Documentation Verification Report

PreservesHomology

πŸ“ Source: Mathlib/Algebra/Homology/ShortComplex/PreservesHomology.lean

Statistics

MetricCount
DefinitionsPreservesHomology, PreservesLeftHomologyOf, PreservesRightHomologyOf, map, map, natTransApp, IsPreservedBy, map, map, natTransApp, IsPreservedBy, map, map, natTransApp, cyclesFunctorIso, homologyFunctorIso, leftHomologyFunctorIso, mapCyclesIso, mapHomologyIso, mapHomologyIso', mapLeftHomologyIso, mapOpcyclesIso, mapRightHomologyIso, opcyclesFunctorIso, rightHomologyFunctorIso
25
TheoremspreservesCokernel, preservesCokernels, preservesKernel, preservesKernels, preservesLeftHomologyOf, preservesRightHomologyOf, isPreservedBy, mk', isPreservedBy, mk', preservesHomologyOfExact, preservesLeftHomology_of_zero_f, preservesLeftHomology_of_zero_g, preservesRightHomology_of_zero_f, preservesRightHomology_of_zero_g, app_homology, map_homologyMap', map_iso, map_left, map_right, map_left, map_right, natTransApp_left, natTransApp_right, f', g, hf', hg, isPreservedBy_of_preserves, isPreservedBy_of_preservesHomology, mapCyclesIso_eq, mapHomologyIso_eq, mapLeftHomologyIso_eq, map_H, map_K, map_cyclesMap', map_f', map_i, map_leftHomologyMap', map_Ο€, map_Ο†H, map_Ο†K, natTransApp_Ο†H, natTransApp_Ο†K, quasiIso_map_iff, f, g', hf, hg', isPreservedBy_of_preserves, isPreservedBy_of_preservesHomology, mapHomologyIso'_eq, mapOpcyclesIso_eq, mapRightHomologyIso_eq, map_H, map_Q, map_g', map_opcyclesMap', map_p, map_rightHomologyMap', map_ΞΉ, map_Ο†H, map_Ο†Q, natTransApp_Ο†H, natTransApp_Ο†Q, quasiIso_map_iff, hasHomology_of_preserves, hasHomology_of_preserves', hasLeftHomology_of_preserves, hasLeftHomology_of_preserves', hasRightHomology_of_preserves, hasRightHomology_of_preserves', homologyMap_mapNatTrans, mapCyclesIso_hom_iCycles, mapCyclesIso_hom_iCycles_assoc, mapCyclesIso_hom_naturality, mapCyclesIso_hom_naturality_assoc, mapCyclesIso_inv_naturality, mapCyclesIso_inv_naturality_assoc, mapHomologyIso'_eq_mapHomologyIso, mapHomologyIso'_hom_naturality, mapHomologyIso'_hom_naturality_assoc, mapHomologyIso'_inv_naturality, mapHomologyIso'_inv_naturality_assoc, mapHomologyIso_hom_naturality, mapHomologyIso_hom_naturality_assoc, mapHomologyIso_inv_naturality, mapHomologyIso_inv_naturality_assoc, mapLeftHomologyIso_hom_naturality, mapLeftHomologyIso_hom_naturality_assoc, mapLeftHomologyIso_inv_naturality, mapLeftHomologyIso_inv_naturality_assoc, mapOpcyclesIso_hom_naturality, mapOpcyclesIso_hom_naturality_assoc, mapOpcyclesIso_inv_naturality, mapOpcyclesIso_inv_naturality_assoc, mapRightHomologyIso_hom_naturality, mapRightHomologyIso_hom_naturality_assoc, mapRightHomologyIso_inv_naturality, mapRightHomologyIso_inv_naturality_assoc, map_leftRightHomologyComparison', quasiIso_map_iff_of_preservesLeftHomology, quasiIso_map_iff_of_preservesRightHomology, quasiIso_map_of_preservesLeftHomology, quasiIso_map_of_preservesRightHomology
105
Total130

CategoryTheory.Functor

Definitions

NameCategoryTheorems
PreservesHomology πŸ“–CompData
9 mathmath: preservesHomology_of_map_exact, preservesHomology_of_preservesMonos_and_cokernels, preservesHomology_of_preservesEpis_and_kernels, CategoryTheory.preservesHomology_preadditiveCoyonedaObj_of_projective, CategoryTheory.preservesHomology_preadditiveYonedaObj_of_injective, preservesHomologyOfExact, instPreservesHomologyFunctorAddCommGrpCatColim, exact_tfae, CategoryTheory.ShortComplex.instPreservesHomologyModuleCatAbForgetβ‚‚LinearMapIdCarrierAddMonoidHomCarrier
PreservesLeftHomologyOf πŸ“–CompData
4 mathmath: preservesLeftHomology_of_zero_g, preservesLeftHomology_of_zero_f, PreservesHomology.preservesLeftHomologyOf, PreservesLeftHomologyOf.mk'
PreservesRightHomologyOf πŸ“–CompData
4 mathmath: PreservesHomology.preservesRightHomologyOf, preservesRightHomology_of_zero_f, PreservesRightHomologyOf.mk', preservesRightHomology_of_zero_g

