| Metric | Count |
DefinitionsHasLeftHomology, LeftHomologyData, H, K, copy, cyclesIso, descH, f', hi, hπ, hπ', i, leftHomologyIso, liftH, liftK, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofHasCokernel, ofHasKernel, ofHasKernelOfHasCokernel, ofIsColimitCokernelCofork, ofIsLimitKernelFork, ofIso, ofZeros, π, LeftHomologyMapData, comp, compatibilityOfZerosOfIsColimitCokernelCofork, compatibilityOfZerosOfIsLimitKernelFork, id, instInhabited, instUnique, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofIsColimitCokernelCofork, ofIsLimitKernelFork, ofZeros, zero, φH, φK, cycles, cyclesFunctor, cyclesIsKernel, cyclesIsoKernel, cyclesIsoLeftHomology, cyclesIsoX₂, cyclesMap, cyclesMap', cyclesMapIso, cyclesMapIso', iCycles, iCyclesNatTrans, isoCyclesOfIsLimit, leftHomology, leftHomologyData, leftHomologyFunctor, leftHomologyIsCokernel, leftHomologyIsoCokernelLift, leftHomologyMap, leftHomologyMap', leftHomologyMapData, leftHomologyMapIso, leftHomologyMapIso', leftHomologyπ, leftHomologyπNatTrans, liftCycles, liftLeftHomology, toCycles, toCyclesNatTrans | 69 |
Theoremscondition, hasCokernel, hasKernel, mk', of_hasCokernel, of_hasKernel, of_hasKernel_of_hasCokernel, of_zeros, copy_H, copy_K, copy_i, copy_π, cyclesIso_hom_comp_i, cyclesIso_hom_comp_i_assoc, cyclesIso_inv_comp_iCycles, cyclesIso_inv_comp_iCycles_assoc, f'_i, f'_i_assoc, f'_π, f'_π_assoc, instEpiπ, instMonoI, isIso_i, isIso_π, leftHomologyπ_comp_leftHomologyIso_hom, leftHomologyπ_comp_leftHomologyIso_hom_assoc, liftCycles_comp_cyclesIso_hom, liftCycles_comp_cyclesIso_hom_assoc, liftK_i, liftK_i_assoc, liftK_π_eq_zero_of_boundary, liftK_π_eq_zero_of_boundary_assoc, lift_K_comp_cyclesIso_inv, lift_K_comp_cyclesIso_inv_assoc, ofEpiOfIsIsoOfMono'_H, ofEpiOfIsIsoOfMono'_K, ofEpiOfIsIsoOfMono'_f', ofEpiOfIsIsoOfMono'_i, ofEpiOfIsIsoOfMono'_π, ofEpiOfIsIsoOfMono_H, ofEpiOfIsIsoOfMono_K, ofEpiOfIsIsoOfMono_i, ofEpiOfIsIsoOfMono_π, ofHasCokernel_H, ofHasCokernel_K, ofHasCokernel_i, ofHasCokernel_π, ofHasKernelOfHasCokernel_H, ofHasKernelOfHasCokernel_K, ofHasKernelOfHasCokernel_i, ofHasKernelOfHasCokernel_π, ofIsColimitCokernelCofork_H, ofIsColimitCokernelCofork_K, ofIsColimitCokernelCofork_f', ofIsColimitCokernelCofork_i, ofIsColimitCokernelCofork_π, ofIsLimitKernelFork_H, ofIsLimitKernelFork_K, ofIsLimitKernelFork_f', ofIsLimitKernelFork_i, ofIsLimitKernelFork_π, ofZeros_H, ofZeros_K, ofZeros_f', ofZeros_i, ofZeros_π, wi, wi_assoc, wπ, wπ_assoc, π_comp_leftHomologyIso_inv, π_comp_leftHomologyIso_inv_assoc, π_descH, π_descH_assoc, τ₁_ofEpiOfIsIsoOfMono_f', commf', commf'_assoc, commi, commi_assoc, commπ, commπ_assoc, comp_φH, comp_φK, compatibilityOfZerosOfIsColimitCokernelCofork_φH, compatibilityOfZerosOfIsColimitCokernelCofork_φK, compatibilityOfZerosOfIsLimitKernelFork_φH, compatibilityOfZerosOfIsLimitKernelFork_φK, congr_φH, congr_φK, cyclesMap'_eq, cyclesMap_comm, cyclesMap_eq, id_φH, id_φK, instSubsingleton, leftHomologyMap'_eq, leftHomologyMap_comm, leftHomologyMap_eq, ofEpiOfIsIsoOfMono'_φH, ofEpiOfIsIsoOfMono'_φK, ofEpiOfIsIsoOfMono_φH, ofEpiOfIsIsoOfMono_φK, ofIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_φK, ofIsLimitKernelFork_φH, ofIsLimitKernelFork_φK, ofZeros_φH, ofZeros_φK, zero_φH, zero_φK, comp_liftCycles, comp_liftCycles_assoc, cyclesFunctor_map, cyclesFunctor_obj, cyclesIsoKernel_hom, cyclesIsoKernel_inv, cyclesIsoLeftHomology_hom, cyclesIsoLeftHomology_hom_inv_id, cyclesIsoLeftHomology_hom_inv_id_assoc, cyclesIsoLeftHomology_inv_hom_id, cyclesIsoLeftHomology_inv_hom_id_assoc, cyclesIsoX₂_hom, cyclesIsoX₂_hom_inv_id, cyclesIsoX₂_hom_inv_id_assoc, cyclesIsoX₂_inv_hom_id, cyclesIsoX₂_inv_hom_id_assoc, cyclesMap'_comp, cyclesMap'_comp_assoc, cyclesMap'_i, cyclesMap'_i_assoc, cyclesMap'_id, cyclesMap'_zero, cyclesMapIso'_hom, cyclesMapIso'_inv, cyclesMapIso_hom, cyclesMapIso_inv, cyclesMap_comp, cyclesMap_comp_assoc, cyclesMap_i, cyclesMap_i_assoc, cyclesMap_id, cyclesMap_zero, cycles_ext, cycles_ext_iff, f'_cyclesMap', f'_cyclesMap'_assoc, hasLeftHomology_of_epi_of_isIso_of_mono, hasLeftHomology_of_epi_of_isIso_of_mono', hasLeftHomology_of_iso, iCyclesNatTrans_app, iCycles_g, iCycles_g_assoc, instEpiLeftHomologyπ, instIsIsoLeftHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, instIsIsoLeftHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, instMonoICycles, isIso_cyclesMap'_of_isIso, isIso_cyclesMap'_of_isIso_of_mono, isIso_cyclesMap_of_isIso_of_mono, isIso_cyclesMap_of_isIso_of_mono', isIso_cyclesMap_of_iso, isIso_iCycles, isIso_leftHomologyMap'_of_isIso, isIso_leftHomologyMap_of_iso, isIso_leftHomologyπ, isoCyclesOfIsLimit_hom_iCycles, isoCyclesOfIsLimit_hom_iCycles_assoc, isoCyclesOfIsLimit_inv_ι, isoCyclesOfIsLimit_inv_ι_assoc, leftHomologyData_H, leftHomologyFunctor_map, leftHomologyFunctor_obj, leftHomologyMap'_comp, leftHomologyMap'_comp_assoc, leftHomologyMap'_id, leftHomologyMap'_zero, leftHomologyMapIso'_hom, leftHomologyMapIso'_inv, leftHomologyMapIso_hom, leftHomologyMapIso_inv, leftHomologyMap_comp, leftHomologyMap_comp_assoc, leftHomologyMap_id, leftHomologyMap_zero, leftHomology_ext, leftHomology_ext_iff, leftHomologyπNatTrans_app, leftHomologyπ_naturality, leftHomologyπ_naturality', leftHomologyπ_naturality'_assoc, leftHomologyπ_naturality_assoc, liftCycles_comp_cyclesMap, liftCycles_comp_cyclesMap_assoc, liftCycles_i, liftCycles_i_assoc, liftCycles_leftHomologyπ_eq_zero_of_boundary, liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc, toCyclesNatTrans_app, toCycles_comp_leftHomologyπ, toCycles_comp_leftHomologyπ_assoc, toCycles_i, toCycles_i_assoc, toCycles_naturality, toCycles_naturality_assoc | 204 |
| Total | 273 |
| Name | Category | Theorems |
HasLeftHomology 📖 | CompData | 16 mathmath: hasRightHomology_iff_op, HasLeftHomology.of_zeros, hasLeftHomology_iff_op, hasLeftHomology_iff_unop, hasLeftHomology_of_iso, hasLeftHomology_of_epi_of_isIso_of_mono', HasLeftHomology.of_hasCokernel, HasLeftHomology.of_hasKernel_of_hasCokernel, instHasLeftHomologyOppositeOpOfHasRightHomology, hasLeftHomology_of_preserves, hasRightHomology_iff_unop, hasLeftHomology_of_preserves', HasLeftHomology.of_hasKernel, hasLeftHomology_of_epi_of_isIso_of_mono, hasLeftHomology_of_hasHomology, HasLeftHomology.mk'
