Documentation Verification Report

RightHomology

📁 Source: Mathlib/Algebra/Homology/ShortComplex/RightHomology.lean

Statistics

MetricCount
DefinitionsHasRightHomology, op, unop, op, unop, RightHomologyData, H, Q, copy, descH, descQ, g', hp, , hι', liftH, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofHasCokernel, ofHasCokernelOfHasKernel, ofHasKernel, ofIsColimitCokernelCofork, ofIsLimitKernelFork, ofIso, ofZeros, op, opcyclesIso, p, rightHomologyIso, unop, ι, RightHomologyMapData, comp, compatibilityOfZerosOfIsColimitCokernelCofork, compatibilityOfZerosOfIsLimitKernelFork, id, instInhabited, instUnique, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofIsColimitCokernelCofork, ofIsLimitKernelFork, ofZeros, op, unop, zero, φH, φQ, cyclesOpIso, descOpcycles, descRightHomology, fromOpcycles, fromOpcyclesNatTrans, isoOpcyclesOfIsColimit, leftHomologyFunctorOpNatIso, leftHomologyOpIso, opcycles, opcyclesFunctor, opcyclesIsCokernel, opcyclesIsoCokernel, opcyclesIsoRightHomology, opcyclesIsoX₂, opcyclesMap, opcyclesMap', opcyclesMapIso, opcyclesMapIso', opcyclesOpIso, pOpcycles, pOpcyclesNatTrans, rightHomology, rightHomologyData, rightHomologyFunctor, rightHomologyFunctorOpNatIso, rightHomologyIsKernel, rightHomologyIsoKernelDesc, rightHomologyMap, rightHomologyMap', rightHomologyMapData, rightHomologyMapIso, rightHomologyMapIso', rightHomologyOpIso, rightHomologyι, rightHomologyιNatTrans
83
Theoremscondition, hasCokernel, hasKernel, mk', of_hasCokernel, of_hasCokernel_of_hasKernel, of_hasKernel, of_zeros, op_H, op_Q, op_g', op_p, op_ι, unop_H, unop_Q, unop_g', unop_p, unop_ι, op_φH, op_φQ, unop_φH, unop_φQ, copy_H, copy_Q, copy_p, copy_ι, instEpiP, instMonoι, isIso_p, isIso_ι, liftH_ι, liftH_ι_assoc, ofEpiOfIsIsoOfMono'_H, ofEpiOfIsIsoOfMono'_Q, ofEpiOfIsIsoOfMono'_g'_τ₃, ofEpiOfIsIsoOfMono'_p, ofEpiOfIsIsoOfMono'_ι, ofEpiOfIsIsoOfMono_H, ofEpiOfIsIsoOfMono_Q, ofEpiOfIsIsoOfMono_g', ofEpiOfIsIsoOfMono_p, ofEpiOfIsIsoOfMono_ι, ofHasCokernelOfHasKernel_H, ofHasCokernelOfHasKernel_Q, ofHasCokernelOfHasKernel_p, ofHasCokernelOfHasKernel_ι, ofHasKernel_H, ofHasKernel_Q, ofHasKernel_p, ofHasKernel_ι, ofIsColimitCokernelCofork_H, ofIsColimitCokernelCofork_Q, ofIsColimitCokernelCofork_g', ofIsColimitCokernelCofork_p, ofIsColimitCokernelCofork_ι, ofIsLimitKernelFork_H, ofIsLimitKernelFork_Q, ofIsLimitKernelFork_g', ofIsLimitKernelFork_p, ofIsLimitKernelFork_ι, ofZeros_H, ofZeros_Q, ofZeros_g', ofZeros_p, ofZeros_ι, op_H, op_K, op_f', op_i, op_π, opcyclesIso_hom_comp_descQ, opcyclesIso_inv_comp_descOpcycles, opcyclesIso_inv_comp_descOpcycles_assoc, pOpcycles_comp_opcyclesIso_hom, pOpcycles_comp_opcyclesIso_hom_assoc, p_comp_opcyclesIso_inv, p_comp_opcyclesIso_inv_assoc, p_descQ, p_descQ_assoc, p_g', p_g'_assoc, rightHomologyIso_hom_comp_ι, rightHomologyIso_hom_comp_ι_assoc, rightHomologyIso_inv_comp_rightHomologyι, rightHomologyIso_inv_comp_rightHomologyι_assoc, unop_H, unop_K, unop_f', unop_i, unop_π, wp, wp_assoc, , wι_assoc, ι_descQ_eq_zero_of_boundary, ι_descQ_eq_zero_of_boundary_assoc, ι_g', ι_g'_assoc, commg', commg'_assoc, commp, commp_assoc, commι, commι_assoc, comp_φH, comp_φQ, compatibilityOfZerosOfIsColimitCokernelCofork_φH, compatibilityOfZerosOfIsColimitCokernelCofork_φQ, compatibilityOfZerosOfIsLimitKernelFork_φH, compatibilityOfZerosOfIsLimitKernelFork_φQ, congr_φH, congr_φQ, id_φH, id_φQ, instSubsingleton, ofEpiOfIsIsoOfMono'_φH, ofEpiOfIsIsoOfMono'_φQ, ofEpiOfIsIsoOfMono_φH, ofEpiOfIsIsoOfMono_φQ, ofIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_φQ, ofIsLimitKernelFork_φH, ofIsLimitKernelFork_φQ, ofZeros_φH, ofZeros_φQ, op_φH, op_φK, opcyclesMap'_eq, opcyclesMap_comm, opcyclesMap_eq, rightHomologyMap'_eq, rightHomologyMap_comm, rightHomologyMap_eq, unop_φH, unop_φK, zero_φH, zero_φQ, cyclesOpIso_hom_naturality, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_inv_naturality, cyclesOpIso_inv_naturality_assoc, cyclesOpIso_inv_op_iCycles, cyclesOpIso_inv_op_iCycles_assoc, descOpcycles_comp, descOpcycles_comp_assoc, f_pOpcycles, f_pOpcycles_assoc, fromOpcyclesNatTrans_app, fromOpcycles_naturality, fromOpcycles_naturality_assoc, fromOpcycles_op_cyclesOpIso_inv, fromOpcycles_op_cyclesOpIso_inv_assoc, hasLeftHomology_iff_op, hasLeftHomology_iff_unop, hasRightHomology_iff_op, hasRightHomology_iff_unop, hasRightHomology_of_epi_of_isIso_of_mono, hasRightHomology_of_epi_of_isIso_of_mono', hasRightHomology_of_iso, instEpiPOpcycles, instHasLeftHomologyOppositeOpOfHasRightHomology, instHasRightHomologyOppositeOpOfHasLeftHomology, instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, instIsIsoRightHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, instMonoRightHomologyι, isIso_opcyclesMap'_of_isIso, isIso_opcyclesMap'_of_isIso_of_epi, isIso_opcyclesMap_of_isIso_of_epi, isIso_opcyclesMap_of_isIso_of_epi', isIso_opcyclesMap_of_iso, isIso_pOpcycles, isIso_rightHomologyMap'_of_isIso, isIso_rightHomologyMap_of_iso, isIso_rightHomologyι, leftHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_inv_app, leftHomologyMap'_op, leftHomologyMap_op, op_pOpcycles_opcyclesOpIso_hom, op_pOpcycles_opcyclesOpIso_hom_assoc, opcyclesFunctor_map, opcyclesFunctor_obj, opcyclesIsoCokernel_hom, opcyclesIsoCokernel_inv, opcyclesIsoRightHomology_hom_inv_id, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv, opcyclesIsoRightHomology_inv_hom_id, opcyclesIsoRightHomology_inv_hom_id_assoc, opcyclesIsoX₂_hom_inv_id, opcyclesIsoX₂_hom_inv_id_assoc, opcyclesIsoX₂_inv, opcyclesIsoX₂_inv_hom_id, opcyclesIsoX₂_inv_hom_id_assoc, opcyclesMap'_comp, opcyclesMap'_comp_assoc, opcyclesMap'_g', opcyclesMap'_g'_assoc, opcyclesMap'_id, opcyclesMap'_zero, opcyclesMapIso'_hom, opcyclesMapIso'_inv, opcyclesMapIso_hom, opcyclesMapIso_inv, opcyclesMap_comp, opcyclesMap_comp_descOpcycles, opcyclesMap_comp_descOpcycles_assoc, opcyclesMap_id, opcyclesMap_zero, opcyclesOpIso_hom_naturality, opcyclesOpIso_hom_naturality_assoc, opcyclesOpIso_hom_toCycles_op, opcyclesOpIso_hom_toCycles_op_assoc, opcyclesOpIso_inv_naturality, opcyclesOpIso_inv_naturality_assoc, opcycles_ext, opcycles_ext_iff, pOpcyclesNatTrans_app, pOpcycles_π_isoOpcyclesOfIsColimit_inv, pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, p_descOpcycles, p_descOpcycles_assoc, p_fromOpcycles, p_fromOpcycles_assoc, p_opcyclesMap, p_opcyclesMap', p_opcyclesMap'_assoc, p_opcyclesMap_assoc, rightHomologyData_H, rightHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app, rightHomologyFunctor_map, rightHomologyFunctor_obj, rightHomologyMap'_comp, rightHomologyMap'_comp_assoc, rightHomologyMap'_id, rightHomologyMap'_op, rightHomologyMap'_zero, rightHomologyMapIso'_hom, rightHomologyMapIso'_inv, rightHomologyMapIso_hom, rightHomologyMapIso_inv, rightHomologyMap_comp, rightHomologyMap_id, rightHomologyMap_op, rightHomologyMap_zero, rightHomology_ext, rightHomology_ext_iff, rightHomologyιNatTrans_app, rightHomologyι_comp_fromOpcycles, rightHomologyι_comp_fromOpcycles_assoc, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, rightHomologyι_naturality, rightHomologyι_naturality', rightHomologyι_naturality'_assoc, rightHomologyι_naturality_assoc, π_isoOpcyclesOfIsColimit_hom, π_isoOpcyclesOfIsColimit_hom_assoc
259
Total342

