| Metric | Count |
DefinitionsCategoryWithHomology, HasHomology, HomologyData, canonical, iso, left, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofHasCokernel, ofHasKernel, ofIsColimitCokernelCofork, ofIsIsoLeftRightHomologyComparison', ofIsLimitKernelFork, ofIso, ofZeros, op, right, unop, HomologyMapData, comp, compatibilityOfZerosOfIsColimitCokernelCofork, compatibilityOfZerosOfIsLimitKernelFork, homologyMapData, id, instInhabited, instUnique, left, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofIsColimitCokernelCofork, ofIsLimitKernelFork, ofZeros, op, right, unop, zero, canonical, homologyIso, canonical, homologyIso, asIsoHomologyι, asIsoHomologyπ, descHomology, homology, homologyData, homologyFunctor, homologyFunctorOpNatIso, homologyIsCokernel, homologyIsKernel, homologyIsoCokernelLift, homologyIsoKernelDesc, homologyMap, homologyMap', homologyMapIso, homologyMapIso', homologyOpIso, homologyι, homologyπ, leftHomologyIso, leftRightHomologyComparison, leftRightHomologyComparison', liftHomology, rightHomologyIso | 63 |
TheoremshasHomology, condition, mk', canonical_iso_hom, canonical_iso_inv, canonical_left_H, canonical_left_K, canonical_left_i, canonical_left_π, canonical_right_H, canonical_right_Q, canonical_right_p, canonical_right_ι, comm, comm_assoc, leftRightHomologyComparison'_eq, left_homologyIso_eq_right_homologyIso_trans_iso_symm, ofEpiOfIsIsoOfMono'_iso, ofEpiOfIsIsoOfMono'_left, ofEpiOfIsIsoOfMono'_right, ofEpiOfIsIsoOfMono_iso, ofEpiOfIsIsoOfMono_left, ofEpiOfIsIsoOfMono_right, ofHasCokernel_iso, ofHasCokernel_left, ofHasCokernel_right, ofHasKernel_iso, ofHasKernel_left, ofHasKernel_right, ofIsColimitCokernelCofork_iso, ofIsColimitCokernelCofork_left, ofIsColimitCokernelCofork_right, ofIsIsoLeftRightHomologyComparison'_iso, ofIsIsoLeftRightHomologyComparison'_left, ofIsIsoLeftRightHomologyComparison'_right, ofIsLimitKernelFork_iso, ofIsLimitKernelFork_left, ofIsLimitKernelFork_right, ofIso_iso, ofIso_left_H, ofIso_left_K, ofIso_left_i, ofIso_left_π, ofIso_right_H, ofIso_right_Q, ofIso_right_p, ofIso_right_ι, ofZeros_iso, ofZeros_left, ofZeros_right, op_iso, op_left, op_right, right_homologyIso_eq_left_homologyIso_trans_iso, unop_iso, unop_left, unop_right, comm, comm_assoc, comp_left, comp_right, compatibilityOfZerosOfIsLimitKernelFork_left, compatibilityOfZerosOfIsLimitKernelFork_right, congr_left_φH, cyclesMap'_eq, homologyMap'_eq, id_left, id_right, instSubsingleton, ofIsColimitCokernelCofork_left, ofIsColimitCokernelCofork_right, ofIsLimitKernelFork_left, ofIsLimitKernelFork_right, ofZeros_left, ofZeros_right, op_left, op_right, opcyclesMap'_eq, unop_left, unop_right, zero_left, zero_right, canonical_H, canonical_K, canonical_f', canonical_i, canonical_π, homologyIso_hom_comp_leftHomologyIso_inv, homologyIso_hom_comp_leftHomologyIso_inv_assoc, homologyIso_leftHomologyData, homologyπ_comp_homologyIso_hom, homologyπ_comp_homologyIso_hom_assoc, leftHomologyIso_hom_comp_homologyIso_inv, leftHomologyIso_hom_comp_homologyIso_inv_assoc, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, leftHomologyIso_inv_naturality, leftHomologyIso_inv_naturality_assoc, π_comp_homologyIso_inv, π_comp_homologyIso_inv_assoc, homologyMap_comm, homologyMap_eq, canonical_H, canonical_Q, canonical_g', canonical_p, canonical_ι, homologyIso_hom_comp_rightHomologyIso_inv, homologyIso_hom_comp_rightHomologyIso_inv_assoc, homologyIso_hom_comp_ι, homologyIso_hom_comp_ι_assoc, homologyIso_inv_comp_homologyι, homologyIso_inv_comp_homologyι_assoc, homologyIso_rightHomologyData, rightHomologyIso_hom_comp_homologyIso_inv, rightHomologyIso_hom_comp_homologyIso_inv_assoc, rightHomologyIso_hom_naturality, rightHomologyIso_hom_naturality_assoc, rightHomologyIso_inv_naturality, rightHomologyIso_inv_naturality_assoc, homologyMap_comm, homologyMap_eq, asIsoHomologyι_hom, asIsoHomologyι_inv_comp_homologyι, asIsoHomologyι_inv_comp_homologyι_assoc, asIsoHomologyπ_hom, asIsoHomologyπ_inv_comp_homologyπ, asIsoHomologyπ_inv_comp_homologyπ_assoc, comp_homologyMap_comp, comp_homologyMap_comp_assoc, epi_homologyMap_of_epi_cyclesMap, epi_homologyMap_of_epi_cyclesMap', hasHomology_of_epi_of_isIso_of_mono, hasHomology_of_epi_of_isIso_of_mono', hasHomology_of_hasCokernel, hasHomology_of_hasKernel, hasHomology_of_isIsoLeftRightHomologyComparison, hasHomology_of_isIso_leftRightHomologyComparison', hasHomology_of_iso, hasHomology_of_zeros, hasLeftHomology_of_hasHomology, hasRightHomology_of_hasHomology, homologyFunctor_map, homologyFunctor_obj, homologyMap'_comp, homologyMap'_id, homologyMap'_op, homologyMap'_zero, homologyMapIso'_hom, homologyMapIso'_inv, homologyMapIso_hom, homologyMapIso_inv, homologyMap_comp, homologyMap_id, homologyMap_op, homologyMap_zero, homologyOpIso_hom_naturality, homologyOpIso_hom_naturality_assoc, homologyOpIso_inv_naturality, homologyOpIso_inv_naturality_assoc, homology_π_ι, homology_π_ι_assoc, homologyι_comp_asIsoHomologyι_inv, homologyι_comp_asIsoHomologyι_inv_assoc, homologyι_comp_fromOpcycles, homologyι_comp_fromOpcycles_assoc, homologyι_descOpcycles_eq_zero_of_boundary, homologyι_descOpcycles_eq_zero_of_boundary_assoc, homologyι_naturality, homologyι_naturality_assoc, homologyπ_comp_asIsoHomologyπ_inv, homologyπ_comp_asIsoHomologyπ_inv_assoc, homologyπ_comp_leftHomologyIso_inv, homologyπ_comp_leftHomologyIso_inv_assoc, homologyπ_naturality, homologyπ_naturality_assoc, instCategoryWithHomologyOpposite, instEpiHomologyπ, instHasHomologyOppositeOp, instHasHomologyUnopOfOpposite, instMonoHomologyι, isIso_homologyFunctor_map_of_epi_of_isIso_of_mono, isIso_homologyMap'_of_epi_of_isIso_of_mono, isIso_homologyMap'_of_isIso, isIso_homologyMap_of_epi_of_isIso_of_mono, isIso_homologyMap_of_epi_of_isIso_of_mono', isIso_homologyMap_of_isIso, isIso_homologyMap_of_isIso_cyclesMap_of_epi, isIso_homologyMap_of_isIso_opcyclesMap_of_mono, isIso_homologyMap_of_iso, isIso_homologyι, isIso_homologyπ, isIso_leftRightHomologyComparison, isIso_leftRightHomologyComparison', isIso_leftRightHomologyComparison'_of_homologyData, isZero_homology_of_isZero_X₂, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, leftHomologyIso_inv_naturality, leftHomologyIso_inv_naturality_assoc, leftRightHomologyComparison'_compatibility, leftRightHomologyComparison'_eq_descH, leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', leftRightHomologyComparison'_eq_liftH, leftRightHomologyComparison'_fac, leftRightHomologyComparison'_fac_assoc, leftRightHomologyComparison'_naturality, leftRightHomologyComparison'_naturality_assoc, leftRightHomologyComparison_eq, leftRightHomologyComparison_fac, leftRightHomologyComparison_fac_assoc, liftCycles_homologyπ_eq_zero_of_boundary, liftHomology_ι, liftHomology_ι_assoc, mono_homologyMap_of_mono_opcyclesMap, mono_homologyMap_of_mono_opcyclesMap', rightHomologyIso_hom_comp_homologyι, rightHomologyIso_hom_comp_homologyι_assoc, rightHomologyIso_hom_naturality, rightHomologyIso_hom_naturality_assoc, rightHomologyIso_inv_naturality, rightHomologyIso_inv_naturality_assoc, toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, π_descHomology, π_descHomology_assoc, π_homologyMap_ι, π_homologyMap_ι_assoc, π_leftRightHomologyComparison'_ι, π_leftRightHomologyComparison'_ι_assoc, π_leftRightHomologyComparison_ι, π_leftRightHomologyComparison_ι_assoc | 232 |
| Total | 295 |
| Name | Category | Theorems |
HasHomology 📖 | CompData | 16 mathmath: hasHomology_of_zeros, hasHomology_of_preserves', hasHomology_of_preserves, hasHomology_of_hasCokernel, hasHomology_of_epi_of_isIso_of_mono, hasHomology_of_isIsoLeftRightHomologyComparison, HomologicalComplex.truncGE'.hasHomology_sc'_of_not_mem_boundary, instHasHomologyOppositeOp, HasHomology.mk', hasHomology_of_epi_of_isIso_of_mono', CategoryTheory.CategoryWithHomology.hasHomology, instHasHomologyUnopOfOpposite, hasHomology_of_iso, hasHomology_of_isIso_leftRightHomologyComparison', Exact.hasHomology, hasHomology_of_hasKernel
|
HomologyData 📖 | CompData | 1 mathmath: HasHomology.condition
|
HomologyMapData 📖 | CompData | 1 mathmath: HomologyMapData.instSubsingleton
|