|
LeftHomologyData 📖 | CompData | 1 mathmath: HasLeftHomology.condition
|
LeftHomologyMapData 📖 | CompData | 1 mathmath: LeftHomologyMapData.instSubsingleton
|
cycles 📖 | CompOp | 170 mathmath: LeftHomologyData.leftHomologyπ_comp_leftHomologyIso_hom, toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, π_moduleCatCyclesIso_hom, HomologicalComplex.π_homologyIsoSc'_hom, cyclesOpIso_inv_op_iCycles_assoc, isIso_leftHomologyπ, homology_π_ι_assoc, LeftHomologyData.cyclesIso_inv_comp_iCycles_assoc, moduleCatCyclesIso_hom_i_apply, cyclesIsoX₂_hom_inv_id, liftCycles_comp_cyclesMap_assoc, exact_iff_iCycles_pOpcycles_zero, cyclesIsoX₂_hom_inv_id_assoc, cyclesIsoLeftHomology_hom_inv_id_assoc, isIso_iCycles, cyclesMap_neg, toCycles_comp_leftHomologyπ_assoc, mapCyclesIso_hom_iCycles_assoc, isoCyclesOfIsLimit_hom_iCycles_assoc, LeftHomologyData.π_comp_homologyIso_inv, isIso_homologyπ, cyclesMap_sub, isIso_cyclesMap_of_isIso_of_mono, comp_liftCycles_assoc, liftCycles_comp_cyclesMap, op_pOpcycles_opcyclesOpIso_hom, HomologyData.ofEpiMonoFactorisation.isoImage_ι, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac_assoc, comp_liftCycles, homologyπ_naturality_assoc, cyclesIsoX₂_inv_hom_id_assoc, iCycles_g, cyclesOpIso_hom_naturality, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv_assoc, homology_π_ι, opcyclesOpIso_hom_naturality_assoc, moduleCatCyclesIso_hom_i_assoc, HomologicalComplex.cyclesIsoSc'_inv_iCycles_assoc, HomologyData.canonical_left_K, cyclesMap_smul, op_pOpcycles_opcyclesOpIso_hom_assoc, moduleCatCyclesIso_inv_π_assoc_apply, moduleCatCyclesIso_hom_i, LeftHomologyData.π_comp_leftHomologyIso_inv_assoc, HomologicalComplex.cyclesIsoSc'_hom_iCycles_assoc, asIsoHomologyπ_hom, LeftHomologyData.leftHomologyπ_comp_leftHomologyIso_hom_assoc, i_cyclesMk, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac_assoc, Exact.epi_toCycles, cyclesIsoKernel_hom, homologyπ_comp_leftHomologyIso_inv, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac, HomologicalComplex.cyclesIsoSc'_inv_iCycles, fromOpcycles_op_cyclesOpIso_inv_assoc, leftHomologyπ_naturality_assoc, toCycles_i_assoc, isIso_cyclesMap_of_isIso_of_mono', CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac, opcyclesOpIso_hom_toCycles_op_assoc, opcyclesOpIso_hom_naturality, homologyπ_naturality, liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc, cyclesMap_comp, cyclesFunctor_obj, LeftHomologyData.cyclesIso_hom_comp_i_assoc, exact_iff_epi_toCycles, cyclesOpIso_inv_naturality, HomologicalComplex.π_homologyIsoSc'_hom_assoc, toCycles_moduleCatCyclesIso_hom, iCycles_g_assoc, LeftHomologyData.homologyπ_comp_homologyIso_hom_assoc, π_leftRightHomologyComparison_ι_assoc, HomologicalComplex.π_homologyIsoSc'_inv_assoc, π_moduleCatCyclesIso_hom_assoc_apply, leftHomologyπ_naturality, cyclesMap_zero, LeftHomologyMapData.cyclesMap_comm, cyclesIsoLeftHomology_hom_inv_id, asIsoHomologyπ_inv_comp_homologyπ, toCycles_comp_leftHomologyπ, opcyclesOpIso_inv_naturality, liftCycles_i, LeftHomologyData.π_comp_homologyIso_inv_assoc, moduleCatCyclesIso_hom_i_assoc_apply, homologyπ_comp_leftHomologyIso_inv_assoc, mapCyclesIso_hom_naturality_assoc, toCycles_naturality_assoc, LeftHomologyData.lift_K_comp_cyclesIso_inv_assoc, HomologicalComplex.toCycles_cyclesIsoSc'_hom_assoc, mapCyclesIso_inv_naturality_assoc, isoCyclesOfIsLimit_inv_ι_assoc, asIsoHomologyπ_inv_comp_homologyπ_assoc, π_moduleCatCyclesIso_hom_apply, LeftHomologyData.mapCyclesIso_eq, cyclesIsoLeftHomology_inv_hom_id, leftHomology_ext_iff, homologyIsoImageICyclesCompPOpcycles_ι, eq_liftCycles_homologyπ_up_to_refinements, π_homologyMap_ι_assoc, moduleCatCyclesIso_inv_iCycles, toCycles_i, LeftHomologyData.cyclesIso_hom_comp_i, moduleCatCyclesIso_inv_π_assoc, mapCyclesIso_hom_iCycles, mapCyclesIso_inv_naturality, isoCyclesOfIsLimit_hom_iCycles, cyclesMap_id, π_leftRightHomologyComparison_ι, HomologicalComplex.π_homologyIsoSc'_inv, HomologicalComplex.cyclesIsoSc'_hom_iCycles, cyclesMap_i_assoc, π_moduleCatCyclesIso_hom_assoc, homologyπ_comp_asIsoHomologyπ_inv_assoc, instEpiLeftHomologyπ, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv, toCycles_moduleCatCyclesIso_hom_apply, cyclesIsoLeftHomology_hom, cyclesIsoX₂_inv_hom_id, cycles_ext_iff, liftCycles_i_assoc, HomologicalComplex.toCycles_cyclesIsoSc'_hom, moduleCatCyclesIso_inv_iCycles_assoc_apply, moduleCatCyclesIso_inv_π_apply, LeftHomologyData.lift_K_comp_cyclesIso_inv, LeftHomologyData.homologyπ_comp_homologyIso_hom, HomologyData.ofEpiMonoFactorisation.f'_eq, liftCycles_homologyπ_eq_zero_of_boundary, toCycles_moduleCatCyclesIso_hom_assoc_apply, opcyclesOpIso_hom_toCycles_op, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom, cyclesMap_i, isIso_cyclesMap_of_iso, LeftHomologyData.π_comp_leftHomologyIso_inv, cyclesIsoX₂_hom, cyclesOpIso_inv_op_iCycles, LeftHomologyMapData.cyclesMap_eq, LeftHomologyData.liftCycles_comp_cyclesIso_hom_assoc, cyclesOpIso_inv_naturality_assoc, toCycles_moduleCatCyclesIso_hom_assoc, Exact.isIso_toCycles, fromOpcycles_op_cyclesOpIso_inv, liftCycles_leftHomologyπ_eq_zero_of_boundary, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom_assoc, moduleCatCyclesIso_inv_π, cyclesIsoKernel_inv, homologyπ_comp_asIsoHomologyπ_inv, toCycles_naturality, opcyclesOpIso_inv_naturality_assoc, moduleCatCyclesIso_inv_iCycles_assoc, HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, moduleCatCyclesIso_inv_iCycles_apply, LeftHomologyData.liftCycles_comp_cyclesIso_hom, cyclesMap_comp_assoc, cyclesMapIso_inv, cyclesMap_add, LeftHomologyData.canonical_K, instEpiHomologyπ, cyclesMapIso_hom, isoCyclesOfIsLimit_inv_ι, LeftHomologyData.cyclesIso_inv_comp_iCycles, abCyclesIso_inv_apply_iCycles, quasiIso_iff_isIso_liftCycles, cyclesIsoLeftHomology_inv_hom_id_assoc, π_homologyMap_ι, instMonoICycles, mapCyclesIso_hom_naturality, cyclesOpIso_hom_naturality_assoc
|
cyclesFunctor 📖 | CompOp | 7 mathmath: cyclesFunctor_linear, toCyclesNatTrans_app, leftHomologyπNatTrans_app, cyclesFunctor_obj, cyclesFunctor_map, cyclesFunctor_additive, iCyclesNatTrans_app
|
cyclesIsKernel 📖 | CompOp | — |