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
HasRightHomology 📖CompData
16 mathmath: hasRightHomology_iff_op, hasLeftHomology_iff_op, hasLeftHomology_iff_unop, hasRightHomology_of_epi_of_isIso_of_mono', hasRightHomology_of_preserves', hasRightHomology_of_preserves, HasRightHomology.of_hasCokernel, hasRightHomology_iff_unop, HasRightHomology.mk', HasRightHomology.of_hasKernel, hasRightHomology_of_epi_of_isIso_of_mono, hasRightHomology_of_iso, hasRightHomology_of_hasHomology, HasRightHomology.of_hasCokernel_of_hasKernel, HasRightHomology.of_zeros, instHasRightHomologyOppositeOpOfHasLeftHomology
RightHomologyData 📖CompData
1 mathmath: HasRightHomology.condition
RightHomologyMapData 📖CompData
1 mathmath: RightHomologyMapData.instSubsingleton
cyclesOpIso 📖CompOp
8 mathmath: cyclesOpIso_inv_op_iCycles_assoc, cyclesOpIso_hom_naturality, fromOpcycles_op_cyclesOpIso_inv_assoc, cyclesOpIso_inv_naturality, cyclesOpIso_inv_op_iCycles, cyclesOpIso_inv_naturality_assoc, fromOpcycles_op_cyclesOpIso_inv, cyclesOpIso_hom_naturality_assoc
descOpcycles 📖CompOp
15 mathmath: opcyclesMap_comp_descOpcycles, quasiIso_iff_isIso_descOpcycles, homologyι_descOpcycles_eq_zero_of_boundary, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, opcyclesIsoCokernel_hom, descOpcycles_comp_assoc, p_descOpcycles_assoc, RightHomologyData.opcyclesIso_hom_comp_descQ, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, RightHomologyData.opcyclesIso_inv_comp_descOpcycles_assoc, RightHomologyData.opcyclesIso_inv_comp_descOpcycles, p_descOpcycles, opcyclesMap_comp_descOpcycles_assoc, descOpcycles_comp
descRightHomology 📖CompOp
fromOpcycles 📖CompOp
20 mathmath: fromOpcycles_naturality, HomologicalComplex.opcyclesIsoSc'_inv_fromOpcycles, HomologicalComplex.opcyclesIsoSc'_inv_fromOpcycles_assoc, p_fromOpcycles, HomologyData.ofEpiMonoFactorisation.g'_eq, homologyι_comp_fromOpcycles_assoc, fromOpcycles_naturality_assoc, fromOpcycles_op_cyclesOpIso_inv_assoc, opcyclesOpIso_hom_toCycles_op_assoc, rightHomologyι_comp_fromOpcycles_assoc, RightHomologyData.canonical_g', Exact.mono_fromOpcycles, homologyι_comp_fromOpcycles, exact_iff_mono_fromOpcycles, fromOpcyclesNatTrans_app, opcyclesOpIso_hom_toCycles_op, rightHomologyι_comp_fromOpcycles, p_fromOpcycles_assoc, fromOpcycles_op_cyclesOpIso_inv, Exact.isIso_fromOpcycles
fromOpcyclesNatTrans 📖CompOp
1 mathmath: fromOpcyclesNatTrans_app
isoOpcyclesOfIsColimit 📖CompOp
11 mathmath: pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι_assoc, HomologyData.ofEpiMonoFactorisation.isoImage_ι, HomologyData.ofEpiMonoFactorisation.g'_eq, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι, pOpcycles_π_isoOpcyclesOfIsColimit_inv, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι_assoc, π_isoOpcyclesOfIsColimit_hom_assoc, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι, π_isoOpcyclesOfIsColimit_hom, HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc
leftHomologyFunctorOpNatIso 📖CompOp
2 mathmath: leftHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_inv_app
leftHomologyOpIso 📖CompOp
3 mathmath: rightHomologyMap_op, rightHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app
opcycles 📖CompOp
150 mathmath: opcyclesMap_smul, pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, homologyι_naturality, fromOpcycles_naturality, opcyclesIsoRightHomology_hom_inv_id, cyclesOpIso_inv_op_iCycles_assoc, pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, opcyclesMap_comp_descOpcycles, homology_π_ι_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_hom, RightHomologyData.canonical_Q, HomologicalComplex.opcyclesIsoSc'_inv_fromOpcycles, mapOpcyclesIso_hom_naturality_assoc, RightHomologyData.p_comp_opcyclesIso_inv, exact_iff_iCycles_pOpcycles_zero, opcyclesMap_sub, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, RightHomologyData.rightHomologyIso_hom_comp_ι, HomologicalComplex.opcyclesIsoSc'_inv_fromOpcycles_assoc, opcyclesIsoRightHomology_inv_hom_id_assoc, RightHomologyData.homologyIso_inv_comp_homologyι, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_inv_assoc, op_pOpcycles_opcyclesOpIso_hom, HomologyData.ofEpiMonoFactorisation.isoImage_ι, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac_assoc, RightHomologyData.homologyIso_hom_comp_ι, p_fromOpcycles, HomologicalComplex.pOpcycles_opcyclesIsoSc'_inv, mapOpcyclesIso_inv_naturality, cyclesOpIso_hom_naturality, pOpcycles_comp_moduleCatOpcyclesIso_hom, isIso_pOpcycles, homology_π_ι, homologyι_naturality_assoc, opcyclesOpIso_hom_naturality_assoc, opcyclesMap_add, HomologyData.canonical_right_Q, instEpiPOpcycles, HomologyData.ofEpiMonoFactorisation.g'_eq, RightHomologyData.mapOpcyclesIso_eq, RightHomologyMapData.opcyclesMap_comm, moduleCat_pOpcycles_eq_zero_iff, opcyclesIsoCokernel_inv, op_pOpcycles_opcyclesOpIso_hom_assoc, RightHomologyData.p_comp_opcyclesIso_inv_assoc, homologyι_comp_fromOpcycles_assoc, HomologicalComplex.homologyIsoSc'_hom_ι_assoc, quasiIso_iff_isIso_descOpcycles, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac_assoc, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac, fromOpcycles_naturality_assoc, opcyclesMap_neg, opcyclesMapIso_inv, fromOpcycles_op_cyclesOpIso_inv_assoc, homologyι_descOpcycles_eq_zero_of_boundary, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac, opcyclesOpIso_hom_toCycles_op_assoc, rightHomologyι_comp_fromOpcycles_assoc, opcyclesOpIso_hom_naturality, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, opcyclesIsoRightHomology_inv_hom_id, rightHomologyIso_hom_comp_homologyι, cyclesOpIso_inv_naturality, opcyclesIsoCokernel_hom, isIso_homologyι, RightHomologyData.homologyIso_hom_comp_ι_assoc, opcyclesIsoX₂_inv_hom_id_assoc, RightHomologyData.pOpcycles_comp_opcyclesIso_hom, opcyclesMapIso_hom, π_leftRightHomologyComparison_ι_assoc, RightHomologyData.homologyIso_inv_comp_homologyι_assoc, homologyι_comp_asIsoHomologyι_inv, descOpcycles_comp_assoc, opcyclesOpIso_inv_naturality, pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, Exact.mono_fromOpcycles, isIso_rightHomologyι, RightHomologyData.rightHomologyIso_hom_comp_ι_assoc, opcyclesIsoX₂_inv_hom_id, p_descOpcycles_assoc, RightHomologyData.opcyclesIso_hom_comp_descQ, opcyclesMap_zero, opcyclesMap_comp, pOpcycles_π_isoOpcyclesOfIsColimit_inv, p_opcyclesMap_assoc, isIso_opcyclesMap_of_iso, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, homologyIsoImageICyclesCompPOpcycles_ι, π_homologyMap_ι_assoc, HomologicalComplex.homologyIsoSc'_inv_ι, homologyι_comp_fromOpcycles, opcyclesIsoX₂_hom_inv_id_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_hom_assoc, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι_assoc, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, isIso_opcyclesMap_of_isIso_of_epi', rightHomologyIso_hom_comp_homologyι_assoc, π_leftRightHomologyComparison_ι, asIsoHomologyι_hom, opcyclesFunctor_obj, mapOpcyclesIso_inv_naturality_assoc, opcyclesIsoX₂_inv, exact_iff_mono_fromOpcycles, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv, π_isoOpcyclesOfIsColimit_hom_assoc, moduleCat_pOpcycles_eq_iff, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι, HomologicalComplex.homologyIsoSc'_inv_ι_assoc, RightHomologyData.pOpcycles_comp_opcyclesIso_hom_assoc, isIso_opcyclesMap_of_isIso_of_epi, rightHomology_ext_iff, opcyclesOpIso_hom_toCycles_op, rightHomologyι_comp_fromOpcycles, RightHomologyMapData.opcyclesMap_eq, mapOpcyclesIso_hom_naturality, cyclesOpIso_inv_op_iCycles, cyclesOpIso_inv_naturality_assoc, instMonoRightHomologyι, p_fromOpcycles_assoc, opcyclesMap_id, RightHomologyData.opcyclesIso_inv_comp_descOpcycles_assoc, fromOpcycles_op_cyclesOpIso_inv, HomologicalComplex.homologyIsoSc'_hom_ι, RightHomologyData.opcyclesIso_inv_comp_descOpcycles, rightHomologyι_naturality, instMonoHomologyι, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι, opcyclesOpIso_inv_naturality_assoc, homologyι_comp_asIsoHomologyι_inv_assoc, π_isoOpcyclesOfIsColimit_hom, opcyclesIsoX₂_hom_inv_id, HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, Exact.isIso_fromOpcycles, p_opcyclesMap, p_descOpcycles, opcycles_ext_iff, asIsoHomologyι_inv_comp_homologyι_assoc, opcyclesMap_comp_descOpcycles_assoc, rightHomologyι_naturality_assoc, f_pOpcycles, descOpcycles_comp, f_pOpcycles_assoc, π_homologyMap_ι, cyclesOpIso_hom_naturality_assoc, asIsoHomologyι_inv_comp_homologyι
opcyclesFunctor 📖CompOp
7 mathmath: rightHomologyιNatTrans_app, opcyclesFunctor_linear, opcyclesFunctor_additive, opcyclesFunctor_map, opcyclesFunctor_obj, fromOpcyclesNatTrans_app, pOpcyclesNatTrans_app
opcyclesIsCokernel 📖CompOp
opcyclesIsoCokernel 📖CompOp
2 mathmath: opcyclesIsoCokernel_inv, opcyclesIsoCokernel_hom
opcyclesIsoRightHomology 📖CompOp
5 mathmath: opcyclesIsoRightHomology_hom_inv_id, opcyclesIsoRightHomology_inv_hom_id_assoc, opcyclesIsoRightHomology_inv_hom_id, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv
opcyclesIsoX₂ 📖CompOp
5 mathmath: opcyclesIsoX₂_inv_hom_id_assoc, opcyclesIsoX₂_inv_hom_id, opcyclesIsoX₂_hom_inv_id_assoc, opcyclesIsoX₂_inv, opcyclesIsoX₂_hom_inv_id
opcyclesMap 📖CompOp
37 mathmath: opcyclesMap_smul, homologyι_naturality, fromOpcycles_naturality, opcyclesMap_comp_descOpcycles, mapOpcyclesIso_hom_naturality_assoc, opcyclesMap_sub, mapOpcyclesIso_inv_naturality, cyclesOpIso_hom_naturality, homologyι_naturality_assoc, opcyclesOpIso_hom_naturality_assoc, opcyclesMap_add, RightHomologyMapData.opcyclesMap_comm, fromOpcycles_naturality_assoc, opcyclesMap_neg, opcyclesMapIso_inv, opcyclesOpIso_hom_naturality, cyclesOpIso_inv_naturality, opcyclesMapIso_hom, opcyclesOpIso_inv_naturality, opcyclesMap_zero, opcyclesMap_comp, p_opcyclesMap_assoc, isIso_opcyclesMap_of_iso, opcyclesFunctor_map, isIso_opcyclesMap_of_isIso_of_epi', mapOpcyclesIso_inv_naturality_assoc, isIso_opcyclesMap_of_isIso_of_epi, RightHomologyMapData.opcyclesMap_eq, mapOpcyclesIso_hom_naturality, cyclesOpIso_inv_naturality_assoc, opcyclesMap_id, rightHomologyι_naturality, opcyclesOpIso_inv_naturality_assoc, p_opcyclesMap, opcyclesMap_comp_descOpcycles_assoc, rightHomologyι_naturality_assoc, cyclesOpIso_hom_naturality_assoc
opcyclesMap' 📖CompOp
21 mathmath: opcyclesMap'_g', opcyclesMap'_sub, opcyclesMap'_g'_assoc, rightHomologyι_naturality'_assoc, RightHomologyMapData.opcyclesMap'_eq, opcyclesMapIso'_inv, opcyclesMap'_id, isIso_opcyclesMap'_of_isIso, HomologyMapData.opcyclesMap'_eq, p_opcyclesMap', opcyclesMap'_comp_assoc, rightHomologyι_naturality', opcyclesMapIso'_hom, isIso_opcyclesMap'_of_isIso_of_epi, opcyclesMap'_add, p_opcyclesMap'_assoc, RightHomologyData.map_opcyclesMap', opcyclesMap'_comp, opcyclesMap'_neg, opcyclesMap'_smul, opcyclesMap'_zero
opcyclesMapIso 📖CompOp
2 mathmath: opcyclesMapIso_inv, opcyclesMapIso_hom
opcyclesMapIso' 📖CompOp
2 mathmath: opcyclesMapIso'_inv, opcyclesMapIso'_hom
opcyclesOpIso 📖CompOp
8 mathmath: op_pOpcycles_opcyclesOpIso_hom, opcyclesOpIso_hom_naturality_assoc, op_pOpcycles_opcyclesOpIso_hom_assoc, opcyclesOpIso_hom_toCycles_op_assoc, opcyclesOpIso_hom_naturality, opcyclesOpIso_inv_naturality, opcyclesOpIso_hom_toCycles_op, opcyclesOpIso_inv_naturality_assoc
pOpcycles 📖CompOp
57 mathmath: pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, cyclesOpIso_inv_op_iCycles_assoc, pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, homology_π_ι_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_hom, RightHomologyData.p_comp_opcyclesIso_inv, exact_iff_iCycles_pOpcycles_zero, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, HomologicalComplex.pOpcycles_opcyclesIsoSc'_inv_assoc, op_pOpcycles_opcyclesOpIso_hom, HomologyData.ofEpiMonoFactorisation.isoImage_ι, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac_assoc, p_fromOpcycles, HomologicalComplex.pOpcycles_opcyclesIsoSc'_inv, pOpcycles_comp_moduleCatOpcyclesIso_hom, isIso_pOpcycles, homology_π_ι, instEpiPOpcycles, moduleCat_pOpcycles_eq_zero_iff, opcyclesIsoCokernel_inv, op_pOpcycles_opcyclesOpIso_hom_assoc, RightHomologyData.p_comp_opcyclesIso_inv_assoc, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac_assoc, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac, HomologyData.canonical_right_p, opcyclesIsoX₂_inv_hom_id_assoc, RightHomologyData.pOpcycles_comp_opcyclesIso_hom, π_leftRightHomologyComparison_ι_assoc, pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, opcyclesIsoX₂_inv_hom_id, p_descOpcycles_assoc, RightHomologyData.canonical_p, pOpcycles_π_isoOpcyclesOfIsColimit_inv, p_opcyclesMap_assoc, homologyIsoImageICyclesCompPOpcycles_ι, π_homologyMap_ι_assoc, opcyclesIsoX₂_hom_inv_id_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_hom_assoc, π_leftRightHomologyComparison_ι, opcyclesIsoX₂_inv, π_isoOpcyclesOfIsColimit_hom_assoc, moduleCat_pOpcycles_eq_iff, RightHomologyData.pOpcycles_comp_opcyclesIso_hom_assoc, cyclesOpIso_inv_op_iCycles, p_fromOpcycles_assoc, pOpcyclesNatTrans_app, π_isoOpcyclesOfIsColimit_hom, opcyclesIsoX₂_hom_inv_id, HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, p_opcyclesMap, p_descOpcycles, opcycles_ext_iff, f_pOpcycles, f_pOpcycles_assoc, π_homologyMap_ι
