpcyclesIso_inv_hom_id_assoc 📖mathematicalComplexShape.prev
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
CategoryTheory.Iso.inv
pOpcyclesIso
pOpcycles
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcyclesIso_inv_hom_id
pOpcycles_opcyclesIsoSc'_hom 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
CategoryTheory.ShortComplex.opcycles
sc'
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
pOpcycles
CategoryTheory.Iso.hom
opcyclesIsoSc'
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.p_opcyclesMap
CategoryTheory.Category.id_comp
pOpcycles_opcyclesIsoSc'_hom_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
CategoryTheory.ShortComplex.opcycles
sc'
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Iso.hom
opcyclesIsoSc'
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_opcyclesIsoSc'_hom
pOpcycles_opcyclesIsoSc'_inv 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
sc'
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
opcycles
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.Iso.inv
opcyclesIsoSc'
pOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.p_opcyclesMap
CategoryTheory.Category.id_comp
pOpcycles_opcyclesIsoSc'_inv_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
sc'
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.pOpcycles
opcycles
CategoryTheory.Iso.inv
opcyclesIsoSc'
pOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_opcyclesIsoSc'_inv
p_descOpcycles 📖mathematicalComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
pOpcycles
descOpcycles
CategoryTheory.ShortComplex.p_descOpcycles
p_descOpcycles_assoc 📖mathematicalComplexShape.prev
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
pOpcycles
descOpcycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_descOpcycles
p_fromOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
fromOpcycles
d
p_descOpcycles
p_fromOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
fromOpcycles
d
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_fromOpcycles
p_opcyclesMap 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
opcyclesMap
Hom.f
CategoryTheory.ShortComplex.p_opcyclesMap
p_opcyclesMap_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
opcycles
pOpcycles
opcyclesMap
Hom.f
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_opcyclesMap
shortComplexFunctor'_map_τ₁ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₁
X
d
d_comp_d
CategoryTheory.Functor.map
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
Hom.f
d_comp_d
shortComplexFunctor'_map_τ₂ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₂
X
d
d_comp_d
CategoryTheory.Functor.map
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
Hom.f
d_comp_d
shortComplexFunctor'_map_τ₃ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₃
X
d
d_comp_d
CategoryTheory.Functor.map
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
Hom.f
d_comp_d
shortComplexFunctor'_obj_X₁ 📖mathematicalCategoryTheory.ShortComplex.X₁
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
X
shortComplexFunctor'_obj_X₂ 📖mathematicalCategoryTheory.ShortComplex.X₂
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
X
shortComplexFunctor'_obj_X₃ 📖mathematicalCategoryTheory.ShortComplex.X₃
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
X
shortComplexFunctor'_obj_f 📖mathematicalCategoryTheory.ShortComplex.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
d
shortComplexFunctor'_obj_g 📖mathematicalCategoryTheory.ShortComplex.g
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor'
d
shortComplexFunctor_map_τ₁ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₁
X
ComplexShape.prev
ComplexShape.next
d
d_comp_d
CategoryTheory.Functor.map
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
Hom.f
d_comp_d
shortComplexFunctor_map_τ₂ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₂
X
ComplexShape.prev
ComplexShape.next
d
d_comp_d
CategoryTheory.Functor.map
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
Hom.f
d_comp_d
shortComplexFunctor_map_τ₃ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₃
X
ComplexShape.prev
ComplexShape.next
d
d_comp_d
CategoryTheory.Functor.map
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
Hom.f
d_comp_d
shortComplexFunctor_obj_X₁ 📖mathematicalCategoryTheory.ShortComplex.X₁
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
X
ComplexShape.prev
shortComplexFunctor_obj_X₂ 📖mathematicalCategoryTheory.ShortComplex.X₂
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
X
shortComplexFunctor_obj_X₃ 📖mathematicalCategoryTheory.ShortComplex.X₃
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
X
ComplexShape.next
shortComplexFunctor_obj_f 📖mathematicalCategoryTheory.ShortComplex.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
d
ComplexShape.prev
shortComplexFunctor_obj_g 📖mathematicalCategoryTheory.ShortComplex.g
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
shortComplexFunctor
d
ComplexShape.next
toCycles_comp_homologyπ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
cycles
homology
toCycles
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
liftCycles_homologyπ_eq_zero_of_boundary
CategoryTheory.Category.id_comp
toCycles_comp_homologyπ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
cycles
toCycles
homology
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toCycles_comp_homologyπ
toCycles_cyclesIsoSc'_hom 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
cycles
CategoryTheory.ShortComplex.cycles
sc'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
toCycles
CategoryTheory.Iso.hom
cyclesIsoSc'
CategoryTheory.ShortComplex.toCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.cancel_mono
CategoryTheory.ShortComplex.instMonoICycles
CategoryTheory.Category.assoc
cyclesIsoSc'_hom_iCycles
toCycles_i
CategoryTheory.ShortComplex.toCycles_i
toCycles_cyclesIsoSc'_hom_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
cycles
toCycles
CategoryTheory.ShortComplex.cycles
sc'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Iso.hom
cyclesIsoSc'
CategoryTheory.ShortComplex.toCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toCycles_cyclesIsoSc'_hom
toCycles_eq_zero 📖mathematicalComplexShape.ReltoCycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
cycles
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.cancel_mono
instMonoICycles
toCycles_i
CategoryTheory.Limits.zero_comp
shape
toCycles_i 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
cycles
toCycles
iCycles
d
liftCycles_i
toCycles_i_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
cycles
toCycles
iCycles
d
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toCycles_i
π_homologyIsoSc'_hom 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
CategoryTheory.ShortComplex.homology
sc'
homologyπ
CategoryTheory.Iso.hom
homologyIsoSc'
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
cyclesIsoSc'
CategoryTheory.ShortComplex.homologyπ
CategoryTheory.ShortComplex.homologyπ_naturality
π_homologyIsoSc'_hom_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
homology
homologyπ
CategoryTheory.ShortComplex.homology
sc'
CategoryTheory.Iso.hom
homologyIsoSc'
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
cyclesIsoSc'
CategoryTheory.ShortComplex.homologyπ
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_homologyIsoSc'_hom
π_homologyIsoSc'_inv 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.cycles
sc'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.homology
homology
CategoryTheory.ShortComplex.homologyπ
CategoryTheory.Iso.inv
homologyIsoSc'
cycles
cyclesIsoSc'
homologyπ
CategoryTheory.ShortComplex.homologyπ_naturality
π_homologyIsoSc'_inv_assoc 📖mathematicalComplexShape.prev
ComplexShape.next
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.cycles
sc'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.homologyπ
homology
CategoryTheory.Iso.inv
homologyIsoSc'
cycles
cyclesIsoSc'
homologyπ
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_homologyIsoSc'_inv

HomologicalComplex.ExactAt

Theorems

NameKindAssumesProvesValidatesDepends On
isZero_homology 📖mathematicalHomologicalComplex.ExactAtCategoryTheory.Limits.IsZero
HomologicalComplex.homology
HomologicalComplex.exactAt_iff_isZero_homology
of_iso 📖HomologicalComplex.ExactAtHomologicalComplex.exactAt_iff
CategoryTheory.ShortComplex.exact_of_iso

---

← Back to Index