asIsoHomologyι 📖 | CompOp | 5 mathmath: homologyι_comp_asIsoHomologyι_inv, asIsoHomologyι_hom, homologyι_comp_asIsoHomologyι_inv_assoc, asIsoHomologyι_inv_comp_homologyι_assoc, asIsoHomologyι_inv_comp_homologyι
|
asIsoHomologyπ 📖 | CompOp | 5 mathmath: asIsoHomologyπ_hom, asIsoHomologyπ_inv_comp_homologyπ, asIsoHomologyπ_inv_comp_homologyπ_assoc, homologyπ_comp_asIsoHomologyπ_inv_assoc, homologyπ_comp_asIsoHomologyπ_inv
|
descHomology 📖 | CompOp | 2 mathmath: π_descHomology, π_descHomology_assoc
|
homology 📖 | CompOp | 160 mathmath: toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, HomologyData.canonical_iso_hom, homologyι_naturality, π_moduleCatCyclesIso_hom, homologyMap_smul, HomologicalComplex.π_homologyIsoSc'_hom, homologyOpIso_hom_naturality, homologyMap_add, homology_π_ι_assoc, homologyMap_zero, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv, isIso_homologyMap_of_isIso_cyclesMap_of_epi, RightHomologyMapData.homologyMap_eq, RightHomologyData.rightHomologyIso_inv_naturality_assoc, mapHomologyIso_hom_naturality, LeftHomologyData.π_comp_homologyIso_inv, isIso_homologyπ, homologyMapIso_inv, RightHomologyData.homologyIso_inv_comp_homologyι, LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι_assoc, leftRightHomologyComparison_fac, HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso, leftRightHomologyComparison'_fac, isZero_homology_of_isZero_X₂, homologyπ_naturality_assoc, RightHomologyData.homologyIso_hom_comp_ι, homologyOpIso_inv_naturality, RightHomologyData.rightHomologyIso_hom_naturality, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv_assoc, HomologyData.canonical_right_H, homologyMapIso_hom, RightHomologyMapData.homologyMap_comm, RightHomologyData.rightHomologyIso_inv_naturality, homology_π_ι, homologyι_naturality_assoc, mapHomologyIso_hom_naturality_assoc, LeftHomologyMapData.homologyMap_comm, CategoryTheory.NatTrans.app_homology, QuasiIso.isIso, HomologyData.canonical_left_H, leftHomologyIso_hom_naturality, homologyι_comp_fromOpcycles_assoc, HomologicalComplex.homologyIsoSc'_hom_ι_assoc, moduleCatCyclesIso_inv_π_assoc_apply, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv_assoc, leftHomologyIso_hom_naturality_assoc, exact_iff_isZero_homology, asIsoHomologyπ_hom, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι, homologyπ_comp_leftHomologyIso_inv, leftHomologyIso_inv_naturality_assoc, homologyι_descOpcycles_eq_zero_of_boundary, QuasiIso.isIso', mapHomologyIso'_hom_naturality, homologyπ_naturality, LeftHomologyMapData.homologyMap_eq, homologyOpIso_hom_naturality_assoc, homologyMap_mapNatTrans, rightHomologyIso_inv_naturality_assoc, rightHomologyIso_hom_comp_homologyι, homologyMap_neg, liftHomology_ι, HomologicalComplex.π_homologyIsoSc'_hom_assoc, isIso_homologyι, RightHomologyData.homologyIso_hom_comp_ι_assoc, liftHomology_ι_assoc, LeftHomologyData.homologyπ_comp_homologyIso_hom_assoc, HomologicalComplex.π_homologyIsoSc'_inv_assoc, RightHomologyData.homologyIso_inv_comp_homologyι_assoc, π_descHomology, π_moduleCatCyclesIso_hom_assoc_apply, LeftHomologyData.leftHomologyIso_hom_naturality_assoc, LeftHomologyData.leftHomologyIso_hom_naturality, comp_homologyMap_comp_assoc, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv_assoc, HomologyData.left_homologyIso_eq_right_homologyIso_trans_iso_symm, mono_homologyMap_of_mono_opcyclesMap', LeftHomologyData.leftHomologyIso_inv_naturality_assoc, asIsoHomologyπ_inv_comp_homologyπ, homologyι_comp_asIsoHomologyι_inv, homologyMap_comp, LeftHomologyData.π_comp_homologyIso_inv_assoc, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv_assoc, LeftHomologyData.canonical_H, homologyπ_comp_leftHomologyIso_inv_assoc, homologyOpIso_inv_naturality_assoc, homologyFunctor_obj, homologyMap_sub, LeftHomologyData.homologyIso_leftHomologyData, isIso_homologyMap_of_isIso, rightHomologyIso_hom_naturality_assoc, asIsoHomologyπ_inv_comp_homologyπ_assoc, π_moduleCatCyclesIso_hom_apply, homologyIsoImageICyclesCompPOpcycles_ι, eq_liftCycles_homologyπ_up_to_refinements, quasiIso_iff, π_homologyMap_ι_assoc, HomologicalComplex.homologyIsoSc'_inv_ι, homologyι_comp_fromOpcycles, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, moduleCatCyclesIso_inv_π_assoc, HomologyData.canonical_iso_inv, rightHomologyIso_hom_comp_homologyι_assoc, isIso_homologyMap_of_isIso_opcyclesMap_of_mono, RightHomologyData.rightHomologyIso_hom_naturality_assoc, asIsoHomologyι_hom, LeftHomologyData.mapHomologyIso_eq, homologyMap_op, isIso_homologyMap_of_iso, HomologicalComplex.