cyclesIsoKernel 📖 | CompOp | 2 mathmath: cyclesIsoKernel_hom, cyclesIsoKernel_inv
|
cyclesIsoLeftHomology 📖 | CompOp | 5 mathmath: cyclesIsoLeftHomology_hom_inv_id_assoc, cyclesIsoLeftHomology_hom_inv_id, cyclesIsoLeftHomology_inv_hom_id, cyclesIsoLeftHomology_hom, cyclesIsoLeftHomology_inv_hom_id_assoc
|
cyclesIsoX₂ 📖 | CompOp | 5 mathmath: cyclesIsoX₂_hom_inv_id, cyclesIsoX₂_hom_inv_id_assoc, cyclesIsoX₂_inv_hom_id_assoc, cyclesIsoX₂_inv_hom_id, cyclesIsoX₂_hom
|
cyclesMap 📖 | CompOp | 38 mathmath: liftCycles_comp_cyclesMap_assoc, cyclesMap_neg, cyclesMap_sub, isIso_cyclesMap_of_isIso_of_mono, liftCycles_comp_cyclesMap, homologyπ_naturality_assoc, cyclesOpIso_hom_naturality, opcyclesOpIso_hom_naturality_assoc, cyclesMap_smul, leftHomologyπ_naturality_assoc, isIso_cyclesMap_of_isIso_of_mono', opcyclesOpIso_hom_naturality, homologyπ_naturality, cyclesMap_comp, cyclesOpIso_inv_naturality, cyclesFunctor_map, leftHomologyπ_naturality, cyclesMap_zero, LeftHomologyMapData.cyclesMap_comm, opcyclesOpIso_inv_naturality, mapCyclesIso_hom_naturality_assoc, toCycles_naturality_assoc, mapCyclesIso_inv_naturality_assoc, mapCyclesIso_inv_naturality, cyclesMap_id, cyclesMap_i_assoc, cyclesMap_i, isIso_cyclesMap_of_iso, LeftHomologyMapData.cyclesMap_eq, cyclesOpIso_inv_naturality_assoc, toCycles_naturality, opcyclesOpIso_inv_naturality_assoc, cyclesMap_comp_assoc, cyclesMapIso_inv, cyclesMap_add, cyclesMapIso_hom, mapCyclesIso_hom_naturality, cyclesOpIso_hom_naturality_assoc
|
cyclesMap' 📖 | CompOp | 21 mathmath: isIso_cyclesMap'_of_isIso_of_mono, cyclesMap'_comp_assoc, cyclesMap'_sub, cyclesMap'_comp, LeftHomologyData.map_cyclesMap', cyclesMapIso'_inv, leftHomologyπ_naturality', leftHomologyπ_naturality'_assoc, cyclesMap'_zero, HomologyMapData.cyclesMap'_eq, cyclesMap'_smul, f'_cyclesMap', cyclesMap'_i_assoc, cyclesMapIso'_hom, cyclesMap'_id, cyclesMap'_add, isIso_cyclesMap'_of_isIso, cyclesMap'_neg, cyclesMap'_i, f'_cyclesMap'_assoc, LeftHomologyMapData.cyclesMap'_eq
|
cyclesMapIso 📖 | CompOp | 2 mathmath: cyclesMapIso_inv, cyclesMapIso_hom
|
cyclesMapIso' 📖 | CompOp | 2 mathmath: cyclesMapIso'_inv, cyclesMapIso'_hom
|
iCycles 📖 | CompOp | 63 mathmath: cyclesOpIso_inv_op_iCycles_assoc, homology_π_ι_assoc, LeftHomologyData.cyclesIso_inv_comp_iCycles_assoc, moduleCatCyclesIso_hom_i_apply, HomologyData.canonical_left_i, cyclesIsoX₂_hom_inv_id, LeftHomologyData.canonical_i, exact_iff_iCycles_pOpcycles_zero, cyclesIsoX₂_hom_inv_id_assoc, isIso_iCycles, mapCyclesIso_hom_iCycles_assoc, isoCyclesOfIsLimit_hom_iCycles_assoc, op_pOpcycles_opcyclesOpIso_hom, HomologyData.ofEpiMonoFactorisation.isoImage_ι, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac_assoc, cyclesIsoX₂_inv_hom_id_assoc, iCycles_g, homology_π_ι, moduleCatCyclesIso_hom_i_assoc, HomologicalComplex.cyclesIsoSc'_inv_iCycles_assoc, op_pOpcycles_opcyclesOpIso_hom_assoc, moduleCatCyclesIso_hom_i, HomologicalComplex.cyclesIsoSc'_hom_iCycles_assoc, i_cyclesMk, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac_assoc, cyclesIsoKernel_hom, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac, HomologicalComplex.cyclesIsoSc'_inv_iCycles, toCycles_i_assoc, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac, LeftHomologyData.cyclesIso_hom_comp_i_assoc, iCycles_g_assoc, π_leftRightHomologyComparison_ι_assoc, liftCycles_i, moduleCatCyclesIso_hom_i_assoc_apply, isoCyclesOfIsLimit_inv_ι_assoc, homologyIsoImageICyclesCompPOpcycles_ι, π_homologyMap_ι_assoc, moduleCatCyclesIso_inv_iCycles, toCycles_i, LeftHomologyData.cyclesIso_hom_comp_i, mapCyclesIso_hom_iCycles, isoCyclesOfIsLimit_hom_iCycles, π_leftRightHomologyComparison_ι, HomologicalComplex.cyclesIsoSc'_hom_iCycles, cyclesMap_i_assoc, iCyclesNatTrans_app, cyclesIsoX₂_inv_hom_id, cycles_ext_iff, liftCycles_i_assoc, moduleCatCyclesIso_inv_iCycles_assoc_apply, cyclesMap_i, cyclesIsoX₂_hom, cyclesOpIso_inv_op_iCycles, moduleCatCyclesIso_inv_iCycles_assoc, HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, moduleCatCyclesIso_inv_iCycles_apply, isoCyclesOfIsLimit_inv_ι, LeftHomologyData.cyclesIso_inv_comp_iCycles, abCyclesIso_inv_apply_iCycles, π_homologyMap_ι, instMonoICycles
|
iCyclesNatTrans 📖 | CompOp | 1 mathmath: iCyclesNatTrans_app
|
isoCyclesOfIsLimit 📖 | CompOp | 9 mathmath: isoCyclesOfIsLimit_hom_iCycles_assoc, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv_assoc, isoCyclesOfIsLimit_inv_ι_assoc, isoCyclesOfIsLimit_hom_iCycles, HomologyData.ofEpiMonoFactorisation.homologyπ_isoHomology_inv, HomologyData.ofEpiMonoFactorisation.f'_eq, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom, HomologyData.ofEpiMonoFactorisation.π_comp_isoHomology_hom_assoc, isoCyclesOfIsLimit_inv_ι
|
leftHomology 📖 | CompOp | 64 mathmath: LeftHomologyData.leftHomologyπ_comp_leftHomologyIso_hom, leftHomologyMap_comp, isIso_leftHomologyπ, leftHomologyMap_sub, cyclesIsoLeftHomology_hom_inv_id_assoc, toCycles_comp_leftHomologyπ_assoc, LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv, isIso_leftRightHomologyComparison, leftRightHomologyComparison_fac, leftHomologyMap_op, mapLeftHomologyIso_hom_naturality, leftHomologyMapIso_inv, leftHomologyMap_add, leftHomologyIso_hom_naturality, LeftHomologyData.π_comp_leftHomologyIso_inv_assoc, leftHomologyIso_hom_naturality_assoc, LeftHomologyData.leftHomologyπ_comp_leftHomologyIso_hom_assoc, homologyπ_comp_leftHomologyIso_inv, leftHomologyIso_inv_naturality_assoc, leftHomologyπ_naturality_assoc, leftHomologyMap_nullHomotopic, liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc, instIsIsoLeftHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, LeftHomologyMapData.leftHomologyMap_comm, LeftHomologyMapData.leftHomologyMap_eq, leftRightHomologyComparison_eq, π_leftRightHomologyComparison_ι_assoc, leftHomologyπ_naturality, LeftHomologyData.mapLeftHomologyIso_eq, cyclesIsoLeftHomology_hom_inv_id, toCycles_comp_leftHomologyπ, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv_assoc, homologyπ_comp_leftHomologyIso_inv_assoc, rightHomologyMap_op, exact_iff_isZero_leftHomology, rightHomologyFunctorOpNatIso_hom_app, LeftHomologyData.homologyIso_leftHomologyData, cyclesIsoLeftHomology_inv_hom_id, leftHomology_ext_iff, leftHomologyFunctorOpNatIso_hom_app, isIso_leftHomologyMap_of_iso, mapLeftHomologyIso_hom_naturality_assoc, π_leftRightHomologyComparison_ι, leftHomologyMapIso_hom, LeftHomologyData.homologyIso_hom_comp_leftHomologyIso_inv, rightHomologyFunctorOpNatIso_inv_app, leftHomologyIso_inv_naturality, instEpiLeftHomologyπ, cyclesIsoLeftHomology_hom, leftHomologyFunctor_obj, leftHomologyData_H, leftHomologyFunctorOpNatIso_inv_app, LeftHomologyData.π_comp_leftHomologyIso_inv, LeftHomologyData.leftHomologyIso_hom_comp_homologyIso_inv_assoc, leftHomologyMap_zero, liftCycles_leftHomologyπ_eq_zero_of_boundary, leftRightHomologyComparison_fac_assoc, leftHomologyMap_id, leftHomologyMap_smul, mapLeftHomologyIso_inv_naturality, leftHomologyMap_comp_assoc, mapLeftHomologyIso_inv_naturality_assoc, leftHomologyMap_neg, cyclesIsoLeftHomology_inv_hom_id_assoc