pOpcyclesNatTrans 📖CompOp
1 mathmath: pOpcyclesNatTrans_app
rightHomology 📖CompOp
63 mathmath: rightHomologyMap_id, opcyclesIsoRightHomology_hom_inv_id, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv, RightHomologyData.rightHomologyIso_hom_comp_ι, opcyclesIsoRightHomology_inv_hom_id_assoc, isIso_leftRightHomologyComparison, leftRightHomologyComparison_fac, leftHomologyMap_op, rightHomologyMapIso_inv, rightHomologyFunctor_obj, mapRightHomologyIso_inv_naturality, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv_assoc, RightHomologyMapData.rightHomologyMap_eq, rightHomologyMap_comp, rightHomologyι_comp_fromOpcycles_assoc, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, rightHomologyIso_inv_naturality_assoc, opcyclesIsoRightHomology_inv_hom_id, rightHomologyIso_hom_comp_homologyι, mapRightHomologyIso_hom_naturality, RightHomologyMapData.rightHomologyMap_comm, mapRightHomologyIso_inv_naturality_assoc, leftRightHomologyComparison_eq, rightHomologyMap_zero, π_leftRightHomologyComparison_ι_assoc, rightHomologyMapIso_hom, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv_assoc, isIso_rightHomologyMap_of_iso, isIso_rightHomologyι, RightHomologyData.rightHomologyIso_hom_comp_ι_assoc, rightHomologyMap_sub, rightHomologyMap_op, rightHomologyFunctorOpNatIso_hom_app, RightHomologyData.mapRightHomologyIso_eq, rightHomologyMap_nullHomotopic, rightHomologyIso_hom_naturality_assoc, rightHomologyMap_add, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, leftHomologyFunctorOpNatIso_hom_app, rightHomologyData_H, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι_assoc, rightHomologyIso_hom_comp_homologyι_assoc, π_leftRightHomologyComparison_ι, rightHomologyMap_neg, rightHomologyIso_inv_naturality, rightHomologyFunctorOpNatIso_inv_app, mapRightHomologyIso_hom_naturality_assoc, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv, exact_iff_isZero_rightHomology, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι, rightHomology_ext_iff, rightHomologyι_comp_fromOpcycles, rightHomologyIso_hom_naturality, leftHomologyFunctorOpNatIso_inv_app, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv, rightHomologyMap_smul, instMonoRightHomologyι, instIsIsoRightHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, rightHomologyι_naturality, leftRightHomologyComparison_fac_assoc, RightHomologyData.homologyIso_rightHomologyData, rightHomologyι_naturality_assoc
rightHomologyData 📖CompOp
2 mathmath: rightHomologyData_H, RightHomologyData.homologyIso_rightHomologyData
rightHomologyFunctor 📖CompOp
9 mathmath: rightHomologyιNatTrans_app, rightHomologyFunctor_linear, rightHomologyFunctor_obj, rightHomologyFunctor_additive, rightHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app, leftHomologyFunctorOpNatIso_inv_app, rightHomologyFunctor_map
rightHomologyFunctorOpNatIso 📖CompOp
2 mathmath: rightHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app
rightHomologyIsKernel 📖CompOp
rightHomologyIsoKernelDesc 📖CompOp
rightHomologyMap 📖CompOp
28 mathmath: rightHomologyMap_id, leftHomologyMap_op, rightHomologyMapIso_inv, mapRightHomologyIso_inv_naturality, RightHomologyMapData.rightHomologyMap_eq, rightHomologyMap_comp, rightHomologyIso_inv_naturality_assoc, mapRightHomologyIso_hom_naturality, RightHomologyMapData.rightHomologyMap_comm, mapRightHomologyIso_inv_naturality_assoc, rightHomologyMap_zero, rightHomologyMapIso_hom, isIso_rightHomologyMap_of_iso, rightHomologyMap_sub, rightHomologyMap_op, rightHomologyMap_nullHomotopic, rightHomologyIso_hom_naturality_assoc, rightHomologyMap_add, rightHomologyMap_neg, rightHomologyIso_inv_naturality, mapRightHomologyIso_hom_naturality_assoc, Homotopy.rightHomologyMap_congr, rightHomologyIso_hom_naturality, rightHomologyMap_smul, instIsIsoRightHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, rightHomologyFunctor_map, rightHomologyι_naturality, rightHomologyι_naturality_assoc
rightHomologyMap' 📖CompOp
29 mathmath: quasiIso_iff_isIso_rightHomologyMap', RightHomologyData.rightHomologyIso_inv_naturality_assoc, rightHomologyι_naturality'_assoc, rightHomologyMap'_id, RightHomologyData.rightHomologyIso_hom_naturality, Homotopy.rightHomologyMap'_congr, RightHomologyData.rightHomologyIso_inv_naturality, RightHomologyData.map_rightHomologyMap', rightHomologyMap'_op, rightHomologyMap'_add, rightHomologyMapIso'_inv, RightHomologyMapData.rightHomologyMap'_eq, rightHomologyMap'_nullHomotopic, rightHomologyι_naturality', leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, isIso_rightHomologyMap'_of_isIso, rightHomologyMap'_comp, rightHomologyMap'_sub, rightHomologyMapIso'_hom, rightHomologyMap'_comp_assoc, leftRightHomologyComparison'_naturality_assoc, RightHomologyData.rightHomologyIso_hom_naturality_assoc, rightHomologyMap'_neg, leftRightHomologyComparison'_naturality, rightHomologyMap'_smul, leftRightHomologyComparison'_compatibility, rightHomologyMap'_zero, leftHomologyMap'_op
rightHomologyMapData 📖CompOp
rightHomologyMapIso 📖CompOp
2 mathmath: rightHomologyMapIso_inv, rightHomologyMapIso_hom
rightHomologyMapIso' 📖CompOp
2 mathmath: rightHomologyMapIso'_inv, rightHomologyMapIso'_hom
rightHomologyOpIso 📖CompOp
3 mathmath: leftHomologyMap_op, leftHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_inv_app
rightHomologyι 📖CompOp
23 mathmath: opcyclesIsoRightHomology_hom_inv_id, RightHomologyData.rightHomologyIso_hom_comp_ι, rightHomologyιNatTrans_app, opcyclesIsoRightHomology_inv_hom_id_assoc, rightHomologyι_comp_fromOpcycles_assoc, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, opcyclesIsoRightHomology_inv_hom_id, rightHomologyIso_hom_comp_homologyι, π_leftRightHomologyComparison_ι_assoc, isIso_rightHomologyι, RightHomologyData.rightHomologyIso_hom_comp_ι_assoc, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι_assoc, rightHomologyIso_hom_comp_homologyι_assoc, π_leftRightHomologyComparison_ι, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι, rightHomology_ext_iff, rightHomologyι_comp_fromOpcycles, instMonoRightHomologyι, rightHomologyι_naturality, rightHomologyι_naturality_assoc
rightHomologyιNatTrans 📖CompOp
1 mathmath: rightHomologyιNatTrans_app

