Documentation Verification Report

Homology

📁 Source: Mathlib/Algebra/Homology/ShortComplex/Homology.lean

Statistics

MetricCount
DefinitionsCategoryWithHomology, HasHomology, HomologyData, canonical, iso, left, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofHasCokernel, ofHasKernel, ofIsColimitCokernelCofork, ofIsIsoLeftRightHomologyComparison', ofIsLimitKernelFork, ofIso, ofZeros, op, right, unop, HomologyMapData, comp, compatibilityOfZerosOfIsColimitCokernelCofork, compatibilityOfZerosOfIsLimitKernelFork, homologyMapData, id, instInhabited, instUnique, left, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofIsColimitCokernelCofork, ofIsLimitKernelFork, ofZeros, op, right, unop, zero, canonical, homologyIso, canonical, homologyIso, asIsoHomologyι, asIsoHomologyπ, descHomology, homology, homologyData, homologyFunctor, homologyFunctorOpNatIso, homologyIsCokernel, homologyIsKernel, homologyIsoCokernelLift, homologyIsoKernelDesc, homologyMap, homologyMap', homologyMapIso, homologyMapIso', homologyOpIso, homologyι, homologyπ, leftHomologyIso, leftRightHomologyComparison, leftRightHomologyComparison', liftHomology, rightHomologyIso
63
TheoremshasHomology, condition, mk', canonical_iso_hom, canonical_iso_inv, canonical_left_H, canonical_left_K, canonical_left_i, canonical_left_π, canonical_right_H, canonical_right_Q, canonical_right_p, canonical_right_ι, comm, comm_assoc, leftRightHomologyComparison'_eq, left_homologyIso_eq_right_homologyIso_trans_iso_symm, ofEpiOfIsIsoOfMono'_iso, ofEpiOfIsIsoOfMono'_left, ofEpiOfIsIsoOfMono'_right, ofEpiOfIsIsoOfMono_iso, ofEpiOfIsIsoOfMono_left, ofEpiOfIsIsoOfMono_right, ofHasCokernel_iso, ofHasCokernel_left, ofHasCokernel_right, ofHasKernel_iso, ofHasKernel_left, ofHasKernel_right, ofIsColimitCokernelCofork_iso, ofIsColimitCokernelCofork_left, ofIsColimitCokernelCofork_right, ofIsIsoLeftRightHomologyComparison'_iso, ofIsIsoLeftRightHomologyComparison'_left, ofIsIsoLeftRightHomologyComparison'_right, ofIsLimitKernelFork_iso, ofIsLimitKernelFork_left, ofIsLimitKernelFork_right, ofIso_iso, ofIso_left_H, ofIso_left_K, ofIso_left_i, ofIso_left_π, ofIso_right_H, ofIso_right_Q, ofIso_right_p, ofIso_right_ι, ofZeros_iso, ofZeros_left, ofZeros_right, op_iso, op_left, op_right, right_homologyIso_eq_left_homologyIso_trans_iso, unop_iso, unop_left, unop_right, comm, comm_assoc, comp_left, comp_right, compatibilityOfZerosOfIsLimitKernelFork_left, compatibilityOfZerosOfIsLimitKernelFork_right, congr_left_φH, cyclesMap'_eq, homologyMap'_eq, id_left, id_right, instSubsingleton, ofIsColimitCokernelCofork_left, ofIsColimitCokernelCofork_right, ofIsLimitKernelFork_left, ofIsLimitKernelFork_right, ofZeros_left, ofZeros_right, op_left, op_right, opcyclesMap'_eq, unop_left, unop_right, zero_left, zero_right, canonical_H, canonical_K, canonical_f', canonical_i, canonical_π, homologyIso_hom_comp_leftHomologyIso_inv, homologyIso_hom_comp_leftHomologyIso_inv_assoc, homologyIso_leftHomologyData, homologyπ_comp_homologyIso_hom, homologyπ_comp_homologyIso_hom_assoc, leftHomologyIso_hom_comp_homologyIso_inv, leftHomologyIso_hom_comp_homologyIso_inv_assoc, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, leftHomologyIso_inv_naturality, leftHomologyIso_inv_naturality_assoc, π_comp_homologyIso_inv, π_comp_homologyIso_inv_assoc, homologyMap_comm, homologyMap_eq, canonical_H, canonical_Q, canonical_g', canonical_p, canonical_ι, homologyIso_hom_comp_rightHomologyIso_inv, homologyIso_hom_comp_rightHomologyIso_inv_assoc, homologyIso_hom_comp_ι, homologyIso_hom_comp_ι_assoc, homologyIso_inv_comp_homologyι, homologyIso_inv_comp_homologyι_assoc, homologyIso_rightHomologyData, rightHomologyIso_hom_comp_homologyIso_inv, rightHomologyIso_hom_comp_homologyIso_inv_assoc, rightHomologyIso_hom_naturality, rightHomologyIso_hom_naturality_assoc, rightHomologyIso_inv_naturality, rightHomologyIso_inv_naturality_assoc, homologyMap_comm, homologyMap_eq, asIsoHomologyι_hom, asIsoHomologyι_inv_comp_homologyι, asIsoHomologyι_inv_comp_homologyι_assoc, asIsoHomologyπ_hom, asIsoHomologyπ_inv_comp_homologyπ, asIsoHomologyπ_inv_comp_homologyπ_assoc, comp_homologyMap_comp, comp_homologyMap_comp_assoc, epi_homologyMap_of_epi_cyclesMap, epi_homologyMap_of_epi_cyclesMap', hasHomology_of_epi_of_isIso_of_mono, hasHomology_of_epi_of_isIso_of_mono', hasHomology_of_hasCokernel, hasHomology_of_hasKernel, hasHomology_of_isIsoLeftRightHomologyComparison, hasHomology_of_isIso_leftRightHomologyComparison', hasHomology_of_iso, hasHomology_of_zeros, hasLeftHomology_of_hasHomology, hasRightHomology_of_hasHomology, homologyFunctor_map, homologyFunctor_obj, homologyMap'_comp, homologyMap'_id, homologyMap'_op, homologyMap'_zero, homologyMapIso'_hom, homologyMapIso'_inv, homologyMapIso_hom, homologyMapIso_inv, homologyMap_comp, homologyMap_id, homologyMap_op, homologyMap_zero, homologyOpIso_hom_naturality, homologyOpIso_hom_naturality_assoc, homologyOpIso_inv_naturality, homologyOpIso_inv_naturality_assoc, homology_π_ι, homology_π_ι_assoc, homologyι_comp_asIsoHomologyι_inv, homologyι_comp_asIsoHomologyι_inv_assoc, homologyι_comp_fromOpcycles, homologyι_comp_fromOpcycles_assoc, homologyι_descOpcycles_eq_zero_of_boundary, homologyι_descOpcycles_eq_zero_of_boundary_assoc, homologyι_naturality, homologyι_naturality_assoc, homologyπ_comp_asIsoHomologyπ_inv, homologyπ_comp_asIsoHomologyπ_inv_assoc, homologyπ_comp_leftHomologyIso_inv, homologyπ_comp_leftHomologyIso_inv_assoc, homologyπ_naturality, homologyπ_naturality_assoc, instCategoryWithHomologyOpposite, instEpiHomologyπ, instHasHomologyOppositeOp, instHasHomologyUnopOfOpposite, instMonoHomologyι, isIso_homologyFunctor_map_of_epi_of_isIso_of_mono, isIso_homologyMap'_of_epi_of_isIso_of_mono, isIso_homologyMap'_of_isIso, isIso_homologyMap_of_epi_of_isIso_of_mono, isIso_homologyMap_of_epi_of_isIso_of_mono', isIso_homologyMap_of_isIso, isIso_homologyMap_of_isIso_cyclesMap_of_epi, isIso_homologyMap_of_isIso_opcyclesMap_of_mono, isIso_homologyMap_of_iso, isIso_homologyι, isIso_homologyπ, isIso_leftRightHomologyComparison, isIso_leftRightHomologyComparison', isIso_leftRightHomologyComparison'_of_homologyData, isZero_homology_of_isZero_X₂, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, leftHomologyIso_inv_naturality, leftHomologyIso_inv_naturality_assoc, leftRightHomologyComparison'_compatibility, leftRightHomologyComparison'_eq_descH, leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', leftRightHomologyComparison'_eq_liftH, leftRightHomologyComparison'_fac, leftRightHomologyComparison'_fac_assoc, leftRightHomologyComparison'_naturality, leftRightHomologyComparison'_naturality_assoc, leftRightHomologyComparison_eq, leftRightHomologyComparison_fac, leftRightHomologyComparison_fac_assoc, liftCycles_homologyπ_eq_zero_of_boundary, liftHomology_ι, liftHomology_ι_assoc, mono_homologyMap_of_mono_opcyclesMap, mono_homologyMap_of_mono_opcyclesMap', rightHomologyIso_hom_comp_homologyι, rightHomologyIso_hom_comp_homologyι_assoc, rightHomologyIso_hom_naturality, rightHomologyIso_hom_naturality_assoc, rightHomologyIso_inv_naturality, rightHomologyIso_inv_naturality_assoc, toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, π_descHomology, π_descHomology_assoc, π_homologyMap_ι, π_homologyMap_ι_assoc, π_leftRightHomologyComparison'_ι, π_leftRightHomologyComparison'_ι_assoc, π_leftRightHomologyComparison_ι, π_leftRightHomologyComparison_ι_assoc
232
Total295

CategoryTheory

Definitions

NameCategoryTheorems
CategoryWithHomology 📖CompData
3 mathmath: ShortComplex.instCategoryWithHomologyOpposite, TopModuleCat.instCategoryWithHomology, categoryWithHomology_of_abelian

CategoryTheory.CategoryWithHomology

Theorems

NameKindAssumesProvesValidatesDepends On
hasHomology 📖mathematicalCategoryTheory.ShortComplex.HasHomology