Theorems

NameKindAssumesProvesValidatesDepends On
preservesHomologyOfExact πŸ“–mathematicalβ€”PreservesHomologyβ€”CategoryTheory.Limits.PreservesLimitsOfShape.preservesLimit
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Limits.PreservesColimitsOfShape.preservesColimit
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
preservesLeftHomology_of_zero_f πŸ“–mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Limits.HasZeroMorphisms.zero
PreservesLeftHomologyOfβ€”CategoryTheory.Limits.preservesCokernel_zero'
CategoryTheory.cancel_mono
CategoryTheory.ShortComplex.LeftHomologyData.instMonoI
CategoryTheory.ShortComplex.LeftHomologyData.f'_i
CategoryTheory.Limits.zero_comp
preservesLeftHomology_of_zero_g πŸ“–mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
PreservesLeftHomologyOfβ€”CategoryTheory.Limits.preservesKernel_zero
CategoryTheory.ShortComplex.LeftHomologyData.isIso_i
CategoryTheory.ShortComplex.LeftHomologyData.f'_i
CategoryTheory.Category.id_comp
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.preservesColimit_of_iso_diagram
preservesRightHomology_of_zero_f πŸ“–mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.Limits.HasZeroMorphisms.zero
PreservesRightHomologyOfβ€”CategoryTheory.Limits.preservesCokernel_zero
CategoryTheory.ShortComplex.RightHomologyData.isIso_p
CategoryTheory.Category.comp_id
CategoryTheory.ShortComplex.RightHomologyData.p_g'
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.preservesLimit_of_iso_diagram
preservesRightHomology_of_zero_g πŸ“–mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
PreservesRightHomologyOfβ€”CategoryTheory.Limits.preservesKernel_zero'
CategoryTheory.cancel_epi
CategoryTheory.ShortComplex.RightHomologyData.instEpiP
CategoryTheory.ShortComplex.RightHomologyData.p_g'
CategoryTheory.Limits.comp_zero

CategoryTheory.Functor.PreservesHomology

Theorems

NameKindAssumesProvesValidatesDepends On
preservesCokernel πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”preservesCokernels
preservesCokernels πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
preservesKernel πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”preservesKernels
preservesKernels πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
preservesLeftHomologyOf πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesLeftHomologyOfβ€”CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preservesHomology
preservesRightHomologyOf πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesRightHomologyOfβ€”CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preservesHomology

CategoryTheory.Functor.PreservesLeftHomologyOf

Theorems

NameKindAssumesProvesValidatesDepends On
isPreservedBy πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedByβ€”β€”
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesLeftHomologyOfβ€”CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hg
CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy.hf'
CategoryTheory.ShortComplex.f'_cyclesMap'
CategoryTheory.Category.id_comp
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.preservesColimit_of_iso_diagram

CategoryTheory.Functor.PreservesRightHomologyOf

Theorems

NameKindAssumesProvesValidatesDepends On
isPreservedBy πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.RightHomologyData.IsPreservedByβ€”β€”
mk' πŸ“–mathematicalβ€”CategoryTheory.Functor.PreservesRightHomologyOfβ€”CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hf
CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy.hg'
CategoryTheory.Category.comp_id
CategoryTheory.ShortComplex.opcyclesMap'_g'
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.preservesLimit_of_iso_diagram

CategoryTheory.NatTrans

Theorems

NameKindAssumesProvesValidatesDepends On
app_homology πŸ“–mathematicalβ€”app
CategoryTheory.ShortComplex.homology
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.hasHomology_of_preserves
CategoryTheory.Iso.inv
CategoryTheory.ShortComplex.mapHomologyIso
CategoryTheory.ShortComplex.homologyMap
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.Iso.hom
β€”CategoryTheory.ShortComplex.hasHomology_of_preserves
CategoryTheory.ShortComplex.homologyMap_mapNatTrans
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.inv_hom_id_assoc