|
leftHomologyData 📖 | CompOp | 2 mathmath: LeftHomologyData.homologyIso_leftHomologyData, leftHomologyData_H
|
leftHomologyFunctor 📖 | CompOp | 9 mathmath: leftHomologyπNatTrans_app, leftHomologyFunctor_additive, rightHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app, leftHomologyFunctor_obj, leftHomologyFunctorOpNatIso_inv_app, leftHomologyFunctor_linear, leftHomologyFunctor_map
|
leftHomologyIsCokernel 📖 | CompOp | — |
leftHomologyIsoCokernelLift 📖 | CompOp | — |
leftHomologyMap 📖 | CompOp | 29 mathmath: leftHomologyMap_comp, leftHomologyMap_sub, leftHomologyMap_op, mapLeftHomologyIso_hom_naturality, leftHomologyMapIso_inv, leftHomologyMap_add, leftHomologyIso_hom_naturality, leftHomologyIso_hom_naturality_assoc, leftHomologyIso_inv_naturality_assoc, leftHomologyπ_naturality_assoc, leftHomologyMap_nullHomotopic, instIsIsoLeftHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, LeftHomologyMapData.leftHomologyMap_comm, LeftHomologyMapData.leftHomologyMap_eq, leftHomologyπ_naturality, rightHomologyMap_op, Homotopy.leftHomologyMap_congr, isIso_leftHomologyMap_of_iso, mapLeftHomologyIso_hom_naturality_assoc, leftHomologyMapIso_hom, leftHomologyIso_inv_naturality, leftHomologyMap_zero, leftHomologyMap_id, leftHomologyMap_smul, mapLeftHomologyIso_inv_naturality, leftHomologyMap_comp_assoc, leftHomologyFunctor_map, mapLeftHomologyIso_inv_naturality_assoc, leftHomologyMap_neg
|
leftHomologyMap' 📖 | CompOp | 29 mathmath: leftHomologyMap'_sub, leftHomologyMap'_comp, LeftHomologyData.map_leftHomologyMap', leftHomologyMap'_neg, isIso_leftHomologyMap'_of_isIso, leftHomologyMap'_comp_assoc, rightHomologyMap'_op, Homotopy.leftHomologyMap'_congr, leftHomologyMapIso'_hom, leftHomologyπ_naturality', leftHomologyπ_naturality'_assoc, leftHomologyMap'_nullHomotopic, LeftHomologyData.leftHomologyIso_hom_naturality_assoc, leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', LeftHomologyData.leftHomologyIso_hom_naturality, LeftHomologyData.leftHomologyIso_inv_naturality_assoc, leftHomologyMap'_id, instIsIsoLeftHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, leftHomologyMapIso'_inv, leftRightHomologyComparison'_naturality_assoc, LeftHomologyMapData.leftHomologyMap'_eq, leftRightHomologyComparison'_naturality, LeftHomologyData.leftHomologyIso_inv_naturality, quasiIso_iff_isIso_leftHomologyMap', leftRightHomologyComparison'_compatibility, leftHomologyMap'_zero, leftHomologyMap'_add, leftHomologyMap'_smul, leftHomologyMap'_op
|
leftHomologyMapData 📖 | CompOp | — |
leftHomologyMapIso 📖 | CompOp | 2 mathmath: leftHomologyMapIso_inv, leftHomologyMapIso_hom
|
leftHomologyMapIso' 📖 | CompOp | 2 mathmath: leftHomologyMapIso'_hom, leftHomologyMapIso'_inv
|
leftHomologyπ 📖 | CompOp | 23 mathmath: LeftHomologyData.leftHomologyπ_comp_leftHomologyIso_hom, isIso_leftHomologyπ, leftHomologyπNatTrans_app, cyclesIsoLeftHomology_hom_inv_id_assoc, toCycles_comp_leftHomologyπ_assoc, LeftHomologyData.π_comp_leftHomologyIso_inv_assoc, LeftHomologyData.leftHomologyπ_comp_leftHomologyIso_hom_assoc, homologyπ_comp_leftHomologyIso_inv, leftHomologyπ_naturality_assoc, liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc, π_leftRightHomologyComparison_ι_assoc, leftHomologyπ_naturality, cyclesIsoLeftHomology_hom_inv_id, toCycles_comp_leftHomologyπ, homologyπ_comp_leftHomologyIso_inv_assoc, cyclesIsoLeftHomology_inv_hom_id, leftHomology_ext_iff, π_leftRightHomologyComparison_ι, instEpiLeftHomologyπ, cyclesIsoLeftHomology_hom, LeftHomologyData.π_comp_leftHomologyIso_inv, liftCycles_leftHomologyπ_eq_zero_of_boundary, cyclesIsoLeftHomology_inv_hom_id_assoc
|
leftHomologyπNatTrans 📖 | CompOp | 1 mathmath: leftHomologyπNatTrans_app
|
liftCycles 📖 | CompOp | 16 mathmath: liftCycles_comp_cyclesMap_assoc, comp_liftCycles_assoc, liftCycles_comp_cyclesMap, comp_liftCycles, liftCycles_leftHomologyπ_eq_zero_of_boundary_assoc, liftCycles_i, LeftHomologyData.lift_K_comp_cyclesIso_inv_assoc, eq_liftCycles_homologyπ_up_to_refinements, liftCycles_i_assoc, LeftHomologyData.lift_K_comp_cyclesIso_inv, liftCycles_homologyπ_eq_zero_of_boundary, LeftHomologyData.liftCycles_comp_cyclesIso_hom_assoc, liftCycles_leftHomologyπ_eq_zero_of_boundary, cyclesIsoKernel_inv, LeftHomologyData.liftCycles_comp_cyclesIso_hom, quasiIso_iff_isIso_liftCycles
|
liftLeftHomology 📖 | CompOp | — |
toCycles 📖 | CompOp | 24 mathmath: toCycles_comp_homologyπ, toCycles_comp_homologyπ_assoc, toCyclesNatTrans_app, toCycles_comp_leftHomologyπ_assoc, Exact.epi_toCycles, fromOpcycles_op_cyclesOpIso_inv_assoc, toCycles_i_assoc, opcyclesOpIso_hom_toCycles_op_assoc, exact_iff_epi_toCycles, toCycles_moduleCatCyclesIso_hom, LeftHomologyData.canonical_f', toCycles_comp_leftHomologyπ, toCycles_naturality_assoc, HomologicalComplex.toCycles_cyclesIsoSc'_hom_assoc, toCycles_i, toCycles_moduleCatCyclesIso_hom_apply, HomologicalComplex.toCycles_cyclesIsoSc'_hom, HomologyData.ofEpiMonoFactorisation.f'_eq, toCycles_moduleCatCyclesIso_hom_assoc_apply, opcyclesOpIso_hom_toCycles_op, toCycles_moduleCatCyclesIso_hom_assoc, Exact.isIso_toCycles, fromOpcycles_op_cyclesOpIso_inv, toCycles_naturality
|
toCyclesNatTrans 📖 | CompOp | 1 mathmath: toCyclesNatTrans_app
|
| Name | Category | Theorems |