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
HasHomology 📖CompData
16 mathmath: hasHomology_of_zeros, hasHomology_of_preserves', hasHomology_of_preserves, hasHomology_of_hasCokernel, hasHomology_of_epi_of_isIso_of_mono, hasHomology_of_isIsoLeftRightHomologyComparison, HomologicalComplex.truncGE'.hasHomology_sc'_of_not_mem_boundary, instHasHomologyOppositeOp, HasHomology.mk', hasHomology_of_epi_of_isIso_of_mono', CategoryTheory.CategoryWithHomology.hasHomology, instHasHomologyUnopOfOpposite, hasHomology_of_iso, hasHomology_of_isIso_leftRightHomologyComparison', Exact.hasHomology, hasHomology_of_hasKernel
HomologyData 📖CompData
1 mathmath: HasHomology.condition
HomologyMapData 📖CompData
1 mathmath: HomologyMapData.instSubsingleton
asIsoHomologyι 📖CompOp
5 mathmath: homologyι_comp_asIsoHomologyι_inv, asIsoHomologyι_hom, homologyι_comp_asIsoHomologyι_inv_assoc, asIsoHomologyι_inv_comp_homologyι_assoc, asIsoHomologyι_inv_comp_homologyι
asIsoHomologyπ 📖CompOp
5 mathmath: asIsoHomologyπ_hom, asIsoHomologyπ_inv_comp_homologyπ, asIsoHomologyπ_inv_comp_homologyπ_assoc, homologyπ_comp_asIsoHomologyπ_inv_assoc, homologyπ_comp_asIsoHomologyπ_inv
descHomology 📖CompOp
2 mathmath: π_descHomology, π_descHomology_assoc
homology 📖CompOp
160 mathmath: toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, HomologyData.canonical_iso_hom, homologyι_naturality, π_moduleCatCyclesIso_hom, homologyMap_smul, HomologicalComplex.π_homologyIsoSc'_hom, homologyOpIso_hom_naturality, homologyMap_add, homology_π_ι_assoc, homologyMap_zero, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv, isIso_homologyMap_of_isIso_cyclesMap_of_epi, RightHomologyMapData.homologyMap_eq, RightHomologyData.rightHomologyIso_inv_naturality_assoc, mapHomologyIso_hom_naturality, LeftHomologyData.π_comp_homologyIso_inv, isIso_homologyπ, homologyMapIso_inv, RightHomologyData.homologyIso_inv_comp_homologyι, LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι_assoc, leftRightHomologyComparison_fac, HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso, leftRightHomologyComparison'_fac, isZero_homology_of_isZero_X₂, homologyπ_naturality_assoc, RightHomologyData.homologyIso_hom_comp_ι, homologyOpIso_inv_naturality, RightHomologyData.rightHomologyIso_hom_naturality, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv_assoc, HomologyData.canonical_right_H, homologyMapIso_hom, RightHomologyMapData.homologyMap_comm, RightHomologyData.rightHomologyIso_inv_naturality, homology_π_ι, homologyι_naturality_assoc, mapHomologyIso_hom_naturality_assoc, LeftHomologyMapData.homologyMap_comm, CategoryTheory.NatTrans.app_homology, QuasiIso.isIso, HomologyData.canonical_left_H, leftHomologyIso_hom_naturality, homologyι_comp_fromOpcycles_assoc, HomologicalComplex.homologyIsoSc'_hom_ι_assoc, moduleCatCyclesIso_inv_π_assoc_apply, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv_assoc, leftHomologyIso_hom_naturality_assoc, exact_iff_isZero_homology, asIsoHomologyπ_hom, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι, homologyπ_comp_leftHomologyIso_inv, leftHomologyIso_inv_naturality_assoc, homologyι_descOpcycles_eq_zero_of_boundary, QuasiIso.isIso', mapHomologyIso'_hom_naturality, homologyπ_naturality, LeftHomologyMapData.homologyMap_eq, homologyOpIso_hom_naturality_assoc, homologyMap_mapNatTrans, rightHomologyIso_inv_naturality_assoc, rightHomologyIso_hom_comp_homologyι, homologyMap_neg, liftHomology_ι, HomologicalComplex.π_homologyIsoSc'_hom_assoc, isIso_homologyι, RightHomologyData.homologyIso_hom_comp_ι_assoc, liftHomology_ι_assoc, LeftHomologyData.homologyπ_comp_homologyIso_hom_assoc, HomologicalComplex.π_homologyIsoSc'_inv_assoc, RightHomologyData.homologyIso_inv_comp_homologyι_assoc, π_descHomology, π_moduleCatCyclesIso_hom_assoc_apply, LeftHomologyData.leftHomologyIso_hom_naturality_assoc, LeftHomologyData.leftHomologyIso_hom_naturality, comp_homologyMap_comp_assoc, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv_assoc, HomologyData.left_homologyIso_eq_right_homologyIso_trans_iso_symm, mono_homologyMap_of_mono_opcyclesMap', LeftHomologyData.leftHomologyIso_inv_naturality_assoc, asIsoHomologyπ_inv_comp_homologyπ, homologyι_comp_asIsoHomologyι_inv, homologyMap_comp, LeftHomologyData.π_comp_homologyIso_inv_assoc, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv_assoc, LeftHomologyData.canonical_H, homologyπ_comp_leftHomologyIso_inv_assoc, homologyOpIso_inv_naturality_assoc, homologyFunctor_obj, homologyMap_sub, LeftHomologyData.homologyIso_leftHomologyData, isIso_homologyMap_of_isIso, rightHomologyIso_hom_naturality_assoc, asIsoHomologyπ_inv_comp_homologyπ_assoc, π_moduleCatCyclesIso_hom_apply, homologyIsoImageICyclesCompPOpcycles_ι, eq_liftCycles_homologyπ_up_to_refinements, quasiIso_iff, π_homologyMap_ι_assoc, HomologicalComplex.homologyIsoSc'_inv_ι, homologyι_comp_fromOpcycles, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, moduleCatCyclesIso_inv_π_assoc, HomologyData.canonical_iso_inv, rightHomologyIso_hom_comp_homologyι_assoc, isIso_homologyMap_of_isIso_opcyclesMap_of_mono, RightHomologyData.rightHomologyIso_hom_naturality_assoc, asIsoHomologyι_hom, LeftHomologyData.mapHomologyIso_eq, homologyMap_op, isIso_homologyMap_of_iso, HomologicalComplex.π_homologyIsoSc'_inv, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv, rightHomologyIso_inv_naturality, π_moduleCatCyclesIso_hom_assoc, RightHomologyData.canonical_H, homologyMap_nullHomotopic, homologyπ_comp_asIsoHomologyπ_inv_assoc, leftHomologyIso_inv_naturality, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv, homologyMap_id, exact_iff_homology_iso_zero, mapHomologyIso_inv_naturality, mapHomologyIso'_hom_naturality_assoc, moduleCatCyclesIso_inv_π_apply, isIso_homologyMap_of_epi_of_isIso_of_mono', LeftHomologyData.homologyπ_comp_homologyIso_hom, isIso_homologyMap_of_epi_of_isIso_of_mono, epi_homologyMap_of_epi_cyclesMap, LeftHomologyData.leftHomologyIso_inv_naturality, HomologicalComplex.homologyIsoSc'_inv_ι_assoc, liftCycles_homologyπ_eq_zero_of_boundary, rightHomologyIso_hom_naturality, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom, mapHomologyIso_inv_naturality_assoc, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv, comp_homologyMap_comp, LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv_assoc, HomologicalComplex.homologyIsoSc'_hom_ι, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom_assoc, moduleCatCyclesIso_inv_π, leftRightHomologyComparison_fac_assoc, instMonoHomologyι, homologyπ_comp_asIsoHomologyπ_inv, epi_homologyMap_of_epi_cyclesMap', HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι, homologyι_comp_asIsoHomologyι_inv_assoc, π_descHomology_assoc, mono_homologyMap_of_mono_opcyclesMap, leftRightHomologyComparison'_fac_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, RightHomologyData.mapHomologyIso'_eq, asIsoHomologyι_inv_comp_homologyι_assoc, RightHomologyData.homologyIso_rightHomologyData, instEpiHomologyπ, mapHomologyIso'_inv_naturality_assoc, π_homologyMap_ι, mapHomologyIso'_inv_naturality, asIsoHomologyι_inv_comp_homologyι
homologyData 📖CompOp
homologyFunctor 📖CompOp
7 mathmath: isIso_homologyFunctor_map_of_epi_of_isIso_of_mono, homologyFunctor_obj, homologyFunctor_linear, homologyFunctor_map, HomologicalComplex.homologyFunctorIso_hom_app, HomologicalComplex.homologyFunctorIso_inv_app, homologyFunctor_additive
homologyFunctorOpNatIso 📖CompOp
homologyIsCokernel 📖CompOp
homologyIsKernel 📖CompOp
homologyIsoCokernelLift 📖CompOp
homologyIsoKernelDesc 📖CompOp
homologyMap 📖CompOp
