Documentation Verification Report

QuasiIso

📁 Source: Mathlib/Algebra/Homology/ShortComplex/QuasiIso.lean

Statistics

MetricCount
DefinitionsQuasiIso, QuasiIso
2
TheoremsquasiIso_iff, isIso, isIso', quasiIso_iff, quasiIso_comp, quasiIso_iff, quasiIso_iff_comp_left, quasiIso_iff_comp_right, quasiIso_iff_isIso_descOpcycles, quasiIso_iff_isIso_homologyMap', quasiIso_iff_isIso_leftHomologyMap', quasiIso_iff_isIso_liftCycles, quasiIso_iff_isIso_rightHomologyMap', quasiIso_iff_of_arrow_mk_iso, quasiIso_of_arrow_mk_iso, quasiIso_of_comp_left, quasiIso_of_comp_right, quasiIso_of_epi_of_isIso_of_mono, quasiIso_of_isIso, quasiIso_opMap, quasiIso_opMap_iff, quasiIso_unopMap
22
Total24

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
QuasiIso 📖CompData
35 mathmath: quasiIso_of_epi_of_isIso_of_mono, quasiIso_iff_isIso_rightHomologyMap', quasiIso_of_retract, RightHomologyMapData.quasiIso_map_iff, quasiIso_iff_isIso_homologyMap', quasiIso_iff_isIso_descOpcycles, ChainComplex.quasiIsoAt₀_iff, quasiIso_iff_comp_right, quasiIso_map_of_preservesLeftHomology, LeftHomologyMapData.quasiIso_map_iff, quasiIso_iff_comp_left, quasiIso_map_iff_of_preservesRightHomology, quasiIso_iff_of_zeros', quasiIso_iff_of_zeros, quasiIso_map_iff_of_preservesLeftHomology, QuasiIsoAt.quasiIso, quasiIso_opMap, quasiIsoAt_iff', CochainComplex.quasiIsoAt₀_iff, quasiIso_iff, quasiIso_iff_evaluation, LeftHomologyMapData.quasiIso_iff, quasiIso_of_comp_right, quasiIso_comp, quasiIso_iff_isIso_leftHomologyMap', quasiIso_iff_of_arrow_mk_iso, quasiIsoAt_iff, quasiIso_of_comp_left, quasiIso_unopMap, quasiIso_of_arrow_mk_iso, quasiIso_map_of_preservesRightHomology, quasiIso_of_isIso, quasiIso_opMap_iff, RightHomologyMapData.quasiIso_iff, quasiIso_iff_isIso_liftCycles

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIso_comp 📖mathematicalQuasiIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
quasiIso_iff
homologyMap_comp
CategoryTheory.IsIso.comp_isIso
quasiIso_iff 📖mathematicalQuasiIso
CategoryTheory.IsIso
homology
homologyMap
QuasiIso.isIso
quasiIso_iff_comp_left 📖mathematicalQuasiIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
quasiIso_of_comp_left
quasiIso_comp
quasiIso_iff_comp_right 📖mathematicalQuasiIso
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
quasiIso_of_comp_right
quasiIso_comp
quasiIso_iff_isIso_descOpcycles 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
f
X₁
QuasiIso
CategoryTheory.IsIso
opcycles
hasRightHomology_of_hasHomology
descOpcycles
Hom.τ₂
hasRightHomology_of_hasHomology
f_pOpcycles
Hom.comm₁₂
CategoryTheory.Limits.comp_zero
p_descOpcycles
CategoryTheory.Category.comp_id
RightHomologyData.ofZeros_g'
RightHomologyData.ofIsColimitCokernelCofork_g'
CategoryTheory.Limits.zero_comp
CategoryTheory.Category.id_comp
RightHomologyMapData.quasiIso_iff
quasiIso_iff_isIso_homologyMap' 📖mathematicalQuasiIso
CategoryTheory.IsIso
LeftHomologyData.H
HomologyData.left
homologyMap'
quasiIso_iff_isIso_leftHomologyMap'
quasiIso_iff_isIso_leftHomologyMap' 📖mathematicalQuasiIso
CategoryTheory.IsIso
LeftHomologyData.H
leftHomologyMap'
LeftHomologyMapData.quasiIso_iff
LeftHomologyMapData.leftHomologyMap'_eq
quasiIso_iff_isIso_liftCycles 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
g
X₃
QuasiIso
CategoryTheory.IsIso
cycles
hasLeftHomology_of_hasHomology
liftCycles
Hom.τ₂
hasLeftHomology_of_hasHomology
iCycles_g
Hom.comm₂₃
CategoryTheory.Limits.zero_comp
liftCycles_i
CategoryTheory.Category.id_comp
LeftHomologyData.ofZeros_f'
LeftHomologyData.ofIsLimitKernelFork_f'
CategoryTheory.Limits.comp_zero
CategoryTheory.Category.comp_id
LeftHomologyMapData.quasiIso_iff
quasiIso_iff_isIso_rightHomologyMap' 📖mathematicalQuasiIso
CategoryTheory.IsIso
RightHomologyData.H
rightHomologyMap'
RightHomologyMapData.quasiIso_iff
RightHomologyMapData.rightHomologyMap'_eq
quasiIso_iff_of_arrow_mk_iso 📖mathematicalQuasiIsoquasiIso_of_arrow_mk_iso
quasiIso_of_arrow_mk_iso 📖mathematicalQuasiIsoCategoryTheory.Arrow.w_mk_right_assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
quasiIso_comp
quasiIso_of_isIso
CategoryTheory.Arrow.isIso_left
CategoryTheory.Iso.isIso_inv
CategoryTheory.Arrow.isIso_right
CategoryTheory.Iso.isIso_hom
quasiIso_of_comp_left 📖mathematicalQuasiIsoquasiIso_iff
CategoryTheory.IsIso.of_isIso_comp_left
homologyMap_comp
quasiIso_of_comp_right 📖mathematicalQuasiIsoquasiIso_iff
CategoryTheory.IsIso.of_isIso_comp_right
homologyMap_comp
quasiIso_of_epi_of_isIso_of_mono 📖mathematicalQuasiIsohasLeftHomology_of_hasHomology
LeftHomologyMapData.quasiIso_iff
CategoryTheory.IsIso.id
quasiIso_of_isIso 📖mathematicalQuasiIsoCategoryTheory.Iso.isIso_hom
quasiIso_opMap 📖mathematicalQuasiIso
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasHomologyOppositeOp
opMap
instHasHomologyOppositeOp
quasiIso_opMap_iff
quasiIso_opMap_iff 📖mathematicalQuasiIso
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasHomologyOppositeOp
opMap
instHasHomologyOppositeOp
LeftHomologyMapData.quasiIso_iff
RightHomologyMapData.quasiIso_iff
CategoryTheory.isIso_of_op
CategoryTheory.isIso_op
quasiIso_unopMap 📖mathematicalQuasiIso
unop
unopMap
instHasHomologyOppositeOp
quasiIso_opMap_iff