H 📖 | CompOp | 167 mathmath: CategoryTheory.ShortComplex.HomologyData.exact_iff, π_descH_assoc, CategoryTheory.ShortComplex.HomologyData.ofIsColimitCokernelCofork_iso, leftHomologyπ_comp_leftHomologyIso_hom, groupHomology.π_comp_H2Iso_hom_assoc, CategoryTheory.ShortComplex.HomologyData.canonical_iso_hom, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom, ofHasKernelOfHasCokernel_H, CategoryTheory.ShortComplex.leftHomologyMap'_sub, CategoryTheory.ShortComplex.leftHomologyMap'_comp, groupCohomology.π_comp_H1Iso_hom_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.id_φH, HomologicalComplex.extend.homologyData'_left_H, map_leftHomologyMap', CategoryTheory.ShortComplex.leftHomologyMap'_neg, CategoryTheory.ShortComplex.LeftHomologyMapData.map_φH, f'_π_assoc, unop_ι, π_comp_homologyIso_inv, map_π, groupHomology.π_comp_H1Iso_inv, CategoryTheory.ShortComplex.homologyMap'_zero, CategoryTheory.ShortComplex.homologyMap'_comp, leftHomologyIso_hom_comp_homologyIso_inv, ofAbelian_H, CategoryTheory.ShortComplex.isIso_leftHomologyMap'_of_isIso, CategoryTheory.ShortComplex.HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, CategoryTheory.ShortComplex.homologyMap'_nullHomotopic, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.smul_φH, CategoryTheory.ShortComplex.homologyMap'_sub, CategoryTheory.ShortComplex.HomologyData.map_homologyMap', groupHomology.π_comp_H2Iso_inv_assoc, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison', CategoryTheory.ShortComplex.homologyMap'_add, CategoryTheory.ShortComplex.Exact.condition, CategoryTheory.ShortComplex.Splitting.leftHomologyData_H, ofIsLimitKernelFork_H, op_H, CategoryTheory.ShortComplex.leftHomologyMap'_comp_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.homologyMap_comm, CategoryTheory.ShortComplex.homologyMap'_op, CategoryTheory.ShortComplex.quasiIso_iff_isIso_homologyMap', CategoryTheory.ShortComplex.HomologyData.canonical_left_H, CategoryTheory.ShortComplex.homologyMap'_neg, CategoryTheory.ShortComplex.LeftHomologyMapData.neg_φH, groupCohomology.π_comp_H1Iso_hom, exact_map_iff, CategoryTheory.ShortComplex.HomologyData.comm_assoc, π_comp_leftHomologyIso_inv_assoc, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison'_of_homologyData, leftHomologyπ_comp_leftHomologyIso_hom_assoc, groupHomology.π_comp_H2Iso_hom, copy_π, CategoryTheory.ShortComplex.HomologyData.ofHasCokernel_iso, CategoryTheory.ShortComplex.LeftHomologyMapData.homologyMap_eq, CategoryTheory.ShortComplex.leftHomologyMapIso'_hom, CategoryTheory.ShortComplex.LeftHomologyMapData.commπ, CategoryTheory.ShortComplex.homologyMap'_id, CategoryTheory.ShortComplex.LeftHomologyMapData.quasiIso_map_iff, f'_π, CategoryTheory.ShortComplex.LeftHomologyMapData.ofEpiOfIsIsoOfMono'_φH, CategoryTheory.ShortComplex.leftHomologyπ_naturality', wπ_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.comp_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.add_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.leftHomologyMap_comm, CategoryTheory.ShortComplex.leftHomologyπ_naturality'_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.leftHomologyMap_eq, CategoryTheory.ShortComplex.leftRightHomologyComparison_eq, homologyπ_comp_homologyIso_hom_assoc, HomologicalComplex.extend.leftHomologyData_H, ofIsColimitCokernelCofork_H, CategoryTheory.ShortComplex.RightHomologyData.op_H, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.leftHomologyData_H, CategoryTheory.ShortComplex.leftHomologyMap'_nullHomotopic, mapLeftHomologyIso_eq, leftHomologyIso_hom_naturality_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', leftHomologyIso_hom_naturality, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, ofHasCokernel_H, CategoryTheory.ShortComplex.LeftHomologyMapData.zero_φH, CategoryTheory.ShortComplex.HomologyData.left_homologyIso_eq_right_homologyIso_trans_iso_symm, copy_H, leftHomologyIso_inv_naturality_assoc, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, CategoryTheory.ShortComplex.homologyMapIso'_hom, wπ, π_comp_homologyIso_inv_assoc, ofEpiOfIsIsoOfMono'_H, homologyIso_hom_comp_leftHomologyIso_inv_assoc, canonical_H, CategoryTheory.ShortComplex.isIso_homologyMap'_of_epi_of_isIso_of_mono, groupCohomology.π_comp_H2Iso_hom_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, CategoryTheory.ShortComplex.homologyMap'_smul, unop_H, CategoryTheory.ShortComplex.leftHomologyMap'_id, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation_iso, groupHomology.π_comp_H1Iso_hom_assoc, liftK_π_eq_zero_of_boundary, groupHomology.π_comp_H2Iso_inv, CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp_φH, CochainComplex.HomComplex.leftHomologyData_H_coe, CategoryTheory.ShortComplex.instIsIsoLeftHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φH, CategoryTheory.ShortComplex.leftHomologyMapIso'_inv, CategoryTheory.ShortComplex.leftRightHomologyComparison'_naturality_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc, CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork_iso, CategoryTheory.ShortComplex.HomologyData.canonical_iso_inv, ofZeros_H, CategoryTheory.ShortComplex.HomologyData.ofZeros_iso, ofEpiOfIsIsoOfMono_H, π_descH, CochainComplex.HomComplex.leftHomologyData'_H_coe, mapHomologyIso_eq, isIso_π, homologyIso_hom_comp_leftHomologyIso_inv, CategoryTheory.ShortComplex.map_leftRightHomologyComparison', exact_iff, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.quasiIso_iff, CategoryTheory.ShortComplex.HomologyData.unop_iso, CategoryTheory.ShortComplex.HomologyData.op_iso, CategoryTheory.ShortComplex.LeftHomologyMapData.ofEpiOfIsIsoOfMono_φH, CategoryTheory.ShortComplex.HomologyData.map_iso, groupHomology.π_comp_H1Iso_hom, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_H, CategoryTheory.ShortComplex.leftRightHomologyComparison'_naturality, homologyπ_comp_homologyIso_hom, instEpiπ, leftHomologyIso_inv_naturality, CategoryTheory.ShortComplex.HomologyData.ofIso_left_H, CategoryTheory.ShortComplex.leftHomologyData_H, CategoryTheory.ShortComplex.quasiIso_iff_isIso_leftHomologyMap', CategoryTheory.ShortComplex.isIso_homologyMap'_of_isIso, π_comp_leftHomologyIso_inv, CategoryTheory.ShortComplex.RightHomologyData.unop_H, CategoryTheory.ShortComplex.HomologyData.ofIsIsoLeftRightHomologyComparison'_iso, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, leftHomologyIso_hom_comp_homologyIso_inv_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.commπ_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_compatibility, CategoryTheory.ShortComplex.abLeftHomologyData_H_coe, CategoryTheory.ShortComplex.homologyMapIso'_inv, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π, CategoryTheory.ShortComplex.leftHomologyMap'_zero, map_H, CategoryTheory.ShortComplex.HomologyData.leftRightHomologyComparison'_eq, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_H, CategoryTheory.ShortComplex.leftHomologyMap'_add, groupHomology.π_comp_H1Iso_inv_assoc, CategoryTheory.ShortComplex.HomologyData.ofHasKernel_iso, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac_assoc, liftK_π_eq_zero_of_boundary_assoc, CategoryTheory.ShortComplex.leftHomologyMap'_smul, op_ι, groupCohomology.π_comp_H2Iso_hom, CategoryTheory.ShortComplex.leftHomologyMap'_op