70 mathmath: homologyι_naturality, homologyMap_smul, homologyOpIso_hom_naturality, homologyMap_add, homologyMap_zero, isIso_homologyMap_of_isIso_cyclesMap_of_epi, RightHomologyMapData.homologyMap_eq, RightHomologyData.rightHomologyIso_inv_naturality_assoc, mapHomologyIso_hom_naturality, homologyMapIso_inv, homologyπ_naturality_assoc, homologyOpIso_inv_naturality, RightHomologyData.rightHomologyIso_hom_naturality, homologyMapIso_hom, RightHomologyMapData.homologyMap_comm, RightHomologyData.rightHomologyIso_inv_naturality, homologyι_naturality_assoc, mapHomologyIso_hom_naturality_assoc, LeftHomologyMapData.homologyMap_comm, CategoryTheory.NatTrans.app_homology, QuasiIso.isIso, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, leftHomologyIso_inv_naturality_assoc, QuasiIso.isIso', mapHomologyIso'_hom_naturality, homologyπ_naturality, LeftHomologyMapData.homologyMap_eq, homologyOpIso_hom_naturality_assoc, homologyMap_mapNatTrans, rightHomologyIso_inv_naturality_assoc, homologyMap_neg, LeftHomologyData.leftHomologyIso_hom_naturality_assoc, LeftHomologyData.leftHomologyIso_hom_naturality, comp_homologyMap_comp_assoc, mono_homologyMap_of_mono_opcyclesMap', LeftHomologyData.leftHomologyIso_inv_naturality_assoc, homologyMap_comp, homologyOpIso_inv_naturality_assoc, homologyMap_sub, isIso_homologyMap_of_isIso, rightHomologyIso_hom_naturality_assoc, quasiIso_iff, π_homologyMap_ι_assoc, isIso_homologyMap_of_isIso_opcyclesMap_of_mono, RightHomologyData.rightHomologyIso_hom_naturality_assoc, homologyMap_op, isIso_homologyMap_of_iso, rightHomologyIso_inv_naturality, homologyFunctor_map, homologyMap_nullHomotopic, leftHomologyIso_inv_naturality, homologyMap_id, mapHomologyIso_inv_naturality, mapHomologyIso'_hom_naturality_assoc, Homotopy.homologyMap_congr, isIso_homologyMap_of_epi_of_isIso_of_mono', isIso_homologyMap_of_epi_of_isIso_of_mono, epi_homologyMap_of_epi_cyclesMap, LeftHomologyData.leftHomologyIso_inv_naturality, rightHomologyIso_hom_naturality, mapHomologyIso_inv_naturality_assoc, comp_homologyMap_comp, CochainComplex.ShiftSequence.shiftIso_inv_app, epi_homologyMap_of_epi_cyclesMap', mono_homologyMap_of_mono_opcyclesMap, mapHomologyIso'_inv_naturality_assoc, CochainComplex.ShiftSequence.shiftIso_hom_app, π_homologyMap_ι, mapHomologyIso'_inv_naturality
homologyMap' 📖CompOp
17 mathmath: homologyMap'_zero, homologyMap'_comp, homologyMap'_nullHomotopic, homologyMap'_sub, HomologyData.map_homologyMap', homologyMap'_add, homologyMap'_op, quasiIso_iff_isIso_homologyMap', homologyMap'_neg, Homotopy.homologyMap'_congr, homologyMap'_id, homologyMapIso'_hom, isIso_homologyMap'_of_epi_of_isIso_of_mono, homologyMap'_smul, HomologyMapData.homologyMap'_eq, isIso_homologyMap'_of_isIso, homologyMapIso'_inv
homologyMapIso 📖CompOp
2 mathmath: homologyMapIso_inv, homologyMapIso_hom
homologyMapIso' 📖CompOp
2 mathmath: homologyMapIso'_hom, homologyMapIso'_inv
homologyOpIso 📖CompOp
5 mathmath: homologyOpIso_hom_naturality, homologyOpIso_inv_naturality, homologyOpIso_hom_naturality_assoc, homologyOpIso_inv_naturality_assoc, homologyMap_op
homologyι 📖CompOp
37 mathmath: homologyι_naturality, homology_π_ι_assoc, RightHomologyData.homologyIso_inv_comp_homologyι, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι_assoc, RightHomologyData.homologyIso_hom_comp_ι, homology_π_ι, homologyι_naturality_assoc, RightHomologyData.canonical_ι, homologyι_comp_fromOpcycles_assoc, HomologicalComplex.homologyIsoSc'_hom_ι_assoc, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι, homologyι_descOpcycles_eq_zero_of_boundary, rightHomologyIso_hom_comp_homologyι, liftHomology_ι, isIso_homologyι, RightHomologyData.homologyIso_hom_comp_ι_assoc, liftHomology_ι_assoc, RightHomologyData.homologyIso_inv_comp_homologyι_assoc, homologyι_comp_asIsoHomologyι_inv, HomologyData.canonical_right_ι, homologyIsoImageICyclesCompPOpcycles_ι, π_homologyMap_ι_assoc, HomologicalComplex.homologyIsoSc'_inv_ι, homologyι_comp_fromOpcycles, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, rightHomologyIso_hom_comp_homologyι_assoc, asIsoHomologyι_hom, HomologicalComplex.homologyIsoSc'_inv_ι_assoc, HomologicalComplex.homologyIsoSc'_hom_ι, instMonoHomologyι, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι, homologyι_comp_asIsoHomologyι_inv_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, asIsoHomologyι_inv_comp_homologyι_assoc, π_homologyMap_ι, asIsoHomologyι_inv_comp_homologyι
homologyπ 📖CompOp
43 mathmath: toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, π_moduleCatCyclesIso_hom, HomologicalComplex.π_homologyIsoSc'_hom, homology_π_ι_assoc, HomologyData.canonical_left_π, LeftHomologyData.π_comp_homologyIso_inv, isIso_homologyπ, homologyπ_naturality_assoc, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv_assoc, homology_π_ι, moduleCatCyclesIso_inv_π_assoc_apply, asIsoHomologyπ_hom, homologyπ_comp_leftHomologyIso_inv, homologyπ_naturality, HomologicalComplex.π_homologyIsoSc'_hom_assoc, LeftHomologyData.homologyπ_comp_homologyIso_hom_assoc, HomologicalComplex.π_homologyIsoSc'_inv_assoc, π_descHomology, π_moduleCatCyclesIso_hom_assoc_apply, asIsoHomologyπ_inv_comp_homologyπ, LeftHomologyData.π_comp_homologyIso_inv_assoc, LeftHomologyData.canonical_π, homologyπ_comp_leftHomologyIso_inv_assoc, asIsoHomologyπ_inv_comp_homologyπ_assoc, π_moduleCatCyclesIso_hom_apply, eq_liftCycles_homologyπ_up_to_refinements, π_homologyMap_ι_assoc, moduleCatCyclesIso_inv_π_assoc, HomologicalComplex.π_homologyIsoSc'_inv, π_moduleCatCyclesIso_hom_assoc, homologyπ_comp_asIsoHomologyπ_inv_assoc, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv, moduleCatCyclesIso_inv_π_apply, LeftHomologyData.homologyπ_comp_homologyIso_hom, liftCycles_homologyπ_eq_zero_of_boundary, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom_assoc, moduleCatCyclesIso_inv_π, homologyπ_comp_asIsoHomologyπ_inv, π_descHomology_assoc, instEpiHomologyπ, π_homologyMap_ι
leftHomologyIso 📖CompOp
13 mathmath: LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv, leftRightHomologyComparison_fac, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, homologyπ_comp_leftHomologyIso_inv, leftHomologyIso_inv_naturality_assoc, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv_assoc, homologyπ_comp_leftHomologyIso_inv_assoc, LeftHomologyData.homologyIso_leftHomologyData, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv, leftHomologyIso_inv_naturality, LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv_assoc, leftRightHomologyComparison_fac_assoc
leftRightHomologyComparison 📖CompOp
6 mathmath: isIso_leftRightHomologyComparison, leftRightHomologyComparison_fac, leftRightHomologyComparison_eq, π_leftRightHomologyComparison_ι_assoc, π_leftRightHomologyComparison_ι, leftRightHomologyComparison_fac_assoc
leftRightHomologyComparison' 📖CompOp
16 mathmath: leftRightHomologyComparison'_fac, π_leftRightHomologyComparison'_ι, isIso_leftRightHomologyComparison', leftRightHomologyComparison'_eq_descH, isIso_leftRightHomologyComparison'_of_homologyData, leftRightHomologyComparison_eq, leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', π_leftRightHomologyComparison'_ι_assoc, leftRightHomologyComparison'_eq_liftH, leftRightHomologyComparison'_naturality_assoc, map_leftRightHomologyComparison', leftRightHomologyComparison'_naturality, HomologyData.ofIsIsoLeftRightHomologyComparison'_iso, leftRightHomologyComparison'_compatibility, HomologyData.leftRightHomologyComparison'_eq, leftRightHomologyComparison'_fac_assoc
liftHomology 📖CompOp
2 mathmath: liftHomology_ι, liftHomology_ι_assoc
rightHomologyIso 📖CompOp
13 mathmath: RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv, leftRightHomologyComparison_fac, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv_assoc, rightHomologyIso_inv_naturality_assoc, rightHomologyIso_hom_comp_homologyι, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv_assoc, rightHomologyIso_hom_naturality_assoc, rightHomologyIso_hom_comp_homologyι_assoc, rightHomologyIso_inv_naturality, rightHomologyIso_hom_naturality, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv, leftRightHomologyComparison_fac_assoc, RightHomologyData.homologyIso_rightHomologyData