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
cyclesFunctorIso πŸ“–CompOpβ€”
homologyFunctorIso πŸ“–CompOpβ€”
leftHomologyFunctorIso πŸ“–CompOpβ€”
mapCyclesIso πŸ“–CompOp
7 mathmath: mapCyclesIso_hom_iCycles_assoc, mapCyclesIso_hom_naturality_assoc, mapCyclesIso_inv_naturality_assoc, LeftHomologyData.mapCyclesIso_eq, mapCyclesIso_hom_iCycles, mapCyclesIso_inv_naturality, mapCyclesIso_hom_naturality
mapHomologyIso πŸ“–CompOp
8 mathmath: mapHomologyIso_hom_naturality, mapHomologyIso_hom_naturality_assoc, CategoryTheory.NatTrans.app_homology, homologyMap_mapNatTrans, mapHomologyIso'_eq_mapHomologyIso, LeftHomologyData.mapHomologyIso_eq, mapHomologyIso_inv_naturality, mapHomologyIso_inv_naturality_assoc
mapHomologyIso' πŸ“–CompOp
6 mathmath: mapHomologyIso'_hom_naturality, mapHomologyIso'_eq_mapHomologyIso, mapHomologyIso'_hom_naturality_assoc, RightHomologyData.mapHomologyIso'_eq, mapHomologyIso'_inv_naturality_assoc, mapHomologyIso'_inv_naturality
mapLeftHomologyIso πŸ“–CompOp
5 mathmath: mapLeftHomologyIso_hom_naturality, LeftHomologyData.mapLeftHomologyIso_eq, mapLeftHomologyIso_hom_naturality_assoc, mapLeftHomologyIso_inv_naturality, mapLeftHomologyIso_inv_naturality_assoc
mapOpcyclesIso πŸ“–CompOp
5 mathmath: mapOpcyclesIso_hom_naturality_assoc, mapOpcyclesIso_inv_naturality, RightHomologyData.mapOpcyclesIso_eq, mapOpcyclesIso_inv_naturality_assoc, mapOpcyclesIso_hom_naturality
mapRightHomologyIso πŸ“–CompOp
5 mathmath: mapRightHomologyIso_inv_naturality, mapRightHomologyIso_hom_naturality, mapRightHomologyIso_inv_naturality_assoc, RightHomologyData.mapRightHomologyIso_eq, mapRightHomologyIso_hom_naturality_assoc
opcyclesFunctorIso πŸ“–CompOpβ€”
rightHomologyFunctorIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
hasHomology_of_preserves πŸ“–mathematicalβ€”HasHomology
map
β€”HasHomology.mk'
LeftHomologyData.isPreservedBy_of_preserves
RightHomologyData.isPreservedBy_of_preserves
hasHomology_of_preserves' πŸ“–mathematicalβ€”HasHomology
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
β€”hasHomology_of_preserves
hasLeftHomology_of_preserves πŸ“–mathematicalβ€”HasLeftHomology
map
β€”HasLeftHomology.mk'
LeftHomologyData.isPreservedBy_of_preserves
hasLeftHomology_of_preserves' πŸ“–mathematicalβ€”HasLeftHomology
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
β€”hasLeftHomology_of_preserves
hasRightHomology_of_preserves πŸ“–mathematicalβ€”HasRightHomology
map
β€”HasRightHomology.mk'
RightHomologyData.isPreservedBy_of_preserves
hasRightHomology_of_preserves' πŸ“–mathematicalβ€”HasRightHomology
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
β€”hasRightHomology_of_preserves
homologyMap_mapNatTrans πŸ“–mathematicalβ€”homologyMap
map
mapNatTrans
hasHomology_of_preserves
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
mapHomologyIso
CategoryTheory.NatTrans.app
CategoryTheory.Iso.inv
β€”LeftHomologyMapData.homologyMap_eq
LeftHomologyData.isPreservedBy_of_preserves
hasHomology_of_preserves
mapCyclesIso_hom_iCycles πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
map
hasLeftHomology_of_preserves
CategoryTheory.Functor.obj
Xβ‚‚
CategoryTheory.Iso.hom
mapCyclesIso
CategoryTheory.Functor.map
iCycles
β€”LeftHomologyData.cyclesIso_hom_comp_i
hasLeftHomology_of_preserves
mapCyclesIso_hom_iCycles_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
map
hasLeftHomology_of_preserves
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
mapCyclesIso
Xβ‚‚
CategoryTheory.Functor.map
iCycles
β€”hasLeftHomology_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapCyclesIso_hom_iCycles
mapCyclesIso_hom_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasLeftHomology_of_preserves'
cyclesMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
map
hasLeftHomology_of_preserves
mapCyclesIso
β€”hasLeftHomology_of_preserves'
hasLeftHomology_of_preserves
LeftHomologyData.isPreservedBy_of_preserves
CategoryTheory.Category.comp_id
LeftHomologyData.map_cyclesMap'
CategoryTheory.Category.id_comp
mapCyclesIso_hom_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
cycles
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasLeftHomology_of_preserves'
cyclesMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
map
hasLeftHomology_of_preserves
mapCyclesIso
β€”hasLeftHomology_of_preserves'
hasLeftHomology_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapCyclesIso_hom_naturality
mapCyclesIso_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
cycles
map
hasLeftHomology_of_preserves
CategoryTheory.Functor.map
cyclesMap
CategoryTheory.Iso.inv
mapCyclesIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasLeftHomology_of_preserves'
β€”hasLeftHomology_of_preserves
hasLeftHomology_of_preserves'
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
mapCyclesIso_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
mapCyclesIso_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
cycles
CategoryTheory.Functor.map
cyclesMap
map
hasLeftHomology_of_preserves
CategoryTheory.Iso.inv
mapCyclesIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasLeftHomology_of_preserves'
β€”hasLeftHomology_of_preserves
hasLeftHomology_of_preserves'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapCyclesIso_inv_naturality