|
K 📖 | CompOp | 163 mathmath: leftHomologyπ_comp_leftHomologyIso_hom, op_g', CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom, groupCohomology.toCocycles_comp_isoCocycles₁_hom, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φQ, unop_p, ofAbelian_K, cyclesIso_inv_comp_iCycles_assoc, liftK_i_assoc, liftK_i, CategoryTheory.ShortComplex.LeftHomologyMapData.id_φK, groupCohomology.mapCocycles₂_comp_i, ofZeros_f', exact_iff_epi_f', ofHasKernelOfHasCokernel_K, CategoryTheory.ShortComplex.LeftHomologyMapData.commf', ofEpiOfIsIsoOfMono'_i, f'_π_assoc, unop_ι, π_comp_homologyIso_inv, CochainComplex.HomComplex.leftHomologyData_K_coe, instMonoI, map_π, CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φK, groupHomology.π_comp_H1Iso_inv, CategoryTheory.ShortComplex.isIso_cyclesMap'_of_isIso_of_mono, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.leftHomologyData_K, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, isIso_i, IsPreservedBy.f', CategoryTheory.ShortComplex.cyclesMap'_comp_assoc, IsPreservedBy.hf', CategoryTheory.ShortComplex.cyclesMap'_sub, CategoryTheory.ShortComplex.Splitting.leftHomologyData_K, groupHomology.π_comp_H2Iso_inv_assoc, ofZeros_K, groupCohomology.toCocycles_comp_isoCocycles₂_hom, groupHomology.mapCycles₁_comp_i, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, map_i, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc, CategoryTheory.ShortComplex.HomologyData.ofIso_left_i, CategoryTheory.ShortComplex.HomologyData.canonical_left_K, CategoryTheory.ShortComplex.cyclesMap'_comp, map_cyclesMap', groupHomology.mapCycles₂_comp_i, CategoryTheory.ShortComplex.cyclesMapIso'_inv, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φQ, CategoryTheory.ShortComplex.HomologyData.comm_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i, π_comp_leftHomologyIso_inv_assoc, leftHomologyπ_comp_leftHomologyIso_hom_assoc, copy_i, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_K, CategoryTheory.ShortComplex.RightHomologyData.op_K, copy_π, CategoryTheory.ShortComplex.abLeftHomologyData_K_coe, map_K, f'_i, CategoryTheory.ShortComplex.LeftHomologyMapData.commπ, ofEpiOfIsIsoOfMono'_K, f'_π, ofHasCokernel_K, op_Q, CategoryTheory.ShortComplex.LeftHomologyMapData.ofEpiOfIsIsoOfMono'_φK, CategoryTheory.ShortComplex.Exact.shortExact, cyclesIso_hom_comp_i_assoc, CategoryTheory.ShortComplex.leftHomologyπ_naturality', CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, wπ_assoc, CategoryTheory.ShortComplex.leftHomologyπ_naturality'_assoc, groupCohomology.isoCocycles₁_inv_comp_iCocycles, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom, CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp_φK, ofEpiOfIsIsoOfMono'_f', ofEpiOfIsIsoOfMono_K, CategoryTheory.ShortComplex.cyclesMap'_zero, homologyπ_comp_homologyIso_hom_assoc, CategoryTheory.ShortComplex.exact_iff_i_p_zero, wi, groupHomology.toCycles_comp_isoCycles₂_hom, CategoryTheory.ShortComplex.cyclesMap'_smul, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.cyclesMap_comm, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, HomologicalComplex.extend.homologyData'_left_i, copy_K, wπ, π_comp_homologyIso_inv_assoc, CategoryTheory.ShortComplex.Exact.epi_f', CategoryTheory.ShortComplex.LeftHomologyMapData.zero_φK, CategoryTheory.ShortComplex.f'_cyclesMap', op_p, f'_i_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, lift_K_comp_cyclesIso_inv_assoc, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, CategoryTheory.ShortComplex.RightHomologyData.unop_K, liftK_π_eq_zero_of_boundary, groupHomology.π_comp_H2Iso_inv, ofIsColimitCokernelCofork_K, mapCyclesIso_eq, CategoryTheory.ShortComplex.Exact.isIso_f', groupCohomology.isoCocycles₂_inv_comp_iCocycles, HomologicalComplex.extend.leftHomologyData_i, CochainComplex.HomComplex.leftHomologyData'_K_coe, CategoryTheory.ShortComplex.LeftHomologyMapData.commi_assoc, CategoryTheory.ShortComplex.cyclesMap'_i_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles, ofIsLimitKernelFork_K, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_f'_hom, cyclesIso_hom_comp_i, CategoryTheory.ShortComplex.LeftHomologyMapData.smul_φK, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.ofEpiOfIsIsoOfMono_φK, CategoryTheory.ShortComplex.cyclesMapIso'_hom, CategoryTheory.ShortComplex.LeftHomologyMapData.neg_φK, unop_Q, CategoryTheory.ShortComplex.cyclesMap'_id, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_K, isIso_π, HomologicalComplex.extend.leftHomologyData_K, CategoryTheory.ShortComplex.LeftHomologyMapData.comp_φK, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.commf'_assoc, groupHomology.isoCycles₁_inv_comp_iCycles, groupHomology.toCycles_comp_isoCycles₁_hom, CategoryTheory.ShortComplex.cyclesMap'_add, groupHomology.isoCycles₂_inv_comp_iCycles, CategoryTheory.ShortComplex.LeftHomologyMapData.add_φK, ofIsLimitKernelFork_f', lift_K_comp_cyclesIso_inv, homologyπ_comp_homologyIso_hom, instEpiπ, HomologicalComplex.extend.homologyData'_left_K, CategoryTheory.ShortComplex.isIso_cyclesMap'_of_isIso, map_f', ofEpiOfIsIsoOfMono_i, CategoryTheory.ShortComplex.cyclesMap'_neg, wi_assoc, CategoryTheory.ShortComplex.cyclesMap'_i, π_comp_leftHomologyIso_inv, CategoryTheory.ShortComplex.LeftHomologyMapData.cyclesMap_eq, liftCycles_comp_cyclesIso_hom_assoc, CategoryTheory.ShortComplex.HomologyData.ofIso_left_K, CategoryTheory.ShortComplex.LeftHomologyMapData.commi, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.f'_cyclesMap'_assoc, CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.LeftHomologyMapData.commπ_assoc, τ₁_ofEpiOfIsIsoOfMono_f', unop_g', CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π, groupHomology.π_comp_H1Iso_inv_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc, liftCycles_comp_cyclesIso_hom, liftK_π_eq_zero_of_boundary_assoc, groupCohomology.mapCocycles₁_comp_i, op_ι, canonical_K, CategoryTheory.ShortComplex.LeftHomologyMapData.map_φK, cyclesIso_inv_comp_iCycles