Theorems

NameKindAssumesProvesValidatesDepends On
asIsoHomologyι_hom 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.hom
homology
opcycles
hasRightHomology_of_hasHomology
asIsoHomologyι
homologyι
hasRightHomology_of_hasHomology
asIsoHomologyι_inv_comp_homologyι 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
hasRightHomology_of_hasHomology
homology
CategoryTheory.Iso.inv
asIsoHomologyι
homologyι
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
hasRightHomology_of_hasHomology
asIsoHomologyι_inv_comp_homologyι_assoc 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
hasRightHomology_of_hasHomology
homology
CategoryTheory.Iso.inv
asIsoHomologyι
homologyι
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
asIsoHomologyι_inv_comp_homologyι
asIsoHomologyπ_hom 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.hom
cycles
hasLeftHomology_of_hasHomology
homology
asIsoHomologyπ
homologyπ
hasLeftHomology_of_hasHomology
asIsoHomologyπ_inv_comp_homologyπ 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
homology
cycles
hasLeftHomology_of_hasHomology
CategoryTheory.Iso.inv
asIsoHomologyπ
homologyπ
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
hasLeftHomology_of_hasHomology
asIsoHomologyπ_inv_comp_homologyπ_assoc 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
homology
cycles
hasLeftHomology_of_hasHomology
CategoryTheory.Iso.inv
asIsoHomologyπ
homologyπ
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
asIsoHomologyπ_inv_comp_homologyπ
comp_homologyMap_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.K
LeftHomologyData.H
RightHomologyData.Q
LeftHomologyData.π
homology
CategoryTheory.Iso.inv
LeftHomologyData.homologyIso
homologyMap
RightHomologyData.H
CategoryTheory.Iso.hom
RightHomologyData.homologyIso
RightHomologyData.ι
X₂
LeftHomologyData.i
Hom.τ₂
RightHomologyData.p
hasLeftHomology_of_hasHomology
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
rightHomologyι_naturality'
rightHomologyι_naturality'_assoc
leftHomologyπ_naturality'_assoc
HomologyData.comm_assoc
p_opcyclesMap'_assoc
p_opcyclesMap'
CategoryTheory.Category.id_comp
cyclesMap'_i_assoc
comp_homologyMap_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.K
LeftHomologyData.H
LeftHomologyData.π
homology
CategoryTheory.Iso.inv
LeftHomologyData.homologyIso
homologyMap
RightHomologyData.H
CategoryTheory.Iso.hom
RightHomologyData.homologyIso
RightHomologyData.Q
RightHomologyData.ι
X₂
LeftHomologyData.i
Hom.τ₂
RightHomologyData.p
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_homologyMap_comp
epi_homologyMap_of_epi_cyclesMap 📖mathematicalCategoryTheory.Epi
homology
homologyMap
hasLeftHomology_of_hasHomology
epi_homologyMap_of_epi_cyclesMap'
epi_homologyMap_of_epi_cyclesMap' 📖mathematicalCategoryTheory.Epi
homology
homologyMap
hasLeftHomology_of_hasHomology
homologyπ_naturality
CategoryTheory.epi_comp
instEpiHomologyπ
CategoryTheory.epi_of_epi
hasHomology_of_epi_of_isIso_of_mono 📖mathematicalHasHomologyHasHomology.mk'
hasHomology_of_epi_of_isIso_of_mono' 📖mathematicalHasHomologyHasHomology.mk'
hasHomology_of_hasCokernel 📖mathematicalHasHomology
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.comp_zero
HasHomology.mk'
CategoryTheory.Limits.comp_zero
hasHomology_of_hasKernel 📖mathematicalHasHomology
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.zero_comp
HasHomology.mk'
CategoryTheory.Limits.zero_comp
hasHomology_of_isIsoLeftRightHomologyComparison 📖mathematicalHasHomologyhasHomology_of_isIso_leftRightHomologyComparison'
hasHomology_of_isIso_leftRightHomologyComparison' 📖mathematicalHasHomologyHasHomology.mk'
hasHomology_of_iso 📖mathematicalHasHomologyHasHomology.mk'
hasHomology_of_zeros 📖mathematicalHasHomology
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.zero_comp
HasHomology.mk'
CategoryTheory.Limits.zero_comp
hasLeftHomology_of_hasHomology 📖mathematicalHasLeftHomologyHasLeftHomology.mk'
hasRightHomology_of_hasHomology 📖mathematicalHasRightHomologyHasRightHomology.mk'
homologyFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex
instCategory
homologyFunctor
homologyMap
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.CategoryWithHomology.hasHomology
homologyFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
homologyFunctor
homology
CategoryTheory.CategoryWithHomology.hasHomology
homologyMap'_comp 📖mathematicalhomologyMap'
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
LeftHomologyData.H
HomologyData.left
leftHomologyMap'_comp
homologyMap'_id 📖mathematicalhomologyMap'
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
LeftHomologyData.H
HomologyData.left
HomologyMapData.homologyMap'_eq
homologyMap'_op 📖mathematicalQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.H
HomologyData.left
homologyMap'
CategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
Opposite.op
RightHomologyData.H
HomologyData.right
CategoryTheory.Iso.inv
HomologyData.iso
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
HomologyData.op
opMap
CategoryTheory.Iso.hom
HomologyMapData.homologyMap'_eq
CategoryTheory.Category.assoc
HomologyMapData.comm_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
homologyMap'_zero 📖mathematicalhomologyMap'
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
LeftHomologyData.H
HomologyData.left
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologyMapData.homologyMap'_eq
homologyMapIso'_hom 📖mathematicalCategoryTheory.Iso.hom
LeftHomologyData.H
HomologyData.left
homologyMapIso'
homologyMap'
CategoryTheory.ShortComplex
instCategory
homologyMapIso'_inv 📖mathematicalCategoryTheory.Iso.inv
LeftHomologyData.H
HomologyData.left
homologyMapIso'
homologyMap'
CategoryTheory.ShortComplex
instCategory
homologyMapIso_hom 📖mathematicalCategoryTheory.Iso.hom
homology
homologyMapIso
homologyMap
CategoryTheory.ShortComplex
instCategory
homologyMapIso_inv 📖mathematicalCategoryTheory.Iso.inv
homology
homologyMapIso
homologyMap
CategoryTheory.ShortComplex
instCategory
homologyMap_comp 📖mathematicalhomologyMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
homology
homologyMap'_comp
homologyMap_id 📖mathematicalhomologyMap
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
homology
homologyMap'_id
homologyMap_op 📖mathematicalQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
homology
homologyMap
CategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
Opposite.op
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasHomologyOppositeOp
CategoryTheory.Iso.inv
homologyOpIso
opMap
CategoryTheory.Iso.hom
instHasHomologyOppositeOp
hasRightHomology_of_hasHomology
homologyMap'_op
instHasLeftHomologyOppositeOpOfHasRightHomology
hasLeftHomology_of_hasHomology
rightHomologyMap'_op
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
homologyMap_zero 📖mathematicalhomologyMap
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
homology
CategoryTheory.Limits.HasZeroMorphisms.zero
homologyMap'_zero
homologyOpIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasHomologyOppositeOp
Opposite.op
homologyMap
opMap
CategoryTheory.Iso.hom
homologyOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
instHasHomologyOppositeOp
homologyMap_op
CategoryTheory.Iso.hom_inv_id_assoc
homologyOpIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
homology
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasHomologyOppositeOp
homologyMap
opMap
Opposite.op
CategoryTheory.Iso.hom
homologyOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
instHasHomologyOppositeOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyOpIso_hom_naturality
homologyOpIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
homology
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasHomologyOppositeOp
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
homologyMap
CategoryTheory.Iso.inv
homologyOpIso
opMap
instHasHomologyOppositeOp
homologyMap_op
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
homologyOpIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
homology
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
homologyMap
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasHomologyOppositeOp
CategoryTheory.Iso.inv
homologyOpIso
opMap
instHasHomologyOppositeOp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyOpIso_inv_naturality
homology_π_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
hasLeftHomology_of_hasHomology
homology
opcycles
hasRightHomology_of_hasHomology
homologyπ
homologyι
X₂
iCycles
pOpcycles
hasLeftHomology_of_hasHomology
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
leftRightHomologyComparison_fac
π_leftRightHomologyComparison_ι
homology_π_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
opcycles
hasRightHomology_of_hasHomology
homologyι
X₂
iCycles
pOpcycles
hasRightHomology_of_hasHomology
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homology_π_ι
homologyι_comp_asIsoHomologyι_inv 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
homology
opcycles
hasRightHomology_of_hasHomology
homologyι
CategoryTheory.Iso.inv
asIsoHomologyι
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
hasRightHomology_of_hasHomology
homologyι_comp_asIsoHomologyι_inv_assoc 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
homology
opcycles
hasRightHomology_of_hasHomology
homologyι
CategoryTheory.Iso.inv
asIsoHomologyι
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
homologyι_comp_asIsoHomologyι_inv
homologyι_comp_fromOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
opcycles
hasRightHomology_of_hasHomology
X₃
homologyι
fromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
rightHomologyι_comp_fromOpcycles
CategoryTheory.Limits.comp_zero
homologyι_comp_fromOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
opcycles
hasRightHomology_of_hasHomology
homologyι
X₃
fromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyι_comp_fromOpcycles
homologyι_descOpcycles_eq_zero_of_boundary 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
X₃
g
homology
opcycles
hasRightHomology_of_hasHomology
homologyι
descOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
rightHomologyι_descOpcycles_π_eq_zero_of_boundary
CategoryTheory.Limits.comp_zero
homologyι_descOpcycles_eq_zero_of_boundary_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
X₃
g
homology
opcycles
hasRightHomology_of_hasHomology
homologyι
descOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyι_descOpcycles_eq_zero_of_boundary
homologyι_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
opcycles
hasRightHomology_of_hasHomology
homologyMap
homologyι
opcyclesMap
hasRightHomology_of_hasHomology
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
rightHomologyIso_hom_naturality_assoc
rightHomologyIso_hom_comp_homologyι
rightHomologyι_naturality
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
homologyι_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
homologyMap
opcycles
hasRightHomology_of_hasHomology
homologyι
opcyclesMap
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyι_naturality
homologyπ_comp_asIsoHomologyπ_inv 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
CategoryTheory.Iso.inv
asIsoHomologyπ
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
hasLeftHomology_of_hasHomology
homologyπ_comp_asIsoHomologyπ_inv_assoc 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
CategoryTheory.Iso.inv
asIsoHomologyπ
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_comp_asIsoHomologyπ_inv
homologyπ_comp_leftHomologyIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
hasLeftHomology_of_hasHomology
homology
leftHomology
homologyπ
CategoryTheory.Iso.inv
leftHomologyIso
leftHomologyπ
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
homologyπ_comp_leftHomologyIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
leftHomology
CategoryTheory.Iso.inv
leftHomologyIso
leftHomologyπ
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_comp_leftHomologyIso_inv
homologyπ_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
homologyMap
cyclesMap
hasLeftHomology_of_hasHomology
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
leftHomologyIso_inv_naturality
homologyπ_comp_leftHomologyIso_inv
CategoryTheory.Iso.hom_inv_id_assoc
leftHomologyπ_naturality
homologyπ_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
homologyMap
cyclesMap
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_naturality
instCategoryWithHomologyOpposite 📖mathematicalCategoryTheory.CategoryWithHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
HasHomology.mk'
CategoryTheory.CategoryWithHomology.hasHomology
instEpiHomologyπ 📖mathematicalCategoryTheory.Epi
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
CategoryTheory.Limits.epi_of_isColimit_cofork
hasLeftHomology_of_hasHomology
toCycles_comp_homologyπ
instHasHomologyOppositeOp 📖mathematicalHasHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
HasHomology.mk'
instHasHomologyUnopOfOpposite 📖mathematicalHasHomology
unop
HasHomology.mk'
instMonoHomologyι 📖mathematicalCategoryTheory.Mono
homology
opcycles
hasRightHomology_of_hasHomology
homologyι
CategoryTheory.Limits.mono_of_isLimit_fork
hasRightHomology_of_hasHomology
homologyι_comp_fromOpcycles
isIso_homologyFunctor_map_of_epi_of_isIso_of_mono 📖mathematicalCategoryTheory.IsIso
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
homologyFunctor
CategoryTheory.Functor.map
CategoryTheory.CategoryWithHomology.hasHomology
isIso_homologyMap_of_epi_of_isIso_of_mono
isIso_homologyMap'_of_epi_of_isIso_of_mono 📖mathematicalCategoryTheory.IsIso
LeftHomologyData.H
HomologyData.left
homologyMap'
instIsIsoLeftHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃
isIso_homologyMap'_of_isIso 📖mathematicalCategoryTheory.IsIso
LeftHomologyData.H
HomologyData.left
homologyMap'
CategoryTheory.Iso.isIso_hom
isIso_homologyMap_of_epi_of_isIso_of_mono 📖mathematicalCategoryTheory.IsIso
homology
homologyMap
isIso_homologyMap_of_epi_of_isIso_of_mono'
isIso_homologyMap_of_epi_of_isIso_of_mono' 📖mathematicalCategoryTheory.IsIso
homology
homologyMap
isIso_homologyMap'_of_epi_of_isIso_of_mono
isIso_homologyMap_of_isIso 📖mathematicalCategoryTheory.IsIso
homology
homologyMap
instIsIsoLeftHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
instIsIsoτ₁
instIsIsoτ₂
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
instIsIsoτ₃
isIso_homologyMap_of_isIso_cyclesMap_of_epi 📖mathematicalCategoryTheory.IsIso
homology
homologyMap
hasLeftHomology_of_hasHomology
CategoryTheory.cancel_epi
CategoryTheory.IsIso.hom_inv_id_assoc
toCycles_comp_homologyπ
CategoryTheory.Limits.comp_zero
instEpiHomologyπ
homologyπ_naturality_assoc
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_naturality
CategoryTheory.IsIso.inv_hom_id_assoc
isIso_homologyMap_of_isIso_opcyclesMap_of_mono 📖mathematicalCategoryTheory.IsIso
homology
homologyMap
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
CategoryTheory.IsIso.inv_hom_id_assoc
homologyι_comp_fromOpcycles
CategoryTheory.Limits.zero_comp
instMonoHomologyι
CategoryTheory.Category.id_comp
homologyι_naturality_assoc
CategoryTheory.IsIso.hom_inv_id
CategoryTheory.Category.comp_id
homologyι_naturality
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.IsIso.inv_hom_id
isIso_homologyMap_of_iso 📖mathematicalCategoryTheory.IsIso
homology
homologyMap
CategoryTheory.Iso.isIso_hom
isIso_homologyι 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
homology
opcycles
hasRightHomology_of_hasHomology
homologyι
hasRightHomology_of_hasHomology
isIso_rightHomologyι
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_inv
isIso_homologyπ 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
hasLeftHomology_of_hasHomology
isIso_leftHomologyπ
CategoryTheory.IsIso.comp_isIso
CategoryTheory.Iso.isIso_hom
isIso_leftRightHomologyComparison 📖mathematicalCategoryTheory.IsIso
leftHomology
hasLeftHomology_of_hasHomology
rightHomology
hasRightHomology_of_hasHomology
leftRightHomologyComparison
hasLeftHomology_of_hasHomology
hasRightHomology_of_hasHomology
isIso_leftRightHomologyComparison'
isIso_leftRightHomologyComparison' 📖mathematicalCategoryTheory.IsIso
LeftHomologyData.H
RightHomologyData.H
leftRightHomologyComparison'
leftRightHomologyComparison'_compatibility
CategoryTheory.IsIso.comp_isIso
instIsIsoLeftHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
instIsIsoτ₁
CategoryTheory.IsIso.id
instIsIsoτ₂
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
instIsIsoτ₃
isIso_leftRightHomologyComparison'_of_homologyData
instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃
isIso_leftRightHomologyComparison'_of_homologyData 📖mathematicalCategoryTheory.IsIso
LeftHomologyData.H
HomologyData.left
RightHomologyData.H
HomologyData.right
leftRightHomologyComparison'
HomologyData.leftRightHomologyComparison'_eq
CategoryTheory.Iso.isIso_hom
isZero_homology_of_isZero_X₂ 📖mathematicalCategoryTheory.Limits.IsZero
X₂
homologyCategoryTheory.Limits.IsZero.of_iso
CategoryTheory.Limits.IsZero.eq_of_tgt
CategoryTheory.Limits.IsZero.eq_of_src
leftHomologyIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftHomology
hasLeftHomology_of_hasHomology
homology
CategoryTheory.Iso.hom
leftHomologyIso
homologyMap
leftHomologyMap
hasLeftHomology_of_hasHomology
LeftHomologyData.homologyIso_leftHomologyData
LeftHomologyData.leftHomologyIso_inv_naturality
leftHomologyIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftHomology
hasLeftHomology_of_hasHomology
homology
CategoryTheory.Iso.hom
leftHomologyIso
homologyMap
leftHomologyMap
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftHomologyIso_hom_naturality
leftHomologyIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
leftHomology
hasLeftHomology_of_hasHomology
CategoryTheory.Iso.inv
leftHomologyIso
leftHomologyMap
homologyMap
hasLeftHomology_of_hasHomology
LeftHomologyData.homologyIso_leftHomologyData
LeftHomologyData.leftHomologyIso_hom_naturality
leftHomologyIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
leftHomology
hasLeftHomology_of_hasHomology
CategoryTheory.Iso.inv
leftHomologyIso
leftHomologyMap
homologyMap
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftHomologyIso_inv_naturality
leftRightHomologyComparison'_compatibility 📖mathematicalleftRightHomologyComparison'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.H
RightHomologyData.H
leftHomologyMap'
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
instCategory
rightHomologyMap'
leftRightHomologyComparison'_naturality_assoc
rightHomologyMap'_comp
CategoryTheory.Category.comp_id
rightHomologyMap'_id
leftRightHomologyComparison'_eq_descH 📖mathematicalleftRightHomologyComparison'
LeftHomologyData.descH
RightHomologyData.H
RightHomologyData.liftH
LeftHomologyData.K
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
RightHomologyData.Q
LeftHomologyData.i
RightHomologyData.p
CategoryTheory.cancel_mono
RightHomologyData.instMonoι
CategoryTheory.cancel_epi
LeftHomologyData.instEpiπ
π_leftRightHomologyComparison'_ι
LeftHomologyData.π_descH_assoc
RightHomologyData.liftH_ι
leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap' 📖mathematicalleftRightHomologyComparison'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.H
HomologyData.left
RightHomologyData.H
leftHomologyMap'
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
instCategory
HomologyData.right
CategoryTheory.Iso.hom
HomologyData.iso
rightHomologyMap'
HomologyData.leftRightHomologyComparison'_eq
leftRightHomologyComparison'_compatibility
leftRightHomologyComparison'_eq_liftH 📖mathematicalleftRightHomologyComparison'
RightHomologyData.liftH
LeftHomologyData.H
LeftHomologyData.descH
RightHomologyData.Q
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.K
X₂
LeftHomologyData.i
RightHomologyData.p
leftRightHomologyComparison'_fac 📖mathematicalleftRightHomologyComparison'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.H
homology
RightHomologyData.H
CategoryTheory.Iso.inv
LeftHomologyData.homologyIso
CategoryTheory.Iso.hom
RightHomologyData.homologyIso
leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap'
hasLeftHomology_of_hasHomology
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
leftRightHomologyComparison'_fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.H
RightHomologyData.H
leftRightHomologyComparison'
homology
CategoryTheory.Iso.inv
LeftHomologyData.homologyIso
CategoryTheory.Iso.hom
RightHomologyData.homologyIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftRightHomologyComparison'_fac
leftRightHomologyComparison'_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.H
RightHomologyData.H
leftHomologyMap'
leftRightHomologyComparison'
rightHomologyMap'
CategoryTheory.cancel_epi
LeftHomologyData.instEpiπ
leftHomologyπ_naturality'_assoc
CategoryTheory.cancel_mono
RightHomologyData.instMonoι
CategoryTheory.Category.assoc
π_leftRightHomologyComparison'_ι
cyclesMap'_i_assoc
rightHomologyι_naturality'
π_leftRightHomologyComparison'_ι_assoc
p_opcyclesMap'
leftRightHomologyComparison'_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.H
leftHomologyMap'
RightHomologyData.H
leftRightHomologyComparison'
rightHomologyMap'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftRightHomologyComparison'_naturality
leftRightHomologyComparison_eq 📖mathematicalleftRightHomologyComparison
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftHomology
LeftHomologyData.H
rightHomology
CategoryTheory.Iso.hom
LeftHomologyData.leftHomologyIso
RightHomologyData.H
leftRightHomologyComparison'
CategoryTheory.Iso.inv
RightHomologyData.rightHomologyIso
leftRightHomologyComparison'_compatibility
leftRightHomologyComparison_fac 📖mathematicalleftRightHomologyComparison
hasLeftHomology_of_hasHomology
hasRightHomology_of_hasHomology
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftHomology
homology
rightHomology
CategoryTheory.Iso.hom
leftHomologyIso
CategoryTheory.Iso.inv
rightHomologyIso
hasLeftHomology_of_hasHomology
hasRightHomology_of_hasHomology
LeftHomologyData.homologyIso_leftHomologyData
RightHomologyData.homologyIso_rightHomologyData
leftRightHomologyComparison'_fac
leftRightHomologyComparison_fac_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftHomology
hasLeftHomology_of_hasHomology
rightHomology
hasRightHomology_of_hasHomology
leftRightHomologyComparison
homology
CategoryTheory.Iso.hom
leftHomologyIso
CategoryTheory.Iso.inv
rightHomologyIso
hasRightHomology_of_hasHomology
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftRightHomologyComparison_fac
liftCycles_homologyπ_eq_zero_of_boundary 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
f
cycles
hasLeftHomology_of_hasHomology
homology
liftCycles
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
hasLeftHomology_of_hasHomology
liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc
CategoryTheory.Limits.zero_comp
liftHomology_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
hasRightHomology_of_hasHomology
X₃
fromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
homology
liftHomology
homologyι
hasRightHomology_of_hasHomology
CategoryTheory.Limits.Fork.IsLimit.lift_ι
homologyι_comp_fromOpcycles
liftHomology_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
hasRightHomology_of_hasHomology
X₃
fromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
homology
liftHomology
homologyι
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftHomology_ι
mono_homologyMap_of_mono_opcyclesMap 📖mathematicalCategoryTheory.Mono
homology
homologyMap
hasRightHomology_of_hasHomology
mono_homologyMap_of_mono_opcyclesMap'
mono_homologyMap_of_mono_opcyclesMap' 📖mathematicalCategoryTheory.Mono
homology
homologyMap
hasRightHomology_of_hasHomology
homologyι_naturality
CategoryTheory.mono_comp
instMonoHomologyι
CategoryTheory.mono_of_mono
rightHomologyIso_hom_comp_homologyι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
hasRightHomology_of_hasHomology
homology
opcycles
CategoryTheory.Iso.hom
rightHomologyIso
homologyι
rightHomologyι
hasRightHomology_of_hasHomology
CategoryTheory.Iso.hom_inv_id_assoc
rightHomologyIso_hom_comp_homologyι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
hasRightHomology_of_hasHomology
homology
CategoryTheory.Iso.hom
rightHomologyIso
opcycles
homologyι
rightHomologyι
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyIso_hom_comp_homologyι
rightHomologyIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
hasRightHomology_of_hasHomology
homology
CategoryTheory.Iso.hom
rightHomologyIso
homologyMap
rightHomologyMap
hasRightHomology_of_hasHomology
RightHomologyData.homologyIso_rightHomologyData
RightHomologyData.rightHomologyIso_inv_naturality
rightHomologyIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
hasRightHomology_of_hasHomology
homology
CategoryTheory.Iso.hom
rightHomologyIso
homologyMap
rightHomologyMap
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyIso_hom_naturality
rightHomologyIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
rightHomology
hasRightHomology_of_hasHomology
CategoryTheory.Iso.inv
rightHomologyIso
rightHomologyMap
homologyMap
hasRightHomology_of_hasHomology
RightHomologyData.homologyIso_rightHomologyData
RightHomologyData.rightHomologyIso_hom_naturality
rightHomologyIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
rightHomology
hasRightHomology_of_hasHomology
CategoryTheory.Iso.inv
rightHomologyIso
rightHomologyMap
homologyMap
hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyIso_inv_naturality
toCycles_comp_homologyπ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
cycles
hasLeftHomology_of_hasHomology
homology
toCycles
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
hasLeftHomology_of_hasHomology
toCycles_comp_leftHomologyπ_assoc
CategoryTheory.Limits.zero_comp
toCycles_comp_homologyπ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
cycles
hasLeftHomology_of_hasHomology
toCycles
homology
homologyπ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
toCycles_comp_homologyπ
π_descHomology 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
cycles
hasLeftHomology_of_hasHomology
toCycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
homology
homologyπ
descHomology
hasLeftHomology_of_hasHomology
CategoryTheory.Limits.Cofork.IsColimit.π_desc
toCycles_comp_homologyπ
π_descHomology_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
cycles
hasLeftHomology_of_hasHomology
toCycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
homology
homologyπ
descHomology
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_descHomology
π_homologyMap_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
hasLeftHomology_of_hasHomology
homology
opcycles
hasRightHomology_of_hasHomology
homologyπ
homologyMap
homologyι
X₂
iCycles
Hom.τ₂
pOpcycles
hasLeftHomology_of_hasHomology
hasRightHomology_of_hasHomology
homologyι_naturality
homology_π_ι_assoc
p_opcyclesMap
π_homologyMap_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
hasLeftHomology_of_hasHomology
homology
homologyπ
homologyMap
opcycles
hasRightHomology_of_hasHomology
homologyι
X₂
iCycles
Hom.τ₂
pOpcycles
hasRightHomology_of_hasHomology
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_homologyMap_ι
π_leftRightHomologyComparison'_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.K
LeftHomologyData.H
RightHomologyData.Q
LeftHomologyData.π
RightHomologyData.H
leftRightHomologyComparison'
RightHomologyData.ι
X₂
LeftHomologyData.i
RightHomologyData.p
RightHomologyData.liftH_ι
LeftHomologyData.π_descH
π_leftRightHomologyComparison'_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.K
LeftHomologyData.H
LeftHomologyData.π
RightHomologyData.H
leftRightHomologyComparison'
RightHomologyData.Q
RightHomologyData.ι
X₂
LeftHomologyData.i
RightHomologyData.p
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_leftRightHomologyComparison'_ι
π_leftRightHomologyComparison_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
leftHomology
opcycles
leftHomologyπ
rightHomology
leftRightHomologyComparison
rightHomologyι
X₂
iCycles
pOpcycles
π_leftRightHomologyComparison'_ι
π_leftRightHomologyComparison_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
leftHomology
leftHomologyπ
rightHomology
leftRightHomologyComparison
opcycles
rightHomologyι
X₂
iCycles
pOpcycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_leftRightHomologyComparison_ι