π_homologyIsoSc'_inv, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv, rightHomologyIso_inv_naturality, π_moduleCatCyclesIso_hom_assoc, RightHomologyData.canonical_H, homologyMap_nullHomotopic, homologyπ_comp_asIsoHomologyπ_inv_assoc, leftHomologyIso_inv_naturality, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv, homologyMap_id, exact_iff_homology_iso_zero, mapHomologyIso_inv_naturality, mapHomologyIso'_hom_naturality_assoc, moduleCatCyclesIso_inv_π_apply, isIso_homologyMap_of_epi_of_isIso_of_mono', LeftHomologyData.homologyπ_comp_homologyIso_hom, isIso_homologyMap_of_epi_of_isIso_of_mono, epi_homologyMap_of_epi_cyclesMap, LeftHomologyData.leftHomologyIso_inv_naturality, HomologicalComplex.homologyIsoSc'_inv_ι_assoc, liftCycles_homologyπ_eq_zero_of_boundary, rightHomologyIso_hom_naturality, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom, mapHomologyIso_inv_naturality_assoc, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv, comp_homologyMap_comp, LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv_assoc, HomologicalComplex.homologyIsoSc'_hom_ι, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom_assoc, moduleCatCyclesIso_inv_π, leftRightHomologyComparison_fac_assoc, instMonoHomologyι, homologyπ_comp_asIsoHomologyπ_inv, epi_homologyMap_of_epi_cyclesMap', HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι, homologyι_comp_asIsoHomologyι_inv_assoc, π_descHomology_assoc, mono_homologyMap_of_mono_opcyclesMap, leftRightHomologyComparison'_fac_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, RightHomologyData.mapHomologyIso'_eq, asIsoHomologyι_inv_comp_homologyι_assoc, RightHomologyData.homologyIso_rightHomologyData, instEpiHomologyπ, mapHomologyIso'_inv_naturality_assoc, π_homologyMap_ι, mapHomologyIso'_inv_naturality, asIsoHomologyι_inv_comp_homologyι
|
homologyData 📖 | CompOp | — |
homologyFunctor 📖 | CompOp | 7 mathmath: isIso_homologyFunctor_map_of_epi_of_isIso_of_mono, homologyFunctor_obj, homologyFunctor_linear, homologyFunctor_map, HomologicalComplex.homologyFunctorIso_hom_app, HomologicalComplex.homologyFunctorIso_inv_app, homologyFunctor_additive
|
homologyFunctorOpNatIso 📖 | CompOp | — |
homologyIsCokernel 📖 | CompOp | — |
homologyIsKernel 📖 | CompOp | — |
homologyIsoCokernelLift 📖 | CompOp | — |
homologyIsoKernelDesc 📖 | CompOp | — |
homologyMap 📖 | CompOp | 70 mathmath: homologyι_naturality, homologyMap_smul, homologyOpIso_hom_naturality, homologyMap_add, homologyMap_zero, isIso_homologyMap_of_isIso_cyclesMap_of_epi, RightHomologyMapData.homologyMap_eq, RightHomologyData.rightHomologyIso_inv_naturality_assoc, mapHomologyIso_hom_naturality, homologyMapIso_inv, homologyπ_naturality_assoc, homologyOpIso_inv_naturality, RightHomologyData.rightHomologyIso_hom_naturality, homologyMapIso_hom, RightHomologyMapData.homologyMap_comm, RightHomologyData.rightHomologyIso_inv_naturality, homologyι_naturality_assoc, mapHomologyIso_hom_naturality_assoc, LeftHomologyMapData.homologyMap_comm, CategoryTheory.NatTrans.app_homology, QuasiIso.isIso, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, leftHomologyIso_inv_naturality_assoc, QuasiIso.isIso', mapHomologyIso'_hom_naturality, homologyπ_naturality, LeftHomologyMapData.homologyMap_eq, homologyOpIso_hom_naturality_assoc, homologyMap_mapNatTrans, rightHomologyIso_inv_naturality_assoc, homologyMap_neg, LeftHomologyData.leftHomologyIso_hom_naturality_assoc, LeftHomologyData.leftHomologyIso_hom_naturality, comp_homologyMap_comp_assoc, mono_homologyMap_of_mono_opcyclesMap', LeftHomologyData.leftHomologyIso_inv_naturality_assoc, homologyMap_comp, homologyOpIso_inv_naturality_assoc, homologyMap_sub, isIso_homologyMap_of_isIso, rightHomologyIso_hom_naturality_assoc, quasiIso_iff, π_homologyMap_ι_assoc, isIso_homologyMap_of_isIso_opcyclesMap_of_mono, RightHomologyData.rightHomologyIso_hom_naturality_assoc, homologyMap_op, isIso_homologyMap_of_iso, rightHomologyIso_inv_naturality, homologyFunctor_map, homologyMap_nullHomotopic, leftHomologyIso_inv_naturality, homologyMap_id, mapHomologyIso_inv_naturality, mapHomologyIso'_hom_naturality_assoc, Homotopy.homologyMap_congr, isIso_homologyMap_of_epi_of_isIso_of_mono', isIso_homologyMap_of_epi_of_isIso_of_mono, epi_homologyMap_of_epi_cyclesMap, LeftHomologyData.leftHomologyIso_inv_naturality, rightHomologyIso_hom_naturality, mapHomologyIso_inv_naturality_assoc, comp_homologyMap_comp, CochainComplex.ShiftSequence.shiftIso_inv_app, epi_homologyMap_of_epi_cyclesMap', mono_homologyMap_of_mono_opcyclesMap, mapHomologyIso'_inv_naturality_assoc, CochainComplex.ShiftSequence.shiftIso_hom_app, π_homologyMap_ι, mapHomologyIso'_inv_naturality
|
homologyMap' 📖 | CompOp | 17 mathmath: homologyMap'_zero, homologyMap'_comp, homologyMap'_nullHomotopic, homologyMap'_sub, HomologyData.map_homologyMap', homologyMap'_add, homologyMap'_op, quasiIso_iff_isIso_homologyMap', homologyMap'_neg, Homotopy.homologyMap'_congr, homologyMap'_id, homologyMapIso'_hom, isIso_homologyMap'_of_epi_of_isIso_of_mono, homologyMap'_smul, HomologyMapData.homologyMap'_eq, isIso_homologyMap'_of_isIso, homologyMapIso'_inv
|
homologyMapIso 📖 | CompOp | 2 mathmath: homologyMapIso_inv, homologyMapIso_hom
|
homologyMapIso' 📖 | CompOp | 2 mathmath: homologyMapIso'_hom, homologyMapIso'_inv
|
homologyOpIso 📖 | CompOp | 5 mathmath: homologyOpIso_hom_naturality, homologyOpIso_inv_naturality, homologyOpIso_hom_naturality_assoc, homologyOpIso_inv_naturality_assoc, homologyMap_op
|
homologyι 📖 | CompOp | 37 mathmath: homologyι_naturality, homology_π_ι_assoc, RightHomologyData.homologyIso_inv_comp_homologyι, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι_assoc, RightHomologyData.homologyIso_hom_comp_ι, homology_π_ι, homologyι_naturality_assoc, RightHomologyData.canonical_ι, homologyι_comp_fromOpcycles_assoc, HomologicalComplex.homologyIsoSc'_hom_ι_assoc, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι, homologyι_descOpcycles_eq_zero_of_boundary, rightHomologyIso_hom_comp_homologyι, liftHomology_ι, isIso_homologyι, RightHomologyData.homologyIso_hom_comp_ι_assoc, liftHomology_ι_assoc, RightHomologyData.homologyIso_inv_comp_homologyι_assoc, homologyι_comp_asIsoHomologyι_inv, HomologyData.canonical_right_ι, homologyIsoImageICyclesCompPOpcycles_ι, π_homologyMap_ι_assoc, HomologicalComplex.homologyIsoSc'_inv_ι, homologyι_comp_fromOpcycles, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, rightHomologyIso_hom_comp_homologyι_assoc, asIsoHomologyι_hom, HomologicalComplex.homologyIsoSc'_inv_ι_assoc, HomologicalComplex.homologyIsoSc'_hom_ι, instMonoHomologyι, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι, homologyι_comp_asIsoHomologyι_inv_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, asIsoHomologyι_inv_comp_homologyι_assoc, π_homologyMap_ι, asIsoHomologyι_inv_comp_homologyι
|
homologyπ 📖 | CompOp | 43 mathmath: toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, π_moduleCatCyclesIso_hom, HomologicalComplex.π_homologyIsoSc'_hom, homology_π_ι_assoc, HomologyData.canonical_left_π, LeftHomologyData.π_comp_homologyIso_inv, isIso_homologyπ, homologyπ_naturality_assoc, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv_assoc, homology_π_ι, moduleCatCyclesIso_inv_π_assoc_apply, asIsoHomologyπ_hom, homologyπ_comp_leftHomologyIso_inv, homologyπ_naturality, HomologicalComplex.π_homologyIsoSc'_hom_assoc, LeftHomologyData.homologyπ_comp_homologyIso_hom_assoc, HomologicalComplex.π_homologyIsoSc'_inv_assoc, π_descHomology, π_moduleCatCyclesIso_hom_assoc_apply, asIsoHomologyπ_inv_comp_homologyπ, LeftHomologyData.π_comp_homologyIso_inv_assoc, LeftHomologyData.canonical_π, homologyπ_comp_leftHomologyIso_inv_assoc, asIsoHomologyπ_inv_comp_homologyπ_assoc, π_moduleCatCyclesIso_hom_apply, eq_liftCycles_homologyπ_up_to_refinements, π_homologyMap_ι_assoc, moduleCatCyclesIso_inv_π_assoc, HomologicalComplex.π_homologyIsoSc'_inv, π_moduleCatCyclesIso_hom_assoc, homologyπ_comp_asIsoHomologyπ_inv_assoc, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv, moduleCatCyclesIso_inv_π_apply, LeftHomologyData.homologyπ_comp_homologyIso_hom, liftCycles_homologyπ_eq_zero_of_boundary, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom_assoc, moduleCatCyclesIso_inv_π, homologyπ_comp_asIsoHomologyπ_inv, π_descHomology_assoc, instEpiHomologyπ, π_homologyMap_ι
