| Metric | Count |
Definitionsadd, neg, add, comp, compLeft, compRight, equivSubZero, h₀, h₁, h₂, h₃, neg, ofEq, ofNullHomotopic, op, refl, sub, trans, unop, HomotopyEquiv, hom, homotopyHomInvId, homotopyInvHomId, inv, refl, trans, add, neg, ofNullHomotopic, add, neg, ofNullHomotopic, instAddCommGroupHom, instAddHom, instNegHom, instPreadditive, instSubHom, nullHomotopic | 38 |
Theoremsadd_left, add_right, neg_left, neg_right, add_h₀, add_h₁, add_h₂, add_h₃, comm₁, comm₂, comm₃, compLeft_h₀, compLeft_h₁, compLeft_h₂, compLeft_h₃, compRight_h₀, compRight_h₁, compRight_h₂, compRight_h₃, comp_h₀, comp_h₁, comp_h₂, comp_h₃, eq_add_nullHomotopic, equivSubZero_apply, equivSubZero_symm_apply, ext, ext_iff, g_h₃, g_h₃_assoc, homologyMap'_congr, homologyMap_congr, h₀_f, h₀_f_assoc, leftHomologyMap'_congr, leftHomologyMap_congr, neg_h₀, neg_h₁, neg_h₂, neg_h₃, ofEq_h₀, ofEq_h₁, ofEq_h₂, ofEq_h₃, ofNullHomotopic_h₀, ofNullHomotopic_h₁, ofNullHomotopic_h₂, ofNullHomotopic_h₃, op_h₀, op_h₁, op_h₂, op_h₃, refl_h₀, refl_h₁, refl_h₂, refl_h₃, rightHomologyMap'_congr, rightHomologyMap_congr, sub_h₀, sub_h₁, sub_h₂, sub_h₃, symm_h₀, symm_h₁, symm_h₂, symm_h₃, trans_h₀, trans_h₁, trans_h₂, trans_h₃, unop_h₀, unop_h₁, unop_h₂, unop_h₃, ext, ext_iff, refl_hom, refl_homotopyHomInvId, refl_homotopyInvHomId, refl_inv, symm_hom, symm_homotopyHomInvId, symm_homotopyInvHomId, symm_inv, trans_hom, trans_homotopyHomInvId, trans_homotopyInvHomId, trans_inv, add_φH, add_φK, neg_φH, neg_φK, add_φH, add_φQ, neg_φH, neg_φQ, add_τ₁, add_τ₂, add_τ₃, cyclesFunctor_additive, cyclesMap'_add, cyclesMap'_neg, cyclesMap'_sub, cyclesMap_add, cyclesMap_neg, cyclesMap_sub, homologyFunctor_additive, homologyMap'_add, homologyMap'_neg, homologyMap'_nullHomotopic, homologyMap'_sub, homologyMap_add, homologyMap_neg, homologyMap_nullHomotopic, homologyMap_sub, leftHomologyFunctor_additive, leftHomologyMap'_add, leftHomologyMap'_neg, leftHomologyMap'_nullHomotopic, leftHomologyMap'_sub, leftHomologyMap_add, leftHomologyMap_neg, leftHomologyMap_nullHomotopic, leftHomologyMap_sub, neg_τ₁, neg_τ₂, neg_τ₃, nullHomotopic_τ₁, nullHomotopic_τ₂, nullHomotopic_τ₃, opcyclesFunctor_additive, opcyclesMap'_add, opcyclesMap'_neg, opcyclesMap'_sub, opcyclesMap_add, opcyclesMap_neg, opcyclesMap_sub, rightHomologyFunctor_additive, rightHomologyMap'_add, rightHomologyMap'_neg, rightHomologyMap'_nullHomotopic, rightHomologyMap'_sub, rightHomologyMap_add, rightHomologyMap_neg, rightHomologyMap_nullHomotopic, rightHomologyMap_sub, sub_τ₁, sub_τ₂, sub_τ₃ | 149 |
| Total | 187 |
| Name | Category | Theorems |
add 📖 | CompOp | 5 mathmath: add_h₁, equivSubZero_symm_apply, add_h₀, add_h₂, add_h₃
|