CategoryTheory.ShortComplex.HasHomology

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.ShortComplex.HomologyData
mk' 📖mathematicalCategoryTheory.ShortComplex.HasHomology

CategoryTheory.ShortComplex.HomologyData

Definitions

NameCategoryTheorems
canonical 📖CompOp
10 mathmath: canonical_iso_hom, canonical_left_i, canonical_left_π, canonical_right_H, canonical_right_Q, canonical_left_K, canonical_left_H, canonical_right_p, canonical_right_ι, canonical_iso_inv
iso 📖CompOp
27 mathmath: ofIsColimitCokernelCofork_iso, canonical_iso_hom, ofIso_iso, right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.homologyMap'_op, comm_assoc, ofEpiOfIsIsoOfMono'_iso, ofHasCokernel_iso, HomologicalComplex.extend.homologyData'_iso, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', left_homologyIso_eq_right_homologyIso_trans_iso_symm, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, ofEpiMonoFactorisation_iso, ofIsLimitKernelFork_iso, canonical_iso_inv, ofZeros_iso, unop_iso, op_iso, ofEpiOfIsIsoOfMono_iso, map_iso, HomologicalComplex.extend.homologyData_iso, ofIsIsoLeftRightHomologyComparison'_iso, comm, leftRightHomologyComparison'_eq, ofHasKernel_iso, CategoryTheory.ShortComplex.Splitting.homologyData_iso
left 📖CompOp
73 mathmath: ofEpiMonoFactorisation_left, exact_iff, ofZeros_left, canonical_left_i, HomologicalComplex.extend.homologyData_left, canonical_left_π, HomologicalComplex.extend.homologyData'_left_H, ofIsIsoLeftRightHomologyComparison'_left, CategoryTheory.ShortComplex.homologyMap'_zero, ofIsLimitKernelFork_left, CategoryTheory.ShortComplex.homologyMap'_comp, CategoryTheory.ShortComplex.HomologyMapData.add_left, CategoryTheory.ShortComplex.HomologyMapData.unop_right, CategoryTheory.ShortComplex.HomologyMapData.map_left, right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_left, CategoryTheory.ShortComplex.HomologyMapData.neg_left, CategoryTheory.ShortComplex.homologyMap'_nullHomotopic, CategoryTheory.ShortComplex.homologyMap'_sub, CategoryTheory.ShortComplex.HomologyMapData.comp_left, op_right, map_homologyMap', CategoryTheory.ShortComplex.homologyMap'_add, CategoryTheory.ShortComplex.Exact.condition, CategoryTheory.ShortComplex.HomologyMapData.congr_left_φH, CategoryTheory.ShortComplex.homologyMap'_op, ofIso_left_i, canonical_left_K, CategoryTheory.ShortComplex.quasiIso_iff_isIso_homologyMap', canonical_left_H, CategoryTheory.ShortComplex.homologyMap'_neg, comm_assoc, CategoryTheory.ShortComplex.HomologyMapData.zero_left, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison'_of_homologyData, unop_left, CategoryTheory.ShortComplex.HomologyMapData.op_right, ofEpiOfIsIsoOfMono'_left, CategoryTheory.ShortComplex.homologyMap'_id, CategoryTheory.ShortComplex.Exact.shortExact, map_left, ofHasKernel_left, CategoryTheory.ShortComplex.HomologyMapData.cyclesMap'_eq, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', left_homologyIso_eq_right_homologyIso_trans_iso_symm, HomologicalComplex.extend.homologyData'_left_i, CategoryTheory.ShortComplex.homologyMapIso'_hom, op_left, CategoryTheory.ShortComplex.isIso_homologyMap'_of_epi_of_isIso_of_mono, ofHasCokernel_left, exact_iff_i_p_zero, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, CategoryTheory.ShortComplex.homologyMap'_smul, ofIso_left_π, CategoryTheory.ShortComplex.HomologyMapData.homologyMap'_eq, ofIsColimitCokernelCofork_left, unop_iso, op_iso, HomologicalComplex.extend.homologyData'_left_π, map_iso, HomologicalComplex.extend.homologyData'_left_K, ofIso_left_H, CategoryTheory.ShortComplex.isIso_homologyMap'_of_isIso, CategoryTheory.ShortComplex.Splitting.homologyData_left, unop_right, ofIso_left_K, comm, CategoryTheory.ShortComplex.homologyMapIso'_inv, CategoryTheory.ShortComplex.HomologyMapData.smul_left, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right, leftRightHomologyComparison'_eq, ofEpiOfIsIsoOfMono_left, CategoryTheory.ShortComplex.HomologyMapData.id_left
ofEpiOfIsIsoOfMono 📖CompOp
3 mathmath: ofEpiOfIsIsoOfMono_right, ofEpiOfIsIsoOfMono_iso, ofEpiOfIsIsoOfMono_left
ofEpiOfIsIsoOfMono' 📖CompOp
3 mathmath: ofEpiOfIsIsoOfMono'_right, ofEpiOfIsIsoOfMono'_iso, ofEpiOfIsIsoOfMono'_left
ofHasCokernel 📖CompOp
3 mathmath: ofHasCokernel_right, ofHasCokernel_iso, ofHasCokernel_left
ofHasKernel 📖CompOp
3 mathmath: ofHasKernel_left, ofHasKernel_right, ofHasKernel_iso
ofIsColimitCokernelCofork 📖CompOp
5 mathmath: ofIsColimitCokernelCofork_iso, CategoryTheory.ShortComplex.HomologyMapData.ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_left, CategoryTheory.ShortComplex.HomologyMapData.ofIsColimitCokernelCofork_left
ofIsIsoLeftRightHomologyComparison' 📖CompOp
3 mathmath: ofIsIsoLeftRightHomologyComparison'_left, ofIsIsoLeftRightHomologyComparison'_right, ofIsIsoLeftRightHomologyComparison'_iso
ofIsLimitKernelFork 📖CompOp
7 mathmath: CategoryTheory.ShortComplex.HomologyMapData.ofIsLimitKernelFork_left, ofIsLimitKernelFork_left, CategoryTheory.ShortComplex.HomologyMapData.ofIsLimitKernelFork_right, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_left, ofIsLimitKernelFork_right, ofIsLimitKernelFork_iso, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_right
ofIso 📖CompOp
9 mathmath: ofIso_right_p, ofIso_right_H, ofIso_iso, ofIso_right_Q, ofIso_left_i, ofIso_right_ι, ofIso_left_π, ofIso_left_H, ofIso_left_K
ofZeros 📖CompOp
7 mathmath: ofZeros_left, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_left, ofZeros_iso, ofZeros_right, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_right, CategoryTheory.ShortComplex.HomologyMapData.ofZeros_right, CategoryTheory.ShortComplex.HomologyMapData.ofZeros_left
op 📖CompOp
6 mathmath: CategoryTheory.ShortComplex.HomologyMapData.op_left, op_right, CategoryTheory.ShortComplex.homologyMap'_op, CategoryTheory.ShortComplex.HomologyMapData.op_right, op_left, op_iso
right 📖CompOp
59 mathmath: CategoryTheory.ShortComplex.HomologyMapData.op_left, ofIso_right_p, HomologicalComplex.truncGE.rightHomologyMapData_φQ, ofIso_right_H, CategoryTheory.ShortComplex.Splitting.homologyData_right, right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_left, op_right, CategoryTheory.ShortComplex.HomologyMapData.opcyclesMap'_eq, ofIso_right_Q, canonical_right_H, CategoryTheory.ShortComplex.HomologyMapData.comp_right, ofHasCokernel_right, canonical_right_Q, CategoryTheory.ShortComplex.homologyMap'_op, ofEpiOfIsIsoOfMono'_right, comm_assoc, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison'_of_homologyData, unop_left, ofIsColimitCokernelCofork_right, CategoryTheory.ShortComplex.Exact.shortExact, HomologicalComplex.truncGE'.homologyData_right_g', canonical_right_p, CategoryTheory.ShortComplex.HomologyMapData.map_right, CategoryTheory.ShortComplex.HomologyMapData.zero_right, CategoryTheory.ShortComplex.HomologyMapData.id_right, HomologicalComplex.extend.homologyData'_right_H, ofIso_right_ι, ofEpiOfIsIsoOfMono_right, ofEpiMonoFactorisation_right, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', left_homologyIso_eq_right_homologyIso_trans_iso_symm, HomologicalComplex.extend.homologyData'_right_p, canonical_right_ι, ofIsIsoLeftRightHomologyComparison'_right, CategoryTheory.ShortComplex.HomologyMapData.add_right, op_left, ofHasKernel_right, exact_iff_i_p_zero, ofIsLimitKernelFork_right, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, HomologicalComplex.truncGE.rightHomologyMapData_φH, HomologicalComplex.extend.homologyData'_right_ι, map_right, CategoryTheory.ShortComplex.HomologyMapData.neg_right, CategoryTheory.ShortComplex.HomologyMapData.smul_right, ofZeros_right, HomologicalComplex.extend.homologyData'_right_Q, unop_iso, op_iso, map_iso, unop_right, comm, HomologicalComplex.extend.homologyData_right, exact_iff', CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right, leftRightHomologyComparison'_eq, CategoryTheory.ShortComplex.HomologyMapData.unop_left
unop 📖CompOp
5 mathmath: CategoryTheory.ShortComplex.HomologyMapData.unop_right, unop_left, unop_iso, unop_right, CategoryTheory.ShortComplex.HomologyMapData.unop_left