|
copy 📖 | CompOp | 4 mathmath: copy_i, copy_π, copy_H, copy_K
|
cyclesIso 📖 | CompOp | 19 mathmath: leftHomologyπ_comp_leftHomologyIso_hom, cyclesIso_inv_comp_iCycles_assoc, π_comp_homologyIso_inv, π_comp_leftHomologyIso_inv_assoc, leftHomologyπ_comp_leftHomologyIso_hom_assoc, cyclesIso_hom_comp_i_assoc, homologyπ_comp_homologyIso_hom_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.cyclesMap_comm, π_comp_homologyIso_inv_assoc, lift_K_comp_cyclesIso_inv_assoc, mapCyclesIso_eq, cyclesIso_hom_comp_i, lift_K_comp_cyclesIso_inv, homologyπ_comp_homologyIso_hom, π_comp_leftHomologyIso_inv, CategoryTheory.ShortComplex.LeftHomologyMapData.cyclesMap_eq, liftCycles_comp_cyclesIso_hom_assoc, liftCycles_comp_cyclesIso_hom, cyclesIso_inv_comp_iCycles
|
descH 📖 | CompOp | 5 mathmath: π_descH_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_descH_hom, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, π_descH
|
f' 📖 | CompOp | 36 mathmath: op_g', groupCohomology.toCocycles_comp_isoCocycles₁_hom, ofZeros_f', exact_iff_epi_f', CategoryTheory.ShortComplex.LeftHomologyMapData.commf', f'_π_assoc, groupHomology.toCycles_comp_isoCycles₂_hom_assoc, IsPreservedBy.f', IsPreservedBy.hf', groupCohomology.toCocycles_comp_isoCocycles₂_hom, groupHomology.toCycles_comp_isoCycles₁_hom_assoc, CategoryTheory.ShortComplex.RightHomologyData.unop_f', f'_i, f'_π, groupCohomology.toCocycles_comp_isoCocycles₁_hom_assoc, CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom, ofEpiOfIsIsoOfMono'_f', CategoryTheory.ShortComplex.abLeftHomologyData_f', canonical_f', ofIsColimitCokernelCofork_f', groupHomology.toCycles_comp_isoCycles₂_hom, CategoryTheory.ShortComplex.Exact.epi_f', CategoryTheory.ShortComplex.f'_cyclesMap', f'_i_assoc, groupCohomology.toCocycles_comp_isoCocycles₂_hom_assoc, CategoryTheory.ShortComplex.RightHomologyData.op_f', CategoryTheory.ShortComplex.Exact.isIso_f', CategoryTheory.ShortComplex.moduleCatLeftHomologyData_f'_hom, CategoryTheory.ShortComplex.LeftHomologyMapData.commf'_assoc, groupHomology.toCycles_comp_isoCycles₁_hom, ofIsLimitKernelFork_f', map_f', CategoryTheory.ShortComplex.toCycles_moduleCatCyclesIso_hom_assoc, CategoryTheory.ShortComplex.f'_cyclesMap'_assoc, τ₁_ofEpiOfIsIsoOfMono_f', unop_g'
|
hi 📖 | CompOp | 2 mathmath: wπ_assoc, wπ
|
hπ 📖 | CompOp | — |
hπ' 📖 | CompOp | — |
i 📖 | CompOp | 83 mathmath: CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.leftHomologyData_i, unop_p, cyclesIso_inv_comp_iCycles_assoc, liftK_i_assoc, liftK_i, CategoryTheory.ShortComplex.HomologyData.canonical_left_i, groupCohomology.mapCocycles₂_comp_i, canonical_i, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_i_hom, ofEpiOfIsIsoOfMono'_i, instMonoI, CategoryTheory.ShortComplex.RightHomologyData.unop_i, CochainComplex.HomComplex.leftHomologyData'_i, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, isIso_i, groupCohomology.mapCocycles₂_comp_i_assoc, CochainComplex.HomComplex.leftHomologyData_i_hom_apply, groupHomology.mapCycles₁_comp_i, ofHasKernelOfHasCokernel_i, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, ofAbelian_i, map_i, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i_assoc, CategoryTheory.ShortComplex.HomologyData.ofIso_left_i, groupHomology.mapCycles₂_comp_i, CategoryTheory.ShortComplex.HomologyData.comm_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_hom_i, ofIsLimitKernelFork_i, copy_i, groupCohomology.isoCocycles₂_hom_comp_i, f'_i, CategoryTheory.ShortComplex.Exact.shortExact, cyclesIso_hom_comp_i_assoc, wπ_assoc, ofZeros_i, groupCohomology.isoCocycles₁_inv_comp_iCocycles, CategoryTheory.ShortComplex.exact_iff_i_p_zero, wi, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, HomologicalComplex.extend.homologyData'_left_i, wπ, op_p, groupCohomology.mapCocycles₁_comp_i_assoc, CategoryTheory.ShortComplex.abLeftHomologyData_i, f'_i_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, groupHomology.isoCycles₂_inv_comp_iCycles_assoc, groupHomology.isoCycles₁_inv_comp_iCycles_assoc, groupCohomology.isoCocycles₂_inv_comp_iCocycles, HomologicalComplex.extend.leftHomologyData_i, CategoryTheory.ShortComplex.LeftHomologyMapData.commi_assoc, CategoryTheory.ShortComplex.Splitting.leftHomologyData_i, CategoryTheory.ShortComplex.cyclesMap'_i_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles, cyclesIso_hom_comp_i, groupHomology.mapCycles₂_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i, groupHomology.isoCycles₁_hom_comp_i_assoc, groupHomology.isoCycles₁_inv_comp_iCycles, CategoryTheory.ShortComplex.RightHomologyData.op_i, groupHomology.isoCycles₂_hom_comp_i, groupHomology.isoCycles₂_inv_comp_iCycles, groupCohomology.isoCocycles₁_inv_comp_iCocycles_assoc, ofEpiOfIsIsoOfMono_i, groupHomology.isoCycles₁_hom_comp_i, wi_assoc, CategoryTheory.ShortComplex.cyclesMap'_i, CategoryTheory.ShortComplex.LeftHomologyMapData.commi, ofIsColimitCokernelCofork_i, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_i, groupCohomology.isoCocycles₂_hom_comp_i_assoc, groupCohomology.isoCocycles₁_hom_comp_i_assoc, groupHomology.mapCycles₁_comp_i_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_iCycles_assoc, groupCohomology.mapCocycles₁_comp_i, groupHomology.isoCycles₂_hom_comp_i_assoc, ofHasCokernel_i, groupCohomology.isoCocycles₂_inv_comp_iCocycles_assoc, cyclesIso_inv_comp_iCycles
|