mapHomologyIso'_eq_mapHomologyIso πŸ“–mathematicalβ€”mapHomologyIso'
hasHomology_of_preserves
mapHomologyIso
β€”CategoryTheory.Iso.ext
hasHomology_of_preserves
LeftHomologyData.isPreservedBy_of_preserves
LeftHomologyData.mapHomologyIso_eq
RightHomologyData.isPreservedBy_of_preserves
RightHomologyData.mapHomologyIso'_eq
hasRightHomology_of_hasHomology
hasLeftHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
CategoryTheory.Functor.map_comp
RightHomologyData.map_rightHomologyMap'
CategoryTheory.Functor.map_id
LeftHomologyData.map_leftHomologyMap'
HomologyMapData.comm
Mathlib.Tactic.Reassoc.eq_whisker'
RightHomologyMapData.rightHomologyMap'_eq
LeftHomologyMapData.leftHomologyMap'_eq
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
mapHomologyIso'_hom_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
map
CategoryTheory.Functor.obj
homologyMap
CategoryTheory.Functor.map
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Iso.hom
mapHomologyIso'
β€”RightHomologyData.isPreservedBy_of_preserves
RightHomologyData.rightHomologyIso_hom_naturality_assoc
CategoryTheory.Functor.map_comp
CategoryTheory.Category.assoc
RightHomologyData.rightHomologyIso_inv_naturality
mapHomologyIso'_hom_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
map
homologyMap
CategoryTheory.Functor.map
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
mapHomologyIso'
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapHomologyIso'_hom_naturality
mapHomologyIso'_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
homology
map
CategoryTheory.Functor.map
homologyMap
CategoryTheory.Iso.inv
mapHomologyIso'
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
β€”CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
mapHomologyIso'_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
mapHomologyIso'_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
homology
CategoryTheory.Functor.map
homologyMap
map
CategoryTheory.Iso.inv
mapHomologyIso'
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapHomologyIso'_inv_naturality
mapHomologyIso_hom_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
map
CategoryTheory.Functor.obj
homologyMap
CategoryTheory.Functor.map
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Iso.hom
mapHomologyIso
β€”hasLeftHomology_of_hasHomology
LeftHomologyData.isPreservedBy_of_preserves
CategoryTheory.Category.comp_id
LeftHomologyData.map_leftHomologyMap'
CategoryTheory.Category.id_comp
mapHomologyIso_hom_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
homology
map
homologyMap
CategoryTheory.Functor.map
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.obj
CategoryTheory.Iso.hom
mapHomologyIso
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapHomologyIso_hom_naturality
mapHomologyIso_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
homology
map
CategoryTheory.Functor.map
homologyMap
CategoryTheory.Iso.inv
mapHomologyIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
β€”CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
mapHomologyIso_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
mapHomologyIso_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
homology
CategoryTheory.Functor.map
homologyMap
map
CategoryTheory.Iso.inv
mapHomologyIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
β€”CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapHomologyIso_inv_naturality
mapLeftHomologyIso_hom_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftHomology
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasLeftHomology_of_preserves'
leftHomologyMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
map
hasLeftHomology_of_preserves
mapLeftHomologyIso
β€”hasLeftHomology_of_preserves'
hasLeftHomology_of_preserves
LeftHomologyData.isPreservedBy_of_preserves
CategoryTheory.Category.comp_id
LeftHomologyData.map_leftHomologyMap'
CategoryTheory.Category.id_comp
mapLeftHomologyIso_hom_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
leftHomology
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasLeftHomology_of_preserves'
leftHomologyMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
map
hasLeftHomology_of_preserves
mapLeftHomologyIso
β€”hasLeftHomology_of_preserves'
hasLeftHomology_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapLeftHomologyIso_hom_naturality
mapLeftHomologyIso_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
leftHomology
map
hasLeftHomology_of_preserves
CategoryTheory.Functor.map
leftHomologyMap
CategoryTheory.Iso.inv
mapLeftHomologyIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasLeftHomology_of_preserves'
β€”hasLeftHomology_of_preserves
hasLeftHomology_of_preserves'
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
mapLeftHomologyIso_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
mapLeftHomologyIso_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
leftHomology
CategoryTheory.Functor.map
leftHomologyMap
map
hasLeftHomology_of_preserves
CategoryTheory.Iso.inv
mapLeftHomologyIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasLeftHomology_of_preserves'
β€”hasLeftHomology_of_preserves
hasLeftHomology_of_preserves'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapLeftHomologyIso_inv_naturality