Theorems

NameKindAssumesProvesValidatesDepends On
canonical_iso_hom 📖mathematicalCategoryTheory.Iso.hom
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.canonical
iso
canonical
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
canonical_iso_inv 📖mathematicalCategoryTheory.Iso.inv
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.canonical
iso
canonical
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
canonical_left_H 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.H
left
canonical
CategoryTheory.ShortComplex.homology
canonical_left_K 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.K
left
canonical
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
canonical_left_i 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.i
left
canonical
CategoryTheory.ShortComplex.iCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
canonical_left_π 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.π
left
canonical
CategoryTheory.ShortComplex.homologyπ
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
canonical_right_H 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.H
right
canonical
CategoryTheory.ShortComplex.homology
canonical_right_Q 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.Q
right
canonical
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
canonical_right_p 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.p
right
canonical
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
canonical_right_ι 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.ι
right
canonical
CategoryTheory.ShortComplex.homologyι
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.K
left
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.RightHomologyData.Q
right
CategoryTheory.ShortComplex.LeftHomologyData.π
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.Iso.hom
iso
CategoryTheory.ShortComplex.RightHomologyData.ι
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.LeftHomologyData.i
CategoryTheory.ShortComplex.RightHomologyData.p
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.K
left
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.π
CategoryTheory.ShortComplex.RightHomologyData.H
right
CategoryTheory.Iso.hom
iso
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.RightHomologyData.ι
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.LeftHomologyData.i
CategoryTheory.ShortComplex.RightHomologyData.p
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
leftRightHomologyComparison'_eq 📖mathematicalCategoryTheory.ShortComplex.leftRightHomologyComparison'
left
right
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.RightHomologyData.H
iso
CategoryTheory.cancel_epi
CategoryTheory.ShortComplex.LeftHomologyData.instEpiπ
CategoryTheory.cancel_mono
CategoryTheory.ShortComplex.RightHomologyData.instMonoι
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι
comm
left_homologyIso_eq_right_homologyIso_trans_iso_symm 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.homologyIso
left
CategoryTheory.Iso.trans
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.RightHomologyData.H
right
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.RightHomologyData.homologyIso
CategoryTheory.Iso.symm
iso
right_homologyIso_eq_left_homologyIso_trans_iso
CategoryTheory.Iso.trans_assoc
CategoryTheory.Iso.self_symm_id
CategoryTheory.Iso.trans_refl
ofEpiOfIsIsoOfMono'_iso 📖mathematicaliso
ofEpiOfIsIsoOfMono'
ofEpiOfIsIsoOfMono'_left 📖mathematicalleft
ofEpiOfIsIsoOfMono'
CategoryTheory.ShortComplex.LeftHomologyData.ofEpiOfIsIsoOfMono'
ofEpiOfIsIsoOfMono'_right 📖mathematicalright
ofEpiOfIsIsoOfMono'
CategoryTheory.ShortComplex.RightHomologyData.ofEpiOfIsIsoOfMono'
ofEpiOfIsIsoOfMono_iso 📖mathematicaliso
ofEpiOfIsIsoOfMono
ofEpiOfIsIsoOfMono_left 📖mathematicalleft
ofEpiOfIsIsoOfMono
CategoryTheory.ShortComplex.LeftHomologyData.ofEpiOfIsIsoOfMono
ofEpiOfIsIsoOfMono_right 📖mathematicalright
ofEpiOfIsIsoOfMono
CategoryTheory.ShortComplex.RightHomologyData.ofEpiOfIsIsoOfMono
ofHasCokernel_iso 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
iso
ofHasCokernel
CategoryTheory.Iso.refl
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.ofHasCokernel
ofHasCokernel_left 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
left
ofHasCokernel
CategoryTheory.ShortComplex.LeftHomologyData.ofHasCokernel
ofHasCokernel_right 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
right
ofHasCokernel
CategoryTheory.ShortComplex.RightHomologyData.ofHasCokernel
ofHasKernel_iso 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
iso
ofHasKernel
CategoryTheory.Iso.refl
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernel
ofHasKernel_left 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
left
ofHasKernel
CategoryTheory.ShortComplex.LeftHomologyData.ofHasKernel
ofHasKernel_right 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
right
ofHasKernel
CategoryTheory.ShortComplex.RightHomologyData.ofHasKernel
ofIsColimitCokernelCofork_iso 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
iso
ofIsColimitCokernelCofork
CategoryTheory.Iso.refl
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.ofIsColimitCokernelCofork
ofIsColimitCokernelCofork_left 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
left
ofIsColimitCokernelCofork
CategoryTheory.ShortComplex.LeftHomologyData.ofIsColimitCokernelCofork
ofIsColimitCokernelCofork_right 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
right
ofIsColimitCokernelCofork
CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork
ofIsIsoLeftRightHomologyComparison'_iso 📖mathematicaliso
ofIsIsoLeftRightHomologyComparison'
CategoryTheory.asIso
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.ShortComplex.leftRightHomologyComparison'
ofIsIsoLeftRightHomologyComparison'_left 📖mathematicalleft
ofIsIsoLeftRightHomologyComparison'
ofIsIsoLeftRightHomologyComparison'_right 📖mathematicalright
ofIsIsoLeftRightHomologyComparison'
ofIsLimitKernelFork_iso 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
iso
ofIsLimitKernelFork
CategoryTheory.Iso.refl
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork
ofIsLimitKernelFork_left 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
left
ofIsLimitKernelFork
CategoryTheory.ShortComplex.LeftHomologyData.ofIsLimitKernelFork
ofIsLimitKernelFork_right 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
right
ofIsLimitKernelFork
CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork
ofIso_iso 📖mathematicaliso
ofIso
ofIso_left_H 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.H
left
ofIso
ofIso_left_K 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.K
left
ofIso
ofIso_left_i 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.i
left
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.K
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
ofIso_left_π 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.π
left
ofIso
ofIso_right_H 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.H
right
ofIso
ofIso_right_Q 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.Q
right
ofIso
ofIso_right_p 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.p
right
ofIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.inv
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
Quiver.Hom.unop
Opposite.op
Quiver.Hom.op
CategoryTheory.IsIso
CategoryTheory.isIso_unop
Opposite.unop
CategoryTheory.isIso_unop
CategoryTheory.unop_inv
ofIso_right_ι 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.ι
right
ofIso
ofZeros_iso 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
iso
ofZeros
CategoryTheory.Iso.refl
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.ofZeros
ofZeros_left 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
left
ofZeros
CategoryTheory.ShortComplex.LeftHomologyData.ofZeros
ofZeros_right 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
right
ofZeros
CategoryTheory.ShortComplex.RightHomologyData.ofZeros
op_iso 📖mathematicaliso
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
CategoryTheory.Iso.op
CategoryTheory.ShortComplex.LeftHomologyData.H
left
CategoryTheory.ShortComplex.RightHomologyData.H
right
op_left 📖mathematicalleft
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
CategoryTheory.ShortComplex.RightHomologyData.op
right
op_right 📖mathematicalright
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
CategoryTheory.ShortComplex.LeftHomologyData.op
left
right_homologyIso_eq_left_homologyIso_trans_iso 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.homologyIso
right
CategoryTheory.Iso.trans
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.LeftHomologyData.H
left
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.ShortComplex.LeftHomologyData.homologyIso
iso
CategoryTheory.Iso.ext
CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac
leftRightHomologyComparison'_eq
CategoryTheory.Iso.self_symm_id_assoc
unop_iso 📖mathematicaliso
CategoryTheory.ShortComplex.unop
unop
CategoryTheory.Iso.unop
CategoryTheory.ShortComplex.LeftHomologyData.H
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
left
CategoryTheory.ShortComplex.RightHomologyData.H
right
unop_left 📖mathematicalleft
CategoryTheory.ShortComplex.unop
unop
CategoryTheory.ShortComplex.RightHomologyData.unop
right
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unop_right 📖mathematicalright
CategoryTheory.ShortComplex.unop
unop
CategoryTheory.ShortComplex.LeftHomologyData.unop
left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite

CategoryTheory.ShortComplex.HomologyMapData

Definitions

NameCategoryTheorems
comp 📖CompOp
2 mathmath: comp_left, comp_right
compatibilityOfZerosOfIsColimitCokernelCofork 📖CompOp
compatibilityOfZerosOfIsLimitKernelFork 📖CompOp
2 mathmath: compatibilityOfZerosOfIsLimitKernelFork_left, compatibilityOfZerosOfIsLimitKernelFork_right
homologyMapData 📖CompOp
id 📖CompOp
2 mathmath: id_right, id_left
instInhabited 📖CompOp
instUnique 📖CompOp
left 📖CompOp
21 mathmath: op_left, ofIsLimitKernelFork_left, add_left, unop_right, map_left, natTransApp_left, neg_left, comp_left, congr_left_φH, zero_left, op_right, compatibilityOfZerosOfIsLimitKernelFork_left, cyclesMap'_eq, comm, comm_assoc, homologyMap'_eq, ofZeros_left, smul_left, ofIsColimitCokernelCofork_left, id_left, unop_left
ofEpiOfIsIsoOfMono 📖CompOp
ofEpiOfIsIsoOfMono' 📖CompOp
ofIsColimitCokernelCofork 📖CompOp
2 mathmath: ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_left
ofIsLimitKernelFork 📖CompOp
2 mathmath: ofIsLimitKernelFork_left, ofIsLimitKernelFork_right
ofZeros 📖CompOp
2 mathmath: ofZeros_right, ofZeros_left
op 📖CompOp
2 mathmath: op_left, op_right
right 📖CompOp
19 mathmath: op_left, unop_right, opcyclesMap'_eq, comp_right, ofIsColimitCokernelCofork_right, ofIsLimitKernelFork_right, op_right, map_right, zero_right, id_right, add_right, comm, comm_assoc, neg_right, smul_right, compatibilityOfZerosOfIsLimitKernelFork_right, ofZeros_right, natTransApp_right, unop_left
unop 📖CompOp
2 mathmath: unop_right, unop_left
zero 📖CompOp
2 mathmath: zero_left, zero_right

Theorems

NameKindAssumesProvesValidatesDepends On
comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.HomologyData.left
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.ShortComplex.HomologyData.right
CategoryTheory.ShortComplex.LeftHomologyMapData.φH
left
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.HomologyData.iso
CategoryTheory.ShortComplex.RightHomologyMapData.φH
right
CategoryTheory.cancel_epi
CategoryTheory.ShortComplex.LeftHomologyData.instEpiπ
CategoryTheory.ShortComplex.LeftHomologyMapData.commπ_assoc
CategoryTheory.cancel_mono
CategoryTheory.ShortComplex.RightHomologyData.instMonoι
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.HomologyData.comm
CategoryTheory.ShortComplex.LeftHomologyMapData.commi_assoc
CategoryTheory.ShortComplex.RightHomologyMapData.commι
CategoryTheory.ShortComplex.HomologyData.comm_assoc
CategoryTheory.ShortComplex.RightHomologyMapData.commp
comm_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.HomologyData.left
CategoryTheory.ShortComplex.LeftHomologyMapData.φH
left
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.ShortComplex.HomologyData.right
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.HomologyData.iso
CategoryTheory.ShortComplex.RightHomologyMapData.φH
right
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm
comp_left 📖mathematicalleft
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
comp
CategoryTheory.ShortComplex.LeftHomologyMapData.comp
CategoryTheory.ShortComplex.HomologyData.left
comp_right 📖mathematicalright
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
comp
CategoryTheory.ShortComplex.RightHomologyMapData.comp
CategoryTheory.ShortComplex.HomologyData.right
compatibilityOfZerosOfIsLimitKernelFork_left 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
left
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork
CategoryTheory.ShortComplex.HomologyData.ofZeros
compatibilityOfZerosOfIsLimitKernelFork
CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork
compatibilityOfZerosOfIsLimitKernelFork_right 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
right
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork
CategoryTheory.ShortComplex.HomologyData.ofZeros
compatibilityOfZerosOfIsLimitKernelFork
CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork
congr_left_φH 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyMapData.φH
CategoryTheory.ShortComplex.HomologyData.left
left
cyclesMap'_eq 📖mathematicalCategoryTheory.ShortComplex.cyclesMap'
CategoryTheory.ShortComplex.HomologyData.left
CategoryTheory.ShortComplex.LeftHomologyMapData.φK
left
CategoryTheory.ShortComplex.LeftHomologyMapData.congr_φK
CategoryTheory.ShortComplex.LeftHomologyMapData.instSubsingleton
homologyMap'_eq 📖mathematicalCategoryTheory.ShortComplex.homologyMap'
CategoryTheory.ShortComplex.LeftHomologyMapData.φH
CategoryTheory.ShortComplex.HomologyData.left
left
CategoryTheory.ShortComplex.LeftHomologyMapData.congr_φH
CategoryTheory.ShortComplex.LeftHomologyMapData.instSubsingleton
id_left 📖mathematicalleft
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
id
CategoryTheory.ShortComplex.LeftHomologyMapData.id
CategoryTheory.ShortComplex.HomologyData.left
id_right 📖mathematicalright
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
id
CategoryTheory.ShortComplex.RightHomologyMapData.id
CategoryTheory.ShortComplex.HomologyData.right
instSubsingleton 📖mathematicalCategoryTheory.ShortComplex.HomologyMapDataCategoryTheory.ShortComplex.LeftHomologyMapData.instSubsingleton
CategoryTheory.ShortComplex.RightHomologyMapData.instSubsingleton
ofIsColimitCokernelCofork_left 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Limits.Cofork.π
left
CategoryTheory.ShortComplex.HomologyData.ofIsColimitCokernelCofork
ofIsColimitCokernelCofork
CategoryTheory.ShortComplex.LeftHomologyMapData.ofIsColimitCokernelCofork
ofIsColimitCokernelCofork_right 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Limits.Cofork.π
right
CategoryTheory.ShortComplex.HomologyData.ofIsColimitCokernelCofork
ofIsColimitCokernelCofork
CategoryTheory.ShortComplex.RightHomologyMapData.ofIsColimitCokernelCofork
ofIsLimitKernelFork_left 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.ShortComplex.Hom.τ₂
left
CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork
ofIsLimitKernelFork
CategoryTheory.ShortComplex.LeftHomologyMapData.ofIsLimitKernelFork
ofIsLimitKernelFork_right 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.ShortComplex.Hom.τ₂
right
CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork
ofIsLimitKernelFork
CategoryTheory.ShortComplex.RightHomologyMapData.ofIsLimitKernelFork
ofZeros_left 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
left
CategoryTheory.ShortComplex.HomologyData.ofZeros
ofZeros
CategoryTheory.ShortComplex.LeftHomologyMapData.ofZeros
ofZeros_right 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
right
CategoryTheory.ShortComplex.HomologyData.ofZeros
ofZeros
CategoryTheory.ShortComplex.RightHomologyMapData.ofZeros
op_left 📖mathematicalleft
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
CategoryTheory.ShortComplex.opMap
CategoryTheory.ShortComplex.HomologyData.op
op
CategoryTheory.ShortComplex.RightHomologyMapData.op
CategoryTheory.ShortComplex.HomologyData.right
right
op_right 📖mathematicalright
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
CategoryTheory.ShortComplex.opMap
CategoryTheory.ShortComplex.HomologyData.op
op
CategoryTheory.ShortComplex.LeftHomologyMapData.op
CategoryTheory.ShortComplex.HomologyData.left
left
opcyclesMap'_eq 📖mathematicalCategoryTheory.ShortComplex.opcyclesMap'
CategoryTheory.ShortComplex.HomologyData.right
CategoryTheory.ShortComplex.RightHomologyMapData.φQ
right
CategoryTheory.ShortComplex.RightHomologyMapData.congr_φQ
CategoryTheory.ShortComplex.RightHomologyMapData.instSubsingleton
unop_left 📖mathematicalleft
CategoryTheory.ShortComplex.unop
CategoryTheory.ShortComplex.unopMap
CategoryTheory.ShortComplex.HomologyData.unop
unop
CategoryTheory.ShortComplex.RightHomologyMapData.unop
CategoryTheory.ShortComplex.HomologyData.right
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
right
unop_right 📖mathematicalright
CategoryTheory.ShortComplex.unop
CategoryTheory.ShortComplex.unopMap
CategoryTheory.ShortComplex.HomologyData.unop
unop
CategoryTheory.ShortComplex.LeftHomologyMapData.unop
CategoryTheory.ShortComplex.HomologyData.left
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
left
zero_left 📖mathematicalleft
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.instZeroHom
zero
CategoryTheory.ShortComplex.LeftHomologyMapData.zero
CategoryTheory.ShortComplex.HomologyData.left
zero_right 📖mathematicalright
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.instZeroHom
zero
CategoryTheory.ShortComplex.RightHomologyMapData.zero
CategoryTheory.ShortComplex.HomologyData.right