Theorems

NameKindAssumesProvesValidatesDepends On
cyclesOpIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
cycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
Opposite.op
opcycles
cyclesMap
opMap
CategoryTheory.Iso.hom
cyclesOpIso
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
opcyclesMap
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
cyclesOpIso_inv_naturality
CategoryTheory.Iso.hom_inv_id_assoc
cyclesOpIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
cycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
cyclesMap
opMap
Opposite.op
opcycles
CategoryTheory.Iso.hom
cyclesOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
opcyclesMap
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesOpIso_hom_naturality
cyclesOpIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
opcycles
cycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
opcyclesMap
CategoryTheory.Iso.inv
cyclesOpIso
cyclesMap
opMap
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
cyclesOpIso_inv_op_iCycles
cyclesMap_i
cyclesOpIso_inv_op_iCycles_assoc
CategoryTheory.op_comp
p_opcyclesMap
opMap_τ₂
cyclesOpIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
opcycles
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
opcyclesMap
cycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.Iso.inv
cyclesOpIso
cyclesMap
opMap
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesOpIso_inv_naturality
cyclesOpIso_inv_op_iCycles 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
opcycles
cycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
X₂
CategoryTheory.Iso.inv
cyclesOpIso
iCycles
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pOpcycles
instHasLeftHomologyOppositeOpOfHasRightHomology
LeftHomologyData.cyclesIso_hom_comp_i
CategoryTheory.Iso.inv_hom_id_assoc
cyclesOpIso_inv_op_iCycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
opcycles
cycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.Iso.inv
cyclesOpIso
X₂
iCycles
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
pOpcycles
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
cyclesOpIso_inv_op_iCycles
descOpcycles_comp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
descOpcycles
CategoryTheory.cancel_epi
instEpiPOpcycles
p_descOpcycles_assoc
p_descOpcycles
descOpcycles_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
descOpcycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
descOpcycles_comp
f_pOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
opcycles
f
pOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
RightHomologyData.wp
f_pOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
f
opcycles
pOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
f_pOpcycles
fromOpcyclesNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.ShortComplex
instCategory
opcyclesFunctor
π₃
fromOpcyclesNatTrans
fromOpcycles
fromOpcycles_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
X₃
opcyclesMap
fromOpcycles
Hom.τ₃
opcyclesMap'_g'
fromOpcycles_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
opcycles
opcyclesMap
X₃
fromOpcycles
Hom.τ₃
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fromOpcycles_naturality
fromOpcycles_op_cyclesOpIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
X₃
opcycles
cycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
fromOpcycles
CategoryTheory.Iso.inv
cyclesOpIso
toCycles
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.cancel_mono
instMonoICycles
CategoryTheory.Category.assoc
toCycles_i
LeftHomologyData.cyclesIso_inv_comp_iCycles
RightHomologyData.op_i
CategoryTheory.op_comp
RightHomologyData.p_g'
op_f
fromOpcycles_op_cyclesOpIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
X₃
opcycles
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
fromOpcycles
cycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.Iso.inv
cyclesOpIso
toCycles
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
fromOpcycles_op_cyclesOpIso_inv
hasLeftHomology_iff_op 📖mathematicalHasLeftHomology
HasRightHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasRightHomologyOppositeOpOfHasLeftHomology
HasLeftHomology.mk'
hasLeftHomology_iff_unop 📖mathematicalHasLeftHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
HasRightHomology
unop
hasRightHomology_iff_op
hasRightHomology_iff_op 📖mathematicalHasRightHomology
HasLeftHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
HasRightHomology.mk'
hasRightHomology_iff_unop 📖mathematicalHasRightHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
HasLeftHomology
unop
hasLeftHomology_iff_op
hasRightHomology_of_epi_of_isIso_of_mono 📖mathematicalHasRightHomologyHasRightHomology.mk'
hasRightHomology_of_epi_of_isIso_of_mono' 📖mathematicalHasRightHomologyHasRightHomology.mk'
hasRightHomology_of_iso 📖mathematicalHasRightHomologyhasRightHomology_of_epi_of_isIso_of_mono
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
instIsIsoτ₁
CategoryTheory.Iso.isIso_hom
instIsIsoτ₂
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
instIsIsoτ₃
instEpiPOpcycles 📖mathematicalCategoryTheory.Epi
X₂
opcycles
pOpcycles
RightHomologyData.instEpiP
instHasLeftHomologyOppositeOpOfHasRightHomology 📖mathematicalHasLeftHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
HasLeftHomology.mk'
instHasRightHomologyOppositeOpOfHasLeftHomology 📖mathematicalHasRightHomology
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
HasRightHomology.mk'
instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃ 📖mathematicalCategoryTheory.IsIso
RightHomologyData.H
rightHomologyMap'
rightHomologyMap'_comp
CategoryTheory.Category.comp_id
CategoryTheory.IsIso.comp_isIso
RightHomologyMapData.rightHomologyMap'_eq
CategoryTheory.IsIso.id
isIso_rightHomologyMap'_of_isIso
instIsIsoRightHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃ 📖mathematicalCategoryTheory.IsIso
rightHomology
rightHomologyMap
instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃
instMonoRightHomologyι 📖mathematicalCategoryTheory.Mono
rightHomology
opcycles
rightHomologyι
RightHomologyData.instMonoι
isIso_opcyclesMap'_of_isIso 📖mathematicalCategoryTheory.IsIso
RightHomologyData.Q
opcyclesMap'
CategoryTheory.Iso.isIso_hom
isIso_opcyclesMap'_of_isIso_of_epi 📖mathematicalCategoryTheory.IsIso
RightHomologyData.Q
opcyclesMap'
CategoryTheory.cancel_epi
Hom.comm₁₂_assoc
CategoryTheory.IsIso.hom_inv_id_assoc
RightHomologyData.wp
CategoryTheory.Limits.comp_zero
RightHomologyData.instEpiP
p_opcyclesMap'_assoc
RightHomologyData.p_descQ
CategoryTheory.Category.comp_id
RightHomologyData.p_descQ_assoc
CategoryTheory.Category.assoc
p_opcyclesMap'
CategoryTheory.IsIso.inv_hom_id_assoc
isIso_opcyclesMap_of_isIso_of_epi 📖mathematicalCategoryTheory.IsIso
opcycles
opcyclesMap
isIso_opcyclesMap_of_isIso_of_epi'
isIso_opcyclesMap_of_isIso_of_epi' 📖mathematicalCategoryTheory.IsIso
opcycles
opcyclesMap
isIso_opcyclesMap'_of_isIso_of_epi
isIso_opcyclesMap_of_iso 📖mathematicalCategoryTheory.IsIso
opcycles
opcyclesMap
CategoryTheory.Iso.isIso_hom
isIso_pOpcycles 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
opcycles
pOpcycles
RightHomologyData.isIso_p
isIso_rightHomologyMap'_of_isIso 📖mathematicalCategoryTheory.IsIso
RightHomologyData.H
rightHomologyMap'
CategoryTheory.Iso.isIso_hom
isIso_rightHomologyMap_of_iso 📖mathematicalCategoryTheory.IsIso
rightHomology
rightHomologyMap
CategoryTheory.Iso.isIso_hom
isIso_rightHomologyι 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
rightHomology
opcycles
rightHomologyι
RightHomologyData.isIso_ι
leftHomologyFunctorOpNatIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.ShortComplex
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.op
leftHomologyFunctor
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasZeroMorphismsOpposite
opFunctor
rightHomologyFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
leftHomologyFunctorOpNatIso
CategoryTheory.Iso.inv
rightHomology
op
Opposite.unop
Opposite.op
leftHomology
rightHomologyOpIso
leftHomologyFunctorOpNatIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.ShortComplex
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasZeroMorphismsOpposite
opFunctor
rightHomologyFunctor
CategoryTheory.Functor.op
leftHomologyFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
leftHomologyFunctorOpNatIso
CategoryTheory.Iso.hom
rightHomology
op
Opposite.unop
Opposite.op
leftHomology
rightHomologyOpIso
leftHomologyMap'_op 📖mathematicalQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
LeftHomologyData.H
leftHomologyMap'
rightHomologyMap'
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
opMap
LeftHomologyData.op
LeftHomologyMapData.leftHomologyMap'_eq
RightHomologyMapData.rightHomologyMap'_eq
leftHomologyMap_op 📖mathematicalQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
leftHomology
leftHomologyMap
CategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
Opposite.op
rightHomology
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.Iso.inv
rightHomologyOpIso
rightHomologyMap
opMap
CategoryTheory.Iso.hom
instHasRightHomologyOppositeOpOfHasLeftHomology