mapOpcyclesIso_hom_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasRightHomology_of_preserves'
opcyclesMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
map
hasRightHomology_of_preserves
mapOpcyclesIso
β€”hasRightHomology_of_preserves'
hasRightHomology_of_preserves
RightHomologyData.isPreservedBy_of_preserves
CategoryTheory.Category.comp_id
RightHomologyData.map_opcyclesMap'
CategoryTheory.Category.id_comp
mapOpcyclesIso_hom_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasRightHomology_of_preserves'
opcyclesMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
map
hasRightHomology_of_preserves
mapOpcyclesIso
β€”hasRightHomology_of_preserves'
hasRightHomology_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapOpcyclesIso_hom_naturality
mapOpcyclesIso_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
opcycles
map
hasRightHomology_of_preserves
CategoryTheory.Functor.map
opcyclesMap
CategoryTheory.Iso.inv
mapOpcyclesIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasRightHomology_of_preserves'
β€”hasRightHomology_of_preserves
hasRightHomology_of_preserves'
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
mapOpcyclesIso_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
mapOpcyclesIso_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
opcycles
CategoryTheory.Functor.map
opcyclesMap
map
hasRightHomology_of_preserves
CategoryTheory.Iso.inv
mapOpcyclesIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasRightHomology_of_preserves'
β€”hasRightHomology_of_preserves
hasRightHomology_of_preserves'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapOpcyclesIso_inv_naturality
mapRightHomologyIso_hom_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasRightHomology_of_preserves'
rightHomologyMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
map
hasRightHomology_of_preserves
mapRightHomologyIso
β€”hasRightHomology_of_preserves'
hasRightHomology_of_preserves
RightHomologyData.isPreservedBy_of_preserves
CategoryTheory.Category.comp_id
RightHomologyData.map_rightHomologyMap'
CategoryTheory.Category.id_comp
mapRightHomologyIso_hom_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasRightHomology_of_preserves'
rightHomologyMap
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
map
hasRightHomology_of_preserves
mapRightHomologyIso
β€”hasRightHomology_of_preserves'
hasRightHomology_of_preserves
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapRightHomologyIso_hom_naturality
mapRightHomologyIso_inv_naturality πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
rightHomology
map
hasRightHomology_of_preserves
CategoryTheory.Functor.map
rightHomologyMap
CategoryTheory.Iso.inv
mapRightHomologyIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasRightHomology_of_preserves'
β€”hasRightHomology_of_preserves
hasRightHomology_of_preserves'
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
mapRightHomologyIso_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Iso.hom_inv_id_assoc
mapRightHomologyIso_inv_naturality_assoc πŸ“–mathematicalβ€”CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
rightHomology
CategoryTheory.Functor.map
rightHomologyMap
map
hasRightHomology_of_preserves
CategoryTheory.Iso.inv
mapRightHomologyIso
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
hasRightHomology_of_preserves'
β€”hasRightHomology_of_preserves
hasRightHomology_of_preserves'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
mapRightHomologyIso_inv_naturality
map_leftRightHomologyComparison' πŸ“–mathematicalβ€”CategoryTheory.Functor.map
LeftHomologyData.H
RightHomologyData.H
leftRightHomologyComparison'
map
LeftHomologyData.map
RightHomologyData.map
β€”CategoryTheory.Limits.Cofork.IsColimit.hom_ext
zero
LeftHomologyData.wi
LeftHomologyData.wΟ€
CategoryTheory.Limits.Fork.IsLimit.hom_ext
RightHomologyData.wp
RightHomologyData.wΞΉ
CategoryTheory.Category.assoc
Ο€_leftRightHomologyComparison'_ΞΉ
CategoryTheory.Functor.map_comp
quasiIso_map_iff_of_preservesLeftHomology πŸ“–mathematicalβ€”QuasiIso
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
β€”hasLeftHomology_of_hasHomology
LeftHomologyMapData.quasiIso_iff
LeftHomologyData.isPreservedBy_of_preserves
LeftHomologyMapData.map_Ο†H
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.Functor.map_isIso
quasiIso_map_iff_of_preservesRightHomology πŸ“–mathematicalβ€”QuasiIso
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
β€”hasRightHomology_of_hasHomology
RightHomologyMapData.quasiIso_iff
RightHomologyData.isPreservedBy_of_preserves
RightHomologyMapData.map_Ο†H
CategoryTheory.isIso_of_reflects_iso
CategoryTheory.Functor.map_isIso
quasiIso_map_of_preservesLeftHomology πŸ“–mathematicalβ€”QuasiIso
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
β€”hasLeftHomology_of_hasHomology
LeftHomologyMapData.quasiIso_iff
LeftHomologyData.isPreservedBy_of_preserves
LeftHomologyMapData.map_Ο†H
CategoryTheory.Functor.map_isIso
quasiIso_map_of_preservesRightHomology πŸ“–mathematicalβ€”QuasiIso
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
β€”hasRightHomology_of_hasHomology
RightHomologyMapData.quasiIso_iff
RightHomologyData.isPreservedBy_of_preserves
RightHomologyMapData.map_Ο†H
CategoryTheory.Functor.map_isIso