leftHomologyIso 📖 | CompOp | 12 mathmath: leftHomologyπ_comp_leftHomologyIso_hom, leftHomologyIso_hom_comp_homologyIso_inv, π_comp_leftHomologyIso_inv_assoc, leftHomologyπ_comp_leftHomologyIso_hom_assoc, CategoryTheory.ShortComplex.LeftHomologyMapData.leftHomologyMap_comm, CategoryTheory.ShortComplex.LeftHomologyMapData.leftHomologyMap_eq, CategoryTheory.ShortComplex.leftRightHomologyComparison_eq, mapLeftHomologyIso_eq, homologyIso_hom_comp_leftHomologyIso_inv_assoc, homologyIso_hom_comp_leftHomologyIso_inv, π_comp_leftHomologyIso_inv, leftHomologyIso_hom_comp_homologyIso_inv_assoc
|
liftH 📖 | CompOp | — |
liftK 📖 | CompOp | 9 mathmath: liftK_i_assoc, liftK_i, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_liftK_hom, lift_K_comp_cyclesIso_inv_assoc, liftK_π_eq_zero_of_boundary, lift_K_comp_cyclesIso_inv, liftCycles_comp_cyclesIso_hom_assoc, liftCycles_comp_cyclesIso_hom, liftK_π_eq_zero_of_boundary_assoc
|
ofEpiOfIsIsoOfMono 📖 | CompOp | 8 mathmath: ofEpiOfIsIsoOfMono_K, CategoryTheory.ShortComplex.LeftHomologyMapData.ofEpiOfIsIsoOfMono_φK, ofEpiOfIsIsoOfMono_H, CategoryTheory.ShortComplex.LeftHomologyMapData.ofEpiOfIsIsoOfMono_φH, ofEpiOfIsIsoOfMono_i, τ₁_ofEpiOfIsIsoOfMono_f', ofEpiOfIsIsoOfMono_π, CategoryTheory.ShortComplex.HomologyData.ofEpiOfIsIsoOfMono_left
|
ofEpiOfIsIsoOfMono' 📖 | CompOp | 8 mathmath: ofEpiOfIsIsoOfMono'_i, CategoryTheory.ShortComplex.HomologyData.ofEpiOfIsIsoOfMono'_left, ofEpiOfIsIsoOfMono'_K, CategoryTheory.ShortComplex.LeftHomologyMapData.ofEpiOfIsIsoOfMono'_φK, CategoryTheory.ShortComplex.LeftHomologyMapData.ofEpiOfIsIsoOfMono'_φH, ofEpiOfIsIsoOfMono'_f', ofEpiOfIsIsoOfMono'_H, ofEpiOfIsIsoOfMono'_π
|
ofHasCokernel 📖 | CompOp | 6 mathmath: ofHasCokernel_π, CategoryTheory.ShortComplex.HomologyData.ofHasCokernel_iso, ofHasCokernel_K, ofHasCokernel_H, CategoryTheory.ShortComplex.HomologyData.ofHasCokernel_left, ofHasCokernel_i
|
ofHasKernel 📖 | CompOp | 2 mathmath: CategoryTheory.ShortComplex.HomologyData.ofHasKernel_left, CategoryTheory.ShortComplex.HomologyData.ofHasKernel_iso
|
ofHasKernelOfHasCokernel 📖 | CompOp | 4 mathmath: ofHasKernelOfHasCokernel_H, ofHasKernelOfHasCokernel_K, ofHasKernelOfHasCokernel_i, ofHasKernelOfHasCokernel_π
|
ofIsColimitCokernelCofork 📖 | CompOp | 11 mathmath: CategoryTheory.ShortComplex.HomologyData.ofIsColimitCokernelCofork_iso, CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φK, ofIsColimitCokernelCofork_π, ofIsColimitCokernelCofork_H, ofIsColimitCokernelCofork_f', ofIsColimitCokernelCofork_K, CategoryTheory.ShortComplex.HomologyData.ofIsColimitCokernelCofork_left, CategoryTheory.ShortComplex.LeftHomologyMapData.ofIsColimitCokernelCofork_φK, ofIsColimitCokernelCofork_i, CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.ofIsColimitCokernelCofork_φH
|
ofIsLimitKernelFork 📖 | CompOp | 11 mathmath: CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork_left, ofIsLimitKernelFork_H, ofIsLimitKernelFork_i, CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φH, ofIsLimitKernelFork_K, CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork_iso, ofIsLimitKernelFork_π, CategoryTheory.ShortComplex.LeftHomologyMapData.ofIsLimitKernelFork_φK, CategoryTheory.ShortComplex.LeftHomologyMapData.ofIsLimitKernelFork_φH, ofIsLimitKernelFork_f', CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φK
|
ofIso 📖 | CompOp | — |
ofZeros 📖 | CompOp | 13 mathmath: CategoryTheory.ShortComplex.HomologyData.ofZeros_left, ofZeros_f', CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φK, ofZeros_K, CategoryTheory.ShortComplex.LeftHomologyMapData.ofZeros_φK, ofZeros_i, CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φH, ofZeros_H, CategoryTheory.ShortComplex.HomologyData.ofZeros_iso, ofZeros_π, CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φK, CategoryTheory.ShortComplex.LeftHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.ofZeros_φH
|
π 📖 | CompOp | 70 mathmath: π_descH_assoc, leftHomologyπ_comp_leftHomologyIso_hom, groupHomology.π_comp_H2Iso_hom_assoc, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom, HomologicalComplex.extend.leftHomologyData_π, groupCohomology.π_comp_H1Iso_hom_assoc, CategoryTheory.ShortComplex.HomologyData.canonical_left_π, f'_π_assoc, unop_ι, π_comp_homologyIso_inv, map_π, groupHomology.π_comp_H1Iso_inv, ofHasCokernel_π, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, ofIsColimitCokernelCofork_π, CochainComplex.HomComplex.leftHomologyData_π_hom_apply, groupHomology.π_comp_H2Iso_inv_assoc, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.leftHomologyData_π, CategoryTheory.ShortComplex.abLeftHomologyData_π, groupCohomology.π_comp_H1Iso_hom, CategoryTheory.ShortComplex.HomologyData.comm_assoc, π_comp_leftHomologyIso_inv_assoc, leftHomologyπ_comp_leftHomologyIso_hom_assoc, groupHomology.π_comp_H2Iso_hom, copy_π, CategoryTheory.ShortComplex.LeftHomologyMapData.commπ, f'_π, CategoryTheory.ShortComplex.leftHomologyπ_naturality', wπ_assoc, CategoryTheory.ShortComplex.leftHomologyπ_naturality'_assoc, CategoryTheory.ShortComplex.Splitting.leftHomologyData_π, homologyπ_comp_homologyIso_hom_assoc, CategoryTheory.ShortComplex.Exact.leftHomologyDataOfIsLimitKernelFork_π, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, wπ, π_comp_homologyIso_inv_assoc, ofEpiOfIsIsoOfMono'_π, canonical_π, ofAbelian_π, groupCohomology.π_comp_H2Iso_hom_assoc, groupHomology.π_comp_H1Iso_hom_assoc, liftK_π_eq_zero_of_boundary, groupHomology.π_comp_H2Iso_inv, CategoryTheory.ShortComplex.HomologyData.ofIso_left_π, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π_assoc, ofHasKernelOfHasCokernel_π, π_descH, isIso_π, ofIsLimitKernelFork_π, CategoryTheory.ShortComplex.π_moduleCatCyclesIso_hom_assoc, CategoryTheory.ShortComplex.moduleCatLeftHomologyData_π_hom, CochainComplex.HomComplex.leftHomologyData'_π, HomologicalComplex.extend.homologyData'_left_π, ofZeros_π, groupHomology.π_comp_H1Iso_hom, homologyπ_comp_homologyIso_hom, instEpiπ, CategoryTheory.ShortComplex.RightHomologyData.unop_π, π_comp_leftHomologyIso_inv, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.LeftHomologyMapData.commπ_assoc, CategoryTheory.ShortComplex.moduleCatCyclesIso_inv_π, ofEpiOfIsIsoOfMono_π, groupHomology.π_comp_H1Iso_inv_assoc, liftK_π_eq_zero_of_boundary_assoc, op_ι, CategoryTheory.ShortComplex.RightHomologyData.op_π, groupCohomology.π_comp_H2Iso_hom
|