leftHomologyMap'_op
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
op_pOpcycles_opcyclesOpIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
X₂
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
opcycles
instHasRightHomologyOppositeOpOfHasLeftHomology
Opposite.op
cycles
pOpcycles
CategoryTheory.Iso.hom
opcyclesOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
iCycles
instHasRightHomologyOppositeOpOfHasLeftHomology
RightHomologyData.p_comp_opcyclesIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
op_pOpcycles_opcyclesOpIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
X₂
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
opcycles
instHasRightHomologyOppositeOpOfHasLeftHomology
pOpcycles
Opposite.op
cycles
CategoryTheory.Iso.hom
opcyclesOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
iCycles
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
op_pOpcycles_opcyclesOpIso_hom
opcyclesFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex
instCategory
opcyclesFunctor
opcyclesMap
opcyclesFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
opcyclesFunctor
opcycles
opcyclesIsoCokernel_hom 📖mathematicalCategoryTheory.Iso.hom
opcycles
CategoryTheory.Limits.cokernel
X₁
X₂
f
opcyclesIsoCokernel
descOpcycles
CategoryTheory.Limits.cokernel.π
opcyclesIsoCokernel_inv 📖mathematicalCategoryTheory.Iso.inv
opcycles
CategoryTheory.Limits.cokernel
X₁
X₂
f
opcyclesIsoCokernel
CategoryTheory.Limits.cokernel.desc
pOpcycles
opcyclesIsoRightHomology_hom_inv_id 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
rightHomology
CategoryTheory.Iso.hom
opcyclesIsoRightHomology
rightHomologyι
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
opcyclesIsoRightHomology_hom_inv_id_assoc 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
rightHomology
CategoryTheory.Iso.hom
opcyclesIsoRightHomology
rightHomologyι
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesIsoRightHomology_hom_inv_id
opcyclesIsoRightHomology_inv 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.inv
opcycles
rightHomology
opcyclesIsoRightHomology
rightHomologyι
opcyclesIsoRightHomology_inv_hom_id 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
rightHomology
opcycles
rightHomologyι
CategoryTheory.Iso.hom
opcyclesIsoRightHomology
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
opcyclesIsoRightHomology_inv_hom_id_assoc 📖mathematicalg
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₂
X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
rightHomology
opcycles
rightHomologyι
CategoryTheory.Iso.hom
opcyclesIsoRightHomology
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesIsoRightHomology_inv_hom_id
opcyclesIsoX₂_hom_inv_id 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
CategoryTheory.Iso.hom
opcyclesIsoX₂
pOpcycles
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.hom_inv_id
opcyclesIsoX₂_hom_inv_id_assoc 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
CategoryTheory.Iso.hom
opcyclesIsoX₂
pOpcycles
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesIsoX₂_hom_inv_id
opcyclesIsoX₂_inv 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.inv
opcycles
opcyclesIsoX₂
pOpcycles
opcyclesIsoX₂_inv_hom_id 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
pOpcycles
CategoryTheory.Iso.hom
opcyclesIsoX₂
CategoryTheory.CategoryStruct.id
CategoryTheory.Iso.inv_hom_id
opcyclesIsoX₂_inv_hom_id_assoc 📖mathematicalf
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X₁
X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
opcycles
pOpcycles
CategoryTheory.Iso.hom
opcyclesIsoX₂
CategoryTheory.Category.assoc
CategoryTheory.Category.id_comp
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesIsoX₂_inv_hom_id
opcyclesMap'_comp 📖mathematicalopcyclesMap'
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
RightHomologyData.Q
RightHomologyMapData.opcyclesMap'_eq
RightHomologyMapData.comp_φQ
opcyclesMap'_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
RightHomologyData.Q
opcyclesMap'
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesMap'_comp
opcyclesMap'_g' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
RightHomologyData.Q
X₃
opcyclesMap'
RightHomologyData.g'
Hom.τ₃
CategoryTheory.cancel_epi
RightHomologyData.instEpiP
p_opcyclesMap'_assoc
RightHomologyData.p_g'
Hom.comm₂₃
RightHomologyData.p_g'_assoc
opcyclesMap'_g'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
RightHomologyData.Q
opcyclesMap'
X₃
RightHomologyData.g'
Hom.τ₃
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesMap'_g'
opcyclesMap'_id 📖mathematicalopcyclesMap'
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
RightHomologyData.Q
RightHomologyMapData.opcyclesMap'_eq
opcyclesMap'_zero 📖mathematicalopcyclesMap'
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
RightHomologyData.Q
CategoryTheory.Limits.HasZeroMorphisms.zero
RightHomologyMapData.opcyclesMap'_eq
opcyclesMapIso'_hom 📖mathematicalCategoryTheory.Iso.hom
RightHomologyData.Q
opcyclesMapIso'
opcyclesMap'
CategoryTheory.ShortComplex
instCategory
opcyclesMapIso'_inv 📖mathematicalCategoryTheory.Iso.inv
RightHomologyData.Q
opcyclesMapIso'
opcyclesMap'
CategoryTheory.ShortComplex
instCategory
opcyclesMapIso_hom 📖mathematicalCategoryTheory.Iso.hom
opcycles
opcyclesMapIso
opcyclesMap
CategoryTheory.ShortComplex
instCategory
opcyclesMapIso_inv 📖mathematicalCategoryTheory.Iso.inv
opcycles
opcyclesMapIso
opcyclesMap
CategoryTheory.ShortComplex
instCategory
opcyclesMap_comp 📖mathematicalopcyclesMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
opcycles
opcyclesMap'_comp
opcyclesMap_comp_descOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
opcyclesMap
descOpcycles
Hom.τ₂
CategoryTheory.cancel_epi
instEpiPOpcycles
p_opcyclesMap_assoc
p_descOpcycles
opcyclesMap_comp_descOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
opcyclesMap
descOpcycles
Hom.τ₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesMap_comp_descOpcycles
opcyclesMap_id 📖mathematicalopcyclesMap
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
opcycles
opcyclesMap'_id
opcyclesMap_zero 📖mathematicalopcyclesMap
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
opcycles
CategoryTheory.Limits.HasZeroMorphisms.zero
opcyclesMap'_zero
opcyclesOpIso_hom_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
opcycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasRightHomologyOppositeOpOfHasLeftHomology
Opposite.op
cycles
opcyclesMap
opMap
CategoryTheory.Iso.hom
opcyclesOpIso
CategoryTheory.CategoryStruct.opposite
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
cyclesMap
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.cancel_epi
instEpiPOpcycles
p_opcyclesMap_assoc
opMap_τ₂
op_pOpcycles_opcyclesOpIso_hom
op_pOpcycles_opcyclesOpIso_hom_assoc
CategoryTheory.op_comp
cyclesMap_i
opcyclesOpIso_hom_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
opcycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasRightHomologyOppositeOpOfHasLeftHomology
opcyclesMap
opMap
Opposite.op
cycles
CategoryTheory.Iso.hom
opcyclesOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
cyclesMap
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesOpIso_hom_naturality
opcyclesOpIso_hom_toCycles_op 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
opcycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasRightHomologyOppositeOpOfHasLeftHomology
Opposite.op
cycles
X₁
CategoryTheory.Iso.hom
opcyclesOpIso
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
toCycles
fromOpcycles
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.cancel_epi
instEpiPOpcycles
p_fromOpcycles
RightHomologyData.pOpcycles_comp_opcyclesIso_hom_assoc
LeftHomologyData.op_p
CategoryTheory.op_comp
LeftHomologyData.f'_i
op_g
opcyclesOpIso_hom_toCycles_op_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
opcycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasRightHomologyOppositeOpOfHasLeftHomology
Opposite.op
cycles
CategoryTheory.Iso.hom
opcyclesOpIso
X₁
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
toCycles
fromOpcycles
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesOpIso_hom_toCycles_op
opcyclesOpIso_inv_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
CategoryTheory.Category.toCategoryStruct
Opposite.op
cycles
opcycles
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasRightHomologyOppositeOpOfHasLeftHomology
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
cyclesMap
CategoryTheory.Iso.inv
opcyclesOpIso
opcyclesMap
opMap
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
CategoryTheory.Iso.hom_inv_id_assoc
opcyclesOpIso_hom_naturality_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
opcyclesOpIso_inv_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Category.opposite
Opposite.op
cycles
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
cyclesMap
opcycles
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.Iso.inv
opcyclesOpIso
opcyclesMap
opMap
instHasRightHomologyOppositeOpOfHasLeftHomology
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesOpIso_inv_naturality