CategoryTheory.ShortComplex.LeftHomologyMapData

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIso_iff 📖mathematicalCategoryTheory.ShortComplex.QuasiIso
CategoryTheory.IsIso
CategoryTheory.ShortComplex.LeftHomologyData.H
φH
CategoryTheory.ShortComplex.quasiIso_iff
homologyMap_eq
CategoryTheory.IsIso.of_isIso_comp_right
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.of_isIso_comp_left
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsIso.comp_isIso

CategoryTheory.ShortComplex.QuasiIso

Theorems

NameKindAssumesProvesValidatesDepends On
isIso 📖mathematicalCategoryTheory.IsIso
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.homologyMap
isIso'
isIso' 📖mathematicalCategoryTheory.IsIso
CategoryTheory.ShortComplex.homology
CategoryTheory.ShortComplex.homologyMap

CategoryTheory.ShortComplex.RightHomologyMapData

Theorems

NameKindAssumesProvesValidatesDepends On
quasiIso_iff 📖mathematicalCategoryTheory.ShortComplex.QuasiIso
CategoryTheory.IsIso
CategoryTheory.ShortComplex.RightHomologyData.H
φH
CategoryTheory.ShortComplex.quasiIso_iff
homologyMap_eq
CategoryTheory.IsIso.of_isIso_comp_right
CategoryTheory.Iso.isIso_inv
CategoryTheory.IsIso.of_isIso_comp_left
CategoryTheory.Iso.isIso_hom
CategoryTheory.IsIso.comp_isIso

(root)

Definitions

NameCategoryTheorems
QuasiIso 📖CompData
46 mathmath: HomologicalComplex.quasiIso_extendMap_iff, CategoryTheory.ProjectiveResolution.quasiIso, CochainComplex.quasiIso_truncLEMap_iff, quasiIso_of_comp_left, HomologicalComplex.quasiIso_map_of_preservesHomology, quasiIso_of_isIso, HomologicalComplex.mem_quasiIso_iff, HomologicalComplex.quasiIso_map_iff_of_preservesHomology, HomologicalComplex.quasiIso_πTruncGE_iff_isSupported, HomologicalComplex.quasiIso_iff_evaluation, quasiIso_iff_of_arrow_mk_iso, HomotopyEquiv.quasiIso_hom, HomologicalComplex.instQuasiIsoMapOppositeSymmUnopFunctorOp, HomotopyEquiv.quasiIso_inv, HomologicalComplex.HomologySequence.quasiIso_τ₃, CochainComplex.quasiIso_truncGEMap_iff, CochainComplex.quasiIso_shift_iff, quasiIso_iff_comp_left, quasiIso_of_arrow_mk_iso, CochainComplex.instQuasiIsoIntιTruncLEOfIsLE, HomologicalComplex.instQuasiIsoExtendMap, quasiIso_comp, CochainComplex.cm5b.instQuasiIsoIntP, CochainComplex.mappingCone.quasiIso_descShortComplex, quasiIso_of_comp_right, CochainComplex.quasiIso_πTruncGE_iff, quasiIso_iff, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, CochainComplex.instQuasiIsoIntMapHomologicalComplexUpShiftFunctor, HomologicalComplex.quasiIso_ιTruncLE_iff_isSupported, CochainComplex.quasiIso_ιTruncLE_iff, HomologicalComplex.instQuasiIsoOppositeMapSymmOpFunctorOp, Rep.standardComplex.instQuasiIsoNatεToSingle₀, CategoryTheory.InjectiveResolution.instQuasiIsoIntι', Rep.FiniteCyclicGroup.resolution_quasiIso, HomologicalComplex.quasiIso_opFunctor_map_iff, CategoryTheory.ProjectiveResolution.instQuasiIsoIntπ', HomologicalComplex.quasiIso_truncGEMap_iff, HomologicalComplex.quasiIso_unopFunctor_map_iff, quasiIso_iff_comp_right, quasiIso_of_retractArrow, HomologicalComplex.instQuasiIsoShortComplexTruncLEX₃ToTruncGE, DerivedCategory.isIso_Q_map_iff_quasiIso, CategoryTheory.InjectiveResolution.quasiIso, CochainComplex.instQuasiIsoIntπTruncGEOfIsGE, HomologicalComplex.quasiIso_truncLEMap_iff

---

← Back to Index