|
leftHomologyIso 📖 | CompOp | 13 mathmath: LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv, leftRightHomologyComparison_fac, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, homologyπ_comp_leftHomologyIso_inv, leftHomologyIso_inv_naturality_assoc, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv_assoc, homologyπ_comp_leftHomologyIso_inv_assoc, LeftHomologyData.homologyIso_leftHomologyData, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv, leftHomologyIso_inv_naturality, LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv_assoc, leftRightHomologyComparison_fac_assoc
|
leftRightHomologyComparison 📖 | CompOp | 6 mathmath: isIso_leftRightHomologyComparison, leftRightHomologyComparison_fac, leftRightHomologyComparison_eq, π_leftRightHomologyComparison_ι_assoc, π_leftRightHomologyComparison_ι, leftRightHomologyComparison_fac_assoc
|
leftRightHomologyComparison' 📖 | CompOp | 16 mathmath: leftRightHomologyComparison'_fac, π_leftRightHomologyComparison'_ι, isIso_leftRightHomologyComparison', leftRightHomologyComparison'_eq_descH, isIso_leftRightHomologyComparison'_of_homologyData, leftRightHomologyComparison_eq, leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', π_leftRightHomologyComparison'_ι_assoc, leftRightHomologyComparison'_eq_liftH, leftRightHomologyComparison'_naturality_assoc, map_leftRightHomologyComparison', leftRightHomologyComparison'_naturality, HomologyData.ofIsIsoLeftRightHomologyComparison'_iso, leftRightHomologyComparison'_compatibility, HomologyData.leftRightHomologyComparison'_eq, leftRightHomologyComparison'_fac_assoc
|
liftHomology 📖 | CompOp | 2 mathmath: liftHomology_ι, liftHomology_ι_assoc
|
rightHomologyIso 📖 | CompOp | 13 mathmath: RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv, leftRightHomologyComparison_fac, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv_assoc, rightHomologyIso_inv_naturality_assoc, rightHomologyIso_hom_comp_homologyι, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv_assoc, rightHomologyIso_hom_naturality_assoc, rightHomologyIso_hom_comp_homologyι_assoc, rightHomologyIso_inv_naturality, rightHomologyIso_hom_naturality, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv, leftRightHomologyComparison_fac_assoc, RightHomologyData.homologyIso_rightHomologyData
|
| Name | Category | Theorems |
canonical 📖 | CompOp | 10 mathmath: canonical_iso_hom, canonical_left_i, canonical_left_π, canonical_right_H, canonical_right_Q, canonical_left_K, canonical_left_H, canonical_right_p, canonical_right_ι, canonical_iso_inv
|
iso 📖 | CompOp | 27 mathmath: ofIsColimitCokernelCofork_iso, canonical_iso_hom, ofIso_iso, right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.homologyMap'_op, comm_assoc, ofEpiOfIsIsoOfMono'_iso, ofHasCokernel_iso, HomologicalComplex.extend.homologyData'_iso, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', left_homologyIso_eq_right_homologyIso_trans_iso_symm, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, ofEpiMonoFactorisation_iso, ofIsLimitKernelFork_iso, canonical_iso_inv, ofZeros_iso, unop_iso, op_iso, ofEpiOfIsIsoOfMono_iso, map_iso, HomologicalComplex.extend.homologyData_iso, ofIsIsoLeftRightHomologyComparison'_iso, comm, leftRightHomologyComparison'_eq, ofHasKernel_iso, CategoryTheory.ShortComplex.Splitting.homologyData_iso
|