opcycles_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
opcycles
pOpcycles
opcycles_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
opcycles
pOpcycles
CategoryTheory.cancel_epi
instEpiPOpcycles
pOpcyclesNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.ShortComplex
instCategory
π₂
opcyclesFunctor
pOpcyclesNatTrans
pOpcycles
pOpcycles_π_isoOpcyclesOfIsColimit_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
opcycles
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
X₁
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
pOpcycles
CategoryTheory.Iso.inv
isoOpcyclesOfIsColimit
CategoryTheory.Limits.Cofork.π
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_inv
f_pOpcycles
pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
opcycles
pOpcycles
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
X₁
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Iso.inv
isoOpcyclesOfIsColimit
CategoryTheory.Limits.Cofork.π
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_π_isoOpcyclesOfIsColimit_inv
p_descOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
pOpcycles
descOpcycles
RightHomologyData.p_descQ
p_descOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₁
X₂
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
opcycles
pOpcycles
descOpcycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_descOpcycles
p_fromOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
opcycles
X₃
pOpcycles
fromOpcycles
g
RightHomologyData.p_g'
p_fromOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
opcycles
pOpcycles
X₃
fromOpcycles
g
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_fromOpcycles
p_opcyclesMap 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
opcycles
pOpcycles
opcyclesMap
Hom.τ₂
p_opcyclesMap'
p_opcyclesMap' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
RightHomologyData.Q
RightHomologyData.p
opcyclesMap'
Hom.τ₂
RightHomologyMapData.commp
p_opcyclesMap'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
RightHomologyData.Q
RightHomologyData.p
opcyclesMap'
Hom.τ₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_opcyclesMap'
p_opcyclesMap_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
opcycles
pOpcycles
opcyclesMap
Hom.τ₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_opcyclesMap
rightHomologyData_H 📖mathematicalRightHomologyData.H
rightHomologyData
rightHomology
rightHomologyFunctorOpNatIso_hom_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.ShortComplex
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.op
rightHomologyFunctor
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasZeroMorphismsOpposite
opFunctor
leftHomologyFunctor
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
rightHomologyFunctorOpNatIso
CategoryTheory.Iso.inv
leftHomology
op
Opposite.unop
Opposite.op
rightHomology
leftHomologyOpIso
rightHomologyFunctorOpNatIso_inv_app 📖mathematicalCategoryTheory.NatTrans.app
Opposite
CategoryTheory.ShortComplex
CategoryTheory.Category.opposite
instCategory
CategoryTheory.Functor.comp
CategoryTheory.Limits.hasZeroMorphismsOpposite
opFunctor
leftHomologyFunctor
CategoryTheory.Functor.op
rightHomologyFunctor
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
rightHomologyFunctorOpNatIso
CategoryTheory.Iso.hom
leftHomology
op
Opposite.unop
Opposite.op
rightHomology
leftHomologyOpIso
rightHomologyFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex
instCategory
rightHomologyFunctor
rightHomologyMap
rightHomologyFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex
instCategory
rightHomologyFunctor
rightHomology
rightHomologyMap'_comp 📖mathematicalrightHomologyMap'
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
RightHomologyData.H
RightHomologyMapData.rightHomologyMap'_eq
RightHomologyMapData.comp_φH
rightHomologyMap'_comp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
RightHomologyData.H
rightHomologyMap'
CategoryTheory.ShortComplex
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyMap'_comp
rightHomologyMap'_id 📖mathematicalrightHomologyMap'
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
RightHomologyData.H
RightHomologyMapData.rightHomologyMap'_eq
rightHomologyMap'_op 📖mathematicalQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
RightHomologyData.H
rightHomologyMap'
leftHomologyMap'
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
opMap
RightHomologyData.op
RightHomologyMapData.rightHomologyMap'_eq
LeftHomologyMapData.leftHomologyMap'_eq
rightHomologyMap'_zero 📖mathematicalrightHomologyMap'
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
RightHomologyData.H
CategoryTheory.Limits.HasZeroMorphisms.zero
RightHomologyMapData.rightHomologyMap'_eq
rightHomologyMapIso'_hom 📖mathematicalCategoryTheory.Iso.hom
RightHomologyData.H
rightHomologyMapIso'
rightHomologyMap'
CategoryTheory.ShortComplex
instCategory
rightHomologyMapIso'_inv 📖mathematicalCategoryTheory.Iso.inv
RightHomologyData.H
rightHomologyMapIso'
rightHomologyMap'
CategoryTheory.ShortComplex
instCategory
rightHomologyMapIso_hom 📖mathematicalCategoryTheory.Iso.hom
rightHomology
rightHomologyMapIso
rightHomologyMap
CategoryTheory.ShortComplex
instCategory
rightHomologyMapIso_inv 📖mathematicalCategoryTheory.Iso.inv
rightHomology
rightHomologyMapIso
rightHomologyMap
CategoryTheory.ShortComplex
instCategory
rightHomologyMap_comp 📖mathematicalrightHomologyMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
rightHomology
rightHomologyMap'_comp
rightHomologyMap_id 📖mathematicalrightHomologyMap
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
instCategory
rightHomology
rightHomologyMap'_id
rightHomologyMap_op 📖mathematicalQuiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
rightHomology
rightHomologyMap
CategoryTheory.CategoryStruct.comp
Opposite
CategoryTheory.CategoryStruct.opposite
Opposite.op
leftHomology
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
instHasLeftHomologyOppositeOpOfHasRightHomology
CategoryTheory.Iso.inv
leftHomologyOpIso
leftHomologyMap
opMap
CategoryTheory.Iso.hom
instHasLeftHomologyOppositeOpOfHasRightHomology
rightHomologyMap'_op
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
rightHomologyMap_zero 📖mathematicalrightHomologyMap
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
instCategory
instZeroHom
rightHomology
CategoryTheory.Limits.HasZeroMorphisms.zero
rightHomologyMap'_zero
rightHomology_ext 📖CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
opcycles
rightHomologyι
rightHomology_ext_iff 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
opcycles
rightHomologyι
CategoryTheory.cancel_mono
instMonoRightHomologyι
rightHomologyιNatTrans_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.ShortComplex
instCategory
rightHomologyFunctor
opcyclesFunctor
rightHomologyιNatTrans
rightHomologyι
rightHomologyι_comp_fromOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
opcycles
X₃
rightHomologyι
fromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
rightHomologyι_descOpcycles_π_eq_zero_of_boundary
CategoryTheory.Category.comp_id
rightHomologyι_comp_fromOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
opcycles
rightHomologyι
X₃
fromOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyι_comp_fromOpcycles
rightHomologyι_descOpcycles_π_eq_zero_of_boundary 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
X₃
g
rightHomology
opcycles
rightHomologyι
descOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
RightHomologyData.ι_descQ_eq_zero_of_boundary
rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X₂
X₃
g
rightHomology
opcycles
rightHomologyι
descOpcycles
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyι_descOpcycles_π_eq_zero_of_boundary
rightHomologyι_naturality 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
opcycles
rightHomologyMap
rightHomologyι
opcyclesMap
rightHomologyι_naturality'
rightHomologyι_naturality' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
RightHomologyData.H
RightHomologyData.Q
rightHomologyMap'
RightHomologyData.ι
opcyclesMap'
RightHomologyMapData.commι
rightHomologyι_naturality'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
RightHomologyData.H
rightHomologyMap'
RightHomologyData.Q
RightHomologyData.ι
opcyclesMap'
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyι_naturality'
rightHomologyι_naturality_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
rightHomology
rightHomologyMap
opcycles
rightHomologyι
opcyclesMap
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyι_naturality
π_isoOpcyclesOfIsColimit_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
X₁
X₂
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
opcycles
CategoryTheory.Limits.Cofork.π
CategoryTheory.Iso.hom
isoOpcyclesOfIsColimit
pOpcycles
CategoryTheory.Limits.IsColimit.comp_coconePointUniqueUpToIso_hom
f_pOpcycles
π_isoOpcyclesOfIsColimit_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
X₁
X₂
f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.Cofork.π
opcycles
CategoryTheory.Iso.hom
isoOpcyclesOfIsColimit
pOpcycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
π_isoOpcyclesOfIsColimit_hom