CategoryTheory.ShortComplex.HomologyData

Definitions

NameCategoryTheorems
map πŸ“–CompOp
8 mathmath: CategoryTheory.ShortComplex.HomologyMapData.map_left, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_left, map_homologyMap', CategoryTheory.ShortComplex.HomologyMapData.map_right, map_left, map_right, map_iso, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right

Theorems

NameKindAssumesProvesValidatesDepends On
map_homologyMap' πŸ“–mathematicalβ€”CategoryTheory.Functor.map
CategoryTheory.ShortComplex.LeftHomologyData.H
left
CategoryTheory.ShortComplex.homologyMap'
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
map
β€”CategoryTheory.ShortComplex.LeftHomologyData.map_leftHomologyMap'
map_iso πŸ“–mathematicalβ€”iso
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.mapIso
CategoryTheory.ShortComplex.LeftHomologyData.H
left
CategoryTheory.ShortComplex.RightHomologyData.H
right
β€”β€”
map_left πŸ“–mathematicalβ€”left
CategoryTheory.ShortComplex.map
map
CategoryTheory.ShortComplex.LeftHomologyData.map
β€”β€”
map_right πŸ“–mathematicalβ€”right
CategoryTheory.ShortComplex.map
map
CategoryTheory.ShortComplex.RightHomologyData.map
β€”β€”

CategoryTheory.ShortComplex.HomologyMapData

Definitions

NameCategoryTheorems
map πŸ“–CompOp
2 mathmath: map_left, map_right
natTransApp πŸ“–CompOp
2 mathmath: natTransApp_left, natTransApp_right

Theorems

NameKindAssumesProvesValidatesDepends On
map_left πŸ“–mathematicalβ€”left
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.HomologyData.map
map
CategoryTheory.ShortComplex.LeftHomologyMapData.map
CategoryTheory.ShortComplex.HomologyData.left
β€”β€”
map_right πŸ“–mathematicalβ€”right
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.HomologyData.map
map
CategoryTheory.ShortComplex.RightHomologyMapData.map
CategoryTheory.ShortComplex.HomologyData.right
β€”β€”
natTransApp_left πŸ“–mathematicalβ€”left
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.ShortComplex.HomologyData.map
CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preserves
CategoryTheory.ShortComplex.HomologyData.left
CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preserves
CategoryTheory.ShortComplex.HomologyData.right
natTransApp
CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp
β€”CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preserves
CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preserves
natTransApp_right πŸ“–mathematicalβ€”right
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.ShortComplex.HomologyData.map
CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preserves
CategoryTheory.ShortComplex.HomologyData.left
CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preserves
CategoryTheory.ShortComplex.HomologyData.right
natTransApp
CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp
β€”CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preserves
CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preserves

CategoryTheory.ShortComplex.LeftHomologyData

Definitions

NameCategoryTheorems
IsPreservedBy πŸ“–CompData
3 mathmath: isPreservedBy_of_preservesHomology, isPreservedBy_of_preserves, CategoryTheory.Functor.PreservesLeftHomologyOf.isPreservedBy
map πŸ“–CompOp
16 mathmath: map_leftHomologyMap', CategoryTheory.ShortComplex.LeftHomologyMapData.map_Ο†H, map_Ο€, map_i, map_cyclesMap', map_K, CategoryTheory.ShortComplex.HomologyData.map_left, CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp_Ο†K, mapLeftHomologyIso_eq, mapCyclesIso_eq, CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp_Ο†H, mapHomologyIso_eq, CategoryTheory.ShortComplex.map_leftRightHomologyComparison', map_f', map_H, CategoryTheory.ShortComplex.LeftHomologyMapData.map_Ο†K

Theorems

NameKindAssumesProvesValidatesDepends On
isPreservedBy_of_preserves πŸ“–mathematicalβ€”IsPreservedByβ€”CategoryTheory.Functor.PreservesLeftHomologyOf.isPreservedBy
isPreservedBy_of_preservesHomology πŸ“–mathematicalβ€”IsPreservedByβ€”CategoryTheory.Functor.PreservesHomology.preservesKernel
CategoryTheory.Functor.PreservesHomology.preservesCokernel
mapCyclesIso_eq πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.mapCyclesIso
CategoryTheory.Iso.trans
CategoryTheory.ShortComplex.cycles
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.hasLeftHomology_of_preserves
K
map
isPreservedBy_of_preserves
CategoryTheory.Functor.obj
cyclesIso
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
CategoryTheory.ShortComplex.hasLeftHomology_of_preserves
isPreservedBy_of_preserves
map_cyclesMap'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
mapHomologyIso_eq πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.mapHomologyIso
CategoryTheory.Iso.trans
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.map
H
map
isPreservedBy_of_preserves
CategoryTheory.Functor.obj
homologyIso
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
isPreservedBy_of_preserves
CategoryTheory.ShortComplex.hasLeftHomology_of_hasHomology
CategoryTheory.Category.comp_id
map_leftHomologyMap'
CategoryTheory.Functor.map_id
mapLeftHomologyIso_eq πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.mapLeftHomologyIso
CategoryTheory.Iso.trans
CategoryTheory.ShortComplex.leftHomology
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.hasLeftHomology_of_preserves
H
map
isPreservedBy_of_preserves
CategoryTheory.Functor.obj
leftHomologyIso
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
CategoryTheory.ShortComplex.hasLeftHomology_of_preserves
isPreservedBy_of_preserves
CategoryTheory.ShortComplex.leftHomology_ext
map_leftHomologyMap'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
map_H πŸ“–mathematicalβ€”H
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.obj
β€”β€”
map_K πŸ“–mathematicalβ€”K
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.obj
β€”β€”
map_cyclesMap' πŸ“–mathematicalβ€”CategoryTheory.Functor.map
K
CategoryTheory.ShortComplex.cyclesMap'
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
map
β€”CategoryTheory.ShortComplex.LeftHomologyMapData.cyclesMap'_eq
CategoryTheory.ShortComplex.LeftHomologyMapData.map_Ο†K
map_f' πŸ“–mathematicalβ€”f'
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.X₁
K
β€”CategoryTheory.cancel_mono
instMonoI
f'_i
CategoryTheory.ShortComplex.map_f
map_i
CategoryTheory.Functor.map_comp
map_i πŸ“–mathematicalβ€”i
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.map
K
CategoryTheory.ShortComplex.Xβ‚‚
β€”β€”
map_leftHomologyMap' πŸ“–mathematicalβ€”CategoryTheory.Functor.map
H
CategoryTheory.ShortComplex.leftHomologyMap'
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
map
β€”CategoryTheory.ShortComplex.LeftHomologyMapData.leftHomologyMap'_eq
CategoryTheory.ShortComplex.LeftHomologyMapData.map_Ο†H
map_Ο€ πŸ“–mathematicalβ€”Ο€
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.map
K
H
β€”β€”