CategoryTheory.ShortComplex.LeftHomologyData

Definitions

NameCategoryTheorems
canonical 📖CompOp
7 mathmath: CategoryTheory.ShortComplex.HomologyData.canonical_iso_hom, canonical_i, canonical_f', canonical_H, canonical_π, CategoryTheory.ShortComplex.HomologyData.canonical_iso_inv, canonical_K
homologyIso 📖CompOp
22 mathmath: π_comp_homologyIso_inv, leftHomologyIso_hom_comp_homologyIso_inv, CategoryTheory.ShortComplex.HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac, CategoryTheory.ShortComplex.LeftHomologyMapData.homologyMap_comm, CategoryTheory.ShortComplex.LeftHomologyMapData.homologyMap_eq, homologyπ_comp_homologyIso_hom_assoc, leftHomologyIso_hom_naturality_assoc, leftHomologyIso_hom_naturality, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, CategoryTheory.ShortComplex.HomologyData.left_homologyIso_eq_right_homologyIso_trans_iso_symm, leftHomologyIso_inv_naturality_assoc, π_comp_homologyIso_inv_assoc, homologyIso_hom_comp_leftHomologyIso_inv_assoc, homologyIso_leftHomologyData, mapHomologyIso_eq, homologyIso_hom_comp_leftHomologyIso_inv, homologyπ_comp_homologyIso_hom, leftHomologyIso_inv_naturality, CategoryTheory.ShortComplex.comp_homologyMap_comp, leftHomologyIso_hom_comp_homologyIso_inv_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
canonical_H 📖mathematicalH
canonical
CategoryTheory.ShortComplex.homology
canonical_K 📖mathematicalK
canonical
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
canonical_f' 📖mathematicalf'
canonical
CategoryTheory.ShortComplex.toCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
canonical_i 📖mathematicali
canonical
CategoryTheory.ShortComplex.iCycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
canonical_π 📖mathematicalπ
canonical
CategoryTheory.ShortComplex.homologyπ
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
homologyIso_hom_comp_leftHomologyIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.ShortComplex.leftHomology
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Iso.hom
homologyIso
CategoryTheory.Iso.inv
leftHomologyIso
CategoryTheory.ShortComplex.leftHomologyIso
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
homologyIso_hom_comp_leftHomologyIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.Iso.hom
homologyIso
CategoryTheory.ShortComplex.leftHomology
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Iso.inv
leftHomologyIso
CategoryTheory.ShortComplex.leftHomologyIso
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyIso_hom_comp_leftHomologyIso_inv
homologyIso_leftHomologyData 📖mathematicalhomologyIso
CategoryTheory.ShortComplex.leftHomologyData
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Iso.symm
CategoryTheory.ShortComplex.leftHomology
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.leftHomologyIso
CategoryTheory.Iso.ext
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.leftHomologyMap'_comp
CategoryTheory.Category.comp_id
homologyπ_comp_homologyIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.homology
H
CategoryTheory.ShortComplex.homologyπ
CategoryTheory.Iso.hom
homologyIso
K
cyclesIso
π
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
leftHomologyπ_comp_leftHomologyIso_hom
homologyπ_comp_homologyIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.homologyπ
H
CategoryTheory.Iso.hom
homologyIso
K
cyclesIso
π
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyπ_comp_homologyIso_hom
leftHomologyIso_hom_comp_homologyIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.leftHomology
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
H
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.hom
leftHomologyIso
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.leftHomologyIso
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Iso.hom_inv_id_assoc
leftHomologyIso_hom_comp_homologyIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.leftHomology
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
H
CategoryTheory.Iso.hom
leftHomologyIso
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.leftHomologyIso
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftHomologyIso_hom_comp_homologyIso_inv
leftHomologyIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.Iso.hom
homologyIso
CategoryTheory.ShortComplex.leftHomologyMap'
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftHomologyIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.Iso.hom
homologyIso
CategoryTheory.ShortComplex.leftHomologyMap'
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftHomologyIso_hom_naturality
leftHomologyIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.ShortComplex.leftHomologyMap'
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
leftHomologyIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.ShortComplex.leftHomologyMap'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
leftHomologyIso_inv_naturality
π_comp_homologyIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
K
H
CategoryTheory.ShortComplex.homology
π
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
cyclesIso
CategoryTheory.ShortComplex.homologyπ
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
π_comp_leftHomologyIso_inv_assoc
π_comp_homologyIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
K
H
π
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
cyclesIso
CategoryTheory.ShortComplex.homologyπ
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_comp_homologyIso_inv

CategoryTheory.ShortComplex.LeftHomologyMapData

Theorems

NameKindAssumesProvesValidatesDepends On
homologyMap_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.LeftHomologyData.homologyIso
φH
homologyMap_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
homologyMap_eq 📖mathematicalCategoryTheory.ShortComplex.homologyMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.LeftHomologyData.homologyIso
φH
CategoryTheory.Iso.inv
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.comp_id
leftHomologyMap'_eq
CategoryTheory.Category.id_comp

CategoryTheory.ShortComplex.RightHomologyData

Definitions

NameCategoryTheorems
canonical 📖CompOp
7 mathmath: HomologicalComplex.truncGE.rightHomologyMapData_φQ, canonical_Q, canonical_ι, canonical_g', canonical_p, HomologicalComplex.truncGE.rightHomologyMapData_φH, canonical_H
homologyIso 📖CompOp
22 mathmath: homologyIso_hom_comp_rightHomologyIso_inv, CategoryTheory.ShortComplex.RightHomologyMapData.homologyMap_eq, rightHomologyIso_inv_naturality_assoc, homologyIso_inv_comp_homologyι, CategoryTheory.ShortComplex.HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac, homologyIso_hom_comp_ι, rightHomologyIso_hom_naturality, CategoryTheory.ShortComplex.RightHomologyMapData.homologyMap_comm, rightHomologyIso_inv_naturality, homologyIso_hom_comp_rightHomologyIso_inv_assoc, homologyIso_hom_comp_ι_assoc, homologyIso_inv_comp_homologyι_assoc, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, rightHomologyIso_hom_comp_homologyIso_inv_assoc, CategoryTheory.ShortComplex.HomologyData.left_homologyIso_eq_right_homologyIso_trans_iso_symm, rightHomologyIso_hom_naturality_assoc, rightHomologyIso_hom_comp_homologyIso_inv, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac_assoc, mapHomologyIso'_eq, homologyIso_rightHomologyData

Theorems

NameKindAssumesProvesValidatesDepends On
canonical_H 📖mathematicalH
canonical
CategoryTheory.ShortComplex.homology
canonical_Q 📖mathematicalQ
canonical
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
canonical_g' 📖mathematicalg'
canonical
CategoryTheory.ShortComplex.fromOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
canonical_p 📖mathematicalp
canonical
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
canonical_ι 📖mathematicalι
canonical
CategoryTheory.ShortComplex.homologyι
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
homologyIso_hom_comp_rightHomologyIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Iso.hom
homologyIso
CategoryTheory.Iso.inv
rightHomologyIso
CategoryTheory.ShortComplex.rightHomologyIso
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
homologyIso_hom_comp_rightHomologyIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.Iso.hom
homologyIso
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Iso.inv
rightHomologyIso
CategoryTheory.ShortComplex.rightHomologyIso
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyIso_hom_comp_rightHomologyIso_inv
homologyIso_hom_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
Q
CategoryTheory.Iso.hom
homologyIso
ι
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.homologyι
opcyclesIso
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
rightHomologyIso_hom_comp_ι
homologyIso_hom_comp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.Iso.hom
homologyIso
Q
ι
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.homologyι
opcyclesIso
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyIso_hom_comp_ι
homologyIso_inv_comp_homologyι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.homologyι
Q
ι
opcyclesIso
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
rightHomologyIso_inv_comp_rightHomologyι
homologyIso_inv_comp_homologyι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.homologyι
Q
ι
opcyclesIso
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
homologyIso_inv_comp_homologyι
homologyIso_rightHomologyData 📖mathematicalhomologyIso
CategoryTheory.ShortComplex.rightHomologyData
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Iso.symm
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.rightHomologyIso
CategoryTheory.Iso.ext
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.rightHomologyMap'_id
CategoryTheory.Category.comp_id
rightHomologyIso_hom_comp_homologyIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
H
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.hom
rightHomologyIso
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.rightHomologyIso
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Iso.hom_inv_id_assoc
rightHomologyIso_hom_comp_homologyIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
H
CategoryTheory.Iso.hom
rightHomologyIso
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.rightHomologyIso
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyIso_hom_comp_homologyIso_inv
rightHomologyIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.Iso.hom
homologyIso
CategoryTheory.ShortComplex.rightHomologyMap'
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison'
CategoryTheory.ShortComplex.leftRightHomologyComparison'_naturality
CategoryTheory.Iso.isIso_hom
CategoryTheory.ShortComplex.LeftHomologyData.leftHomologyIso_hom_naturality_assoc
CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id_assoc
rightHomologyIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
H
CategoryTheory.Iso.hom
homologyIso
CategoryTheory.ShortComplex.rightHomologyMap'
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyIso_hom_naturality
rightHomologyIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.ShortComplex.rightHomologyMap'
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Category.assoc
rightHomologyIso_hom_naturality
CategoryTheory.Iso.inv_hom_id_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
rightHomologyIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.ShortComplex.homology
CategoryTheory.Iso.inv
homologyIso
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.ShortComplex.rightHomologyMap'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyIso_inv_naturality

CategoryTheory.ShortComplex.RightHomologyMapData

Theorems

NameKindAssumesProvesValidatesDepends On
homologyMap_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.RightHomologyData.homologyIso
φH
homologyMap_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
homologyMap_eq 📖mathematicalCategoryTheory.ShortComplex.homologyMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.RightHomologyData.homologyIso
φH
CategoryTheory.Iso.inv
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.ShortComplex.LeftHomologyMapData.leftHomologyMap'_eq
CategoryTheory.Category.assoc
rightHomologyMap'_eq
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.ShortComplex.HomologyMapData.comm_assoc
CategoryTheory.Iso.hom_inv_id

---

← Back to Index