comp 📖 | CompOp | 4 mathmath: comp_h₃, comp_h₁, comp_h₀, comp_h₂
|
compLeft 📖 | CompOp | 6 mathmath: compLeft_h₂, CategoryTheory.ShortComplex.HomotopyEquiv.trans_homotopyHomInvId, compLeft_h₃, compLeft_h₀, CategoryTheory.ShortComplex.HomotopyEquiv.trans_homotopyInvHomId, compLeft_h₁
|
compRight 📖 | CompOp | 6 mathmath: compRight_h₀, compRight_h₁, compRight_h₂, compRight_h₃, CategoryTheory.ShortComplex.HomotopyEquiv.trans_homotopyHomInvId, CategoryTheory.ShortComplex.HomotopyEquiv.trans_homotopyInvHomId
|
equivSubZero 📖 | CompOp | 2 mathmath: equivSubZero_symm_apply, equivSubZero_apply
|
h₀ 📖 | CompOp | 21 mathmath: h₀_f_assoc, refl_h₀, comm₁, sub_h₀, op_h₀, ofNullHomotopic_h₀, unop_h₃, compRight_h₀, smul_h₀, ofEq_h₀, symm_h₀, add_h₀, op_h₃, trans_h₀, neg_h₀, eq_add_nullHomotopic, comp_h₀, compLeft_h₀, ext_iff, unop_h₀, h₀_f
|
h₁ 📖 | CompOp | 20 mathmath: comm₁, smul_h₁, unop_h₂, op_h₂, add_h₁, sub_h₁, neg_h₁, compRight_h₁, ofNullHomotopic_h₁, refl_h₁, comp_h₁, unop_h₁, eq_add_nullHomotopic, trans_h₁, comm₂, ofEq_h₁, op_h₁, ext_iff, symm_h₁, compLeft_h₁
|
h₂ 📖 | CompOp | 20 mathmath: unop_h₂, compLeft_h₂, op_h₂, smul_h₂, refl_h₂, ofEq_h₂, comm₃, compRight_h₂, ofNullHomotopic_h₂, trans_h₂, unop_h₁, add_h₂, eq_add_nullHomotopic, symm_h₂, sub_h₂, comm₂, op_h₁, ext_iff, comp_h₂, neg_h₂
|
h₃ 📖 | CompOp | 21 mathmath: comp_h₃, op_h₀, g_h₃_assoc, refl_h₃, unop_h₃, smul_h₃, comm₃, compRight_h₃, symm_h₃, sub_h₃, op_h₃, trans_h₃, neg_h₃, compLeft_h₃, eq_add_nullHomotopic, g_h₃, ext_iff, ofEq_h₃, ofNullHomotopic_h₃, add_h₃, unop_h₀
|
neg 📖 | CompOp | 4 mathmath: neg_h₁, neg_h₃, neg_h₀, neg_h₂
|
ofEq 📖 | CompOp | 10 mathmath: CategoryTheory.ShortComplex.HomotopyEquiv.refl_homotopyHomInvId, ofEq_h₂, ofEq_h₀, equivSubZero_symm_apply, CategoryTheory.ShortComplex.HomotopyEquiv.trans_homotopyHomInvId, equivSubZero_apply, ofEq_h₁, ofEq_h₃, CategoryTheory.ShortComplex.HomotopyEquiv.trans_homotopyInvHomId, CategoryTheory.ShortComplex.HomotopyEquiv.refl_homotopyInvHomId
|
ofNullHomotopic 📖 | CompOp | 4 mathmath: ofNullHomotopic_h₀, ofNullHomotopic_h₁, ofNullHomotopic_h₂, ofNullHomotopic_h₃
|
op 📖 | CompOp | 4 mathmath: op_h₀, op_h₂, op_h₃, op_h₁
|
refl 📖 | CompOp | 6 mathmath: refl_h₀, refl_h₃, refl_h₂, equivSubZero_symm_apply, refl_h₁, equivSubZero_apply
|
sub 📖 | CompOp | 5 mathmath: sub_h₀, sub_h₁, sub_h₃, equivSubZero_apply, sub_h₂
|
trans 📖 | CompOp | 8 mathmath: equivSubZero_symm_apply, trans_h₂, CategoryTheory.ShortComplex.HomotopyEquiv.trans_homotopyHomInvId, equivSubZero_apply, trans_h₃, trans_h₀, trans_h₁, CategoryTheory.ShortComplex.HomotopyEquiv.trans_homotopyInvHomId
|
unop 📖 | CompOp | 4 mathmath: unop_h₂, unop_h₃, unop_h₁, unop_h₀
|