left 📖 | CompOp | 73 mathmath: ofEpiMonoFactorisation_left, exact_iff, ofZeros_left, canonical_left_i, HomologicalComplex.extend.homologyData_left, canonical_left_π, HomologicalComplex.extend.homologyData'_left_H, ofIsIsoLeftRightHomologyComparison'_left, CategoryTheory.ShortComplex.homologyMap'_zero, ofIsLimitKernelFork_left, CategoryTheory.ShortComplex.homologyMap'_comp, CategoryTheory.ShortComplex.HomologyMapData.add_left, CategoryTheory.ShortComplex.HomologyMapData.unop_right, CategoryTheory.ShortComplex.HomologyMapData.map_left, right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_left, CategoryTheory.ShortComplex.HomologyMapData.neg_left, CategoryTheory.ShortComplex.homologyMap'_nullHomotopic, CategoryTheory.ShortComplex.homologyMap'_sub, CategoryTheory.ShortComplex.HomologyMapData.comp_left, op_right, map_homologyMap', CategoryTheory.ShortComplex.homologyMap'_add, CategoryTheory.ShortComplex.Exact.condition, CategoryTheory.ShortComplex.HomologyMapData.congr_left_φH, CategoryTheory.ShortComplex.homologyMap'_op, ofIso_left_i, canonical_left_K, CategoryTheory.ShortComplex.quasiIso_iff_isIso_homologyMap', canonical_left_H, CategoryTheory.ShortComplex.homologyMap'_neg, comm_assoc, CategoryTheory.ShortComplex.HomologyMapData.zero_left, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison'_of_homologyData, unop_left, CategoryTheory.ShortComplex.HomologyMapData.op_right, ofEpiOfIsIsoOfMono'_left, CategoryTheory.ShortComplex.homologyMap'_id, CategoryTheory.ShortComplex.Exact.shortExact, map_left, ofHasKernel_left, CategoryTheory.ShortComplex.HomologyMapData.cyclesMap'_eq, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', left_homologyIso_eq_right_homologyIso_trans_iso_symm, HomologicalComplex.extend.homologyData'_left_i, CategoryTheory.ShortComplex.homologyMapIso'_hom, op_left, CategoryTheory.ShortComplex.isIso_homologyMap'_of_epi_of_isIso_of_mono, ofHasCokernel_left, exact_iff_i_p_zero, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, CategoryTheory.ShortComplex.homologyMap'_smul, ofIso_left_π, CategoryTheory.ShortComplex.HomologyMapData.homologyMap'_eq, ofIsColimitCokernelCofork_left, unop_iso, op_iso, HomologicalComplex.extend.homologyData'_left_π, map_iso, HomologicalComplex.extend.homologyData'_left_K, ofIso_left_H, CategoryTheory.ShortComplex.isIso_homologyMap'_of_isIso, CategoryTheory.ShortComplex.Splitting.homologyData_left, unop_right, ofIso_left_K, comm, CategoryTheory.ShortComplex.homologyMapIso'_inv, CategoryTheory.ShortComplex.HomologyMapData.smul_left, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right, leftRightHomologyComparison'_eq, ofEpiOfIsIsoOfMono_left, CategoryTheory.ShortComplex.HomologyMapData.id_left
|
ofEpiOfIsIsoOfMono 📖 | CompOp | 3 mathmath: ofEpiOfIsIsoOfMono_right, ofEpiOfIsIsoOfMono_iso, ofEpiOfIsIsoOfMono_left
|
ofEpiOfIsIsoOfMono' 📖 | CompOp | 3 mathmath: ofEpiOfIsIsoOfMono'_right, ofEpiOfIsIsoOfMono'_iso, ofEpiOfIsIsoOfMono'_left
|
ofHasCokernel 📖 | CompOp | 3 mathmath: ofHasCokernel_right, ofHasCokernel_iso, ofHasCokernel_left
|
ofHasKernel 📖 | CompOp | 3 mathmath: ofHasKernel_left, ofHasKernel_right, ofHasKernel_iso
|
ofIsColimitCokernelCofork 📖 | CompOp | 5 mathmath: ofIsColimitCokernelCofork_iso, CategoryTheory.ShortComplex.HomologyMapData.ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_left, CategoryTheory.ShortComplex.HomologyMapData.ofIsColimitCokernelCofork_left
|
ofIsIsoLeftRightHomologyComparison' 📖 | CompOp | 3 mathmath: ofIsIsoLeftRightHomologyComparison'_left, ofIsIsoLeftRightHomologyComparison'_right, ofIsIsoLeftRightHomologyComparison'_iso
|
ofIsLimitKernelFork 📖 | CompOp | 7 mathmath: CategoryTheory.ShortComplex.HomologyMapData.ofIsLimitKernelFork_left, ofIsLimitKernelFork_left, CategoryTheory.ShortComplex.HomologyMapData.ofIsLimitKernelFork_right, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_left, ofIsLimitKernelFork_right, ofIsLimitKernelFork_iso, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_right
|
ofIso 📖 | CompOp | 9 mathmath: ofIso_right_p, ofIso_right_H, ofIso_iso, ofIso_right_Q, ofIso_left_i, ofIso_right_ι, ofIso_left_π, ofIso_left_H, ofIso_left_K
|
ofZeros 📖 | CompOp | 7 mathmath: ofZeros_left, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_left, ofZeros_iso, ofZeros_right, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_right, CategoryTheory.ShortComplex.HomologyMapData.ofZeros_right, CategoryTheory.ShortComplex.HomologyMapData.ofZeros_left