CategoryTheory.ShortComplex.LeftHomologyData.IsPreservedBy

Theorems

NameKindAssumesProvesValidatesDepends On
f' πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.LeftHomologyData.K
CategoryTheory.ShortComplex.LeftHomologyData.f'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
g πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
hf' πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.LeftHomologyData.K
CategoryTheory.ShortComplex.LeftHomologyData.f'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”f'
hg πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”g

CategoryTheory.ShortComplex.LeftHomologyMapData

Definitions

NameCategoryTheorems
map πŸ“–CompOp
3 mathmath: map_Ο†H, CategoryTheory.ShortComplex.HomologyMapData.map_left, map_Ο†K
natTransApp πŸ“–CompOp
3 mathmath: CategoryTheory.ShortComplex.HomologyMapData.natTransApp_left, natTransApp_Ο†K, natTransApp_Ο†H

Theorems

NameKindAssumesProvesValidatesDepends On
map_Ο†H πŸ“–mathematicalβ€”Ο†H
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.LeftHomologyData.map
map
CategoryTheory.ShortComplex.LeftHomologyData.H
β€”β€”
map_Ο†K πŸ“–mathematicalβ€”Ο†K
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.LeftHomologyData.map
map
CategoryTheory.ShortComplex.LeftHomologyData.K
β€”β€”
natTransApp_Ο†H πŸ“–mathematicalβ€”Ο†H
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.ShortComplex.LeftHomologyData.map
CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preserves
natTransApp
CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.LeftHomologyData.H
β€”CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preserves
natTransApp_Ο†K πŸ“–mathematicalβ€”Ο†K
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.ShortComplex.LeftHomologyData.map
CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preserves
natTransApp
CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.LeftHomologyData.K
β€”CategoryTheory.ShortComplex.LeftHomologyData.isPreservedBy_of_preserves
quasiIso_map_iff πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.QuasiIso
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
CategoryTheory.IsIso
CategoryTheory.ShortComplex.LeftHomologyData.H
Ο†H
β€”quasiIso_iff

CategoryTheory.ShortComplex.RightHomologyData

Definitions

NameCategoryTheorems
IsPreservedBy πŸ“–CompData
3 mathmath: CategoryTheory.Functor.PreservesRightHomologyOf.isPreservedBy, isPreservedBy_of_preserves, isPreservedBy_of_preservesHomology
map πŸ“–CompOp
16 mathmath: map_ΞΉ, CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_Ο†Q, map_g', map_H, mapOpcyclesIso_eq, map_rightHomologyMap', CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_Ο†H, map_Q, map_p, mapRightHomologyIso_eq, CategoryTheory.ShortComplex.HomologyData.map_right, CategoryTheory.ShortComplex.map_leftRightHomologyComparison', CategoryTheory.ShortComplex.RightHomologyMapData.map_Ο†H, map_opcyclesMap', CategoryTheory.ShortComplex.RightHomologyMapData.map_Ο†Q, mapHomologyIso'_eq

Theorems

NameKindAssumesProvesValidatesDepends On
isPreservedBy_of_preserves πŸ“–mathematicalβ€”IsPreservedByβ€”CategoryTheory.Functor.PreservesRightHomologyOf.isPreservedBy
isPreservedBy_of_preservesHomology πŸ“–mathematicalβ€”IsPreservedByβ€”CategoryTheory.Functor.PreservesHomology.preservesCokernel
CategoryTheory.Functor.PreservesHomology.preservesKernel
mapHomologyIso'_eq πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.mapHomologyIso'
CategoryTheory.Iso.trans
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.map
H
map
isPreservedBy_of_preserves
CategoryTheory.Functor.obj
homologyIso
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
isPreservedBy_of_preserves
CategoryTheory.ShortComplex.hasRightHomology_of_hasHomology
CategoryTheory.Category.assoc
CategoryTheory.Functor.map_comp
map_rightHomologyMap'
mapOpcyclesIso_eq πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.mapOpcyclesIso
CategoryTheory.Iso.trans
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.hasRightHomology_of_preserves
Q
map
isPreservedBy_of_preserves
CategoryTheory.Functor.obj
opcyclesIso
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
CategoryTheory.ShortComplex.hasRightHomology_of_preserves
isPreservedBy_of_preserves
CategoryTheory.ShortComplex.opcycles_ext
map_opcyclesMap'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
mapRightHomologyIso_eq πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.mapRightHomologyIso
CategoryTheory.Iso.trans
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.hasRightHomology_of_preserves
H
map
isPreservedBy_of_preserves
CategoryTheory.Functor.obj
rightHomologyIso
CategoryTheory.Functor.mapIso
CategoryTheory.Iso.symm
β€”CategoryTheory.Iso.ext
CategoryTheory.ShortComplex.hasRightHomology_of_preserves
isPreservedBy_of_preserves
map_rightHomologyMap'
CategoryTheory.Functor.map_id
CategoryTheory.Category.comp_id
map_H πŸ“–mathematicalβ€”H
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.obj
β€”β€”
map_Q πŸ“–mathematicalβ€”Q
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.obj
β€”β€”
map_g' πŸ“–mathematicalβ€”g'
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.map
Q
CategoryTheory.ShortComplex.X₃
β€”CategoryTheory.cancel_epi
instEpiP
p_g'
CategoryTheory.ShortComplex.map_g
map_p
CategoryTheory.Functor.map_comp
map_opcyclesMap' πŸ“–mathematicalβ€”CategoryTheory.Functor.map
Q
CategoryTheory.ShortComplex.opcyclesMap'
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
map
β€”CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap'_eq
CategoryTheory.ShortComplex.RightHomologyMapData.map_Ο†Q
map_p πŸ“–mathematicalβ€”p
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.Xβ‚‚
Q
β€”β€”
map_rightHomologyMap' πŸ“–mathematicalβ€”CategoryTheory.Functor.map
H
CategoryTheory.ShortComplex.rightHomologyMap'
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
map
β€”CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap'_eq
CategoryTheory.ShortComplex.RightHomologyMapData.map_Ο†H
map_ΞΉ πŸ“–mathematicalβ€”ΞΉ
CategoryTheory.ShortComplex.map
map
CategoryTheory.Functor.map
H
Q
β€”β€”

CategoryTheory.ShortComplex.RightHomologyData.IsPreservedBy

Theorems

NameKindAssumesProvesValidatesDepends On
f πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
g' πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.RightHomologyData.g'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”β€”
hf πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesColimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.Xβ‚‚
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”f
hg' πŸ“–mathematicalβ€”CategoryTheory.Limits.PreservesLimit
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.RightHomologyData.g'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
β€”g'

CategoryTheory.ShortComplex.RightHomologyMapData

Definitions

NameCategoryTheorems
map πŸ“–CompOp
3 mathmath: CategoryTheory.ShortComplex.HomologyMapData.map_right, map_Ο†H, map_Ο†Q
natTransApp πŸ“–CompOp
3 mathmath: natTransApp_Ο†Q, natTransApp_Ο†H, CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right

Theorems

NameKindAssumesProvesValidatesDepends On
map_Ο†H πŸ“–mathematicalβ€”Ο†H
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.RightHomologyData.map
map
CategoryTheory.ShortComplex.RightHomologyData.H
β€”β€”
map_Ο†Q πŸ“–mathematicalβ€”Ο†Q
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.RightHomologyData.map
map
CategoryTheory.ShortComplex.RightHomologyData.Q
β€”β€”
natTransApp_Ο†H πŸ“–mathematicalβ€”Ο†H
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.ShortComplex.RightHomologyData.map
CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preserves
natTransApp
CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.RightHomologyData.H
β€”CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preserves
natTransApp_Ο†Q πŸ“–mathematicalβ€”Ο†Q
CategoryTheory.ShortComplex.map
CategoryTheory.ShortComplex.mapNatTrans
CategoryTheory.ShortComplex.RightHomologyData.map
CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preserves
natTransApp
CategoryTheory.NatTrans.app
CategoryTheory.ShortComplex.RightHomologyData.Q
β€”CategoryTheory.ShortComplex.RightHomologyData.isPreservedBy_of_preserves
quasiIso_map_iff πŸ“–mathematicalβ€”CategoryTheory.ShortComplex.QuasiIso
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.Functor.mapShortComplex
CategoryTheory.Functor.map
CategoryTheory.IsIso
CategoryTheory.ShortComplex.RightHomologyData.H
Ο†H
β€”quasiIso_iff

---

← Back to Index