|
op 📖 | CompOp | 6 mathmath: CategoryTheory.ShortComplex.HomologyMapData.op_left, op_right, CategoryTheory.ShortComplex.homologyMap'_op, CategoryTheory.ShortComplex.HomologyMapData.op_right, op_left, op_iso
|
right 📖 | CompOp | 59 mathmath: CategoryTheory.ShortComplex.HomologyMapData.op_left, ofIso_right_p, HomologicalComplex.truncGE.rightHomologyMapData_φQ, ofIso_right_H, CategoryTheory.ShortComplex.Splitting.homologyData_right, right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_left, op_right, CategoryTheory.ShortComplex.HomologyMapData.opcyclesMap'_eq, ofIso_right_Q, canonical_right_H, CategoryTheory.ShortComplex.HomologyMapData.comp_right, ofHasCokernel_right, canonical_right_Q, CategoryTheory.ShortComplex.homologyMap'_op, ofEpiOfIsIsoOfMono'_right, comm_assoc, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison'_of_homologyData, unop_left, ofIsColimitCokernelCofork_right, CategoryTheory.ShortComplex.Exact.shortExact, HomologicalComplex.truncGE'.homologyData_right_g', canonical_right_p, CategoryTheory.ShortComplex.HomologyMapData.map_right, CategoryTheory.ShortComplex.HomologyMapData.zero_right, CategoryTheory.ShortComplex.HomologyMapData.id_right, HomologicalComplex.extend.homologyData'_right_H, ofIso_right_ι, ofEpiOfIsIsoOfMono_right, ofEpiMonoFactorisation_right, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', left_homologyIso_eq_right_homologyIso_trans_iso_symm, HomologicalComplex.extend.homologyData'_right_p, canonical_right_ι, ofIsIsoLeftRightHomologyComparison'_right, CategoryTheory.ShortComplex.HomologyMapData.add_right, op_left, ofHasKernel_right, exact_iff_i_p_zero, ofIsLimitKernelFork_right, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, HomologicalComplex.truncGE.rightHomologyMapData_φH, HomologicalComplex.extend.homologyData'_right_ι, map_right, CategoryTheory.ShortComplex.HomologyMapData.neg_right, CategoryTheory.ShortComplex.HomologyMapData.smul_right, ofZeros_right, HomologicalComplex.extend.homologyData'_right_Q, unop_iso, op_iso, map_iso, unop_right, comm, HomologicalComplex.extend.homologyData_right, exact_iff', CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right, leftRightHomologyComparison'_eq, CategoryTheory.ShortComplex.HomologyMapData.unop_left
|
unop 📖 | CompOp | 5 mathmath: CategoryTheory.ShortComplex.HomologyMapData.unop_right, unop_left, unop_iso, unop_right, CategoryTheory.ShortComplex.HomologyMapData.unop_left
|
| Name | Category | Theorems |
comp 📖 | CompOp | 2 mathmath: comp_left, comp_right
|
compatibilityOfZerosOfIsColimitCokernelCofork 📖 | CompOp | — |
compatibilityOfZerosOfIsLimitKernelFork 📖 | CompOp | 2 mathmath: compatibilityOfZerosOfIsLimitKernelFork_left, compatibilityOfZerosOfIsLimitKernelFork_right
|
homologyMapData 📖 | CompOp | — |
id 📖 | CompOp | 2 mathmath: id_right, id_left
|
instInhabited 📖 | CompOp | — |
instUnique 📖 | CompOp | — |
left 📖 | CompOp | 21 mathmath: op_left, ofIsLimitKernelFork_left, add_left, unop_right, map_left, natTransApp_left, neg_left, comp_left, congr_left_φH, zero_left, op_right, compatibilityOfZerosOfIsLimitKernelFork_left, cyclesMap'_eq, comm, comm_assoc, homologyMap'_eq, ofZeros_left, smul_left, ofIsColimitCokernelCofork_left, id_left, unop_left
|
ofEpiOfIsIsoOfMono 📖 | CompOp | — |
ofEpiOfIsIsoOfMono' 📖 | CompOp | — |
ofIsColimitCokernelCofork 📖 | CompOp | 2 mathmath: ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_left
|
ofIsLimitKernelFork 📖 | CompOp | 2 mathmath: ofIsLimitKernelFork_left, ofIsLimitKernelFork_right
|
ofZeros 📖 | CompOp | 2 mathmath: ofZeros_right, ofZeros_left
|
op 📖 | CompOp | 2 mathmath: op_left, op_right
|
right 📖 | CompOp | 19 mathmath: op_left, unop_right, opcyclesMap'_eq, comp_right, ofIsColimitCokernelCofork_right, ofIsLimitKernelFork_right, op_right, map_right, zero_right, id_right, add_right, comm, comm_assoc, neg_right, smul_right, compatibilityOfZerosOfIsLimitKernelFork_right, ofZeros_right, natTransApp_right, unop_left
|
unop 📖 | CompOp | 2 mathmath: unop_right, unop_left
|
zero 📖 | CompOp | 2 mathmath: zero_left, zero_right
|