CategoryTheory.ShortComplex.HasRightHomology

Theorems

NameKindAssumesProvesValidatesDepends On
condition 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData
hasCokernel 📖mathematicalCategoryTheory.Limits.HasCokernel
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.RightHomologyData.wp
hasKernel 📖mathematicalCategoryTheory.Limits.HasKernel
CategoryTheory.Limits.cokernel
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.cokernel.desc
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.RightHomologyData.wp
CategoryTheory.Limits.coequalizer.hom_ext
CategoryTheory.Category.comp_id
CategoryTheory.Limits.cokernel.π_desc
CategoryTheory.Limits.colimit.comp_coconePointUniqueUpToIso_hom_assoc
CategoryTheory.ShortComplex.RightHomologyData.p_g'
CategoryTheory.Limits.comp_zero
CategoryTheory.Limits.hasLimit_of_iso
CategoryTheory.ShortComplex.RightHomologyData.ι_g'
mk' 📖mathematicalCategoryTheory.ShortComplex.HasRightHomology
of_hasCokernel 📖mathematicalCategoryTheory.ShortComplex.HasRightHomology
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.comp_zero
mk'
CategoryTheory.Limits.comp_zero
of_hasCokernel_of_hasKernel 📖mathematicalCategoryTheory.ShortComplex.HasRightHomologyCategoryTheory.ShortComplex.zero
mk'
of_hasKernel 📖mathematicalCategoryTheory.ShortComplex.HasRightHomology
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.zero_comp
mk'
CategoryTheory.Limits.zero_comp
of_zeros 📖mathematicalCategoryTheory.ShortComplex.HasRightHomology
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.zero_comp
mk'
CategoryTheory.Limits.zero_comp

CategoryTheory.ShortComplex.LeftHomologyData

Definitions

NameCategoryTheorems
op 📖CompOp
9 mathmath: op_g', CategoryTheory.ShortComplex.LeftHomologyMapData.op_φH, CategoryTheory.ShortComplex.HomologyData.op_right, op_H, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φQ, op_Q, op_p, op_ι, CategoryTheory.ShortComplex.leftHomologyMap'_op
unop 📖CompOp
8 mathmath: CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φQ, unop_p, unop_ι, unop_H, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φH, unop_Q, CategoryTheory.ShortComplex.HomologyData.unop_right, unop_g'

Theorems

NameKindAssumesProvesValidatesDepends On
op_H 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.H
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Opposite.op
H
op_Q 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.Q
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Opposite.op
K
op_g' 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.g'
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
K
f'
op_p 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.p
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
K
CategoryTheory.ShortComplex.X₂
i
op_ι 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.ι
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
K
H
π
unop_H 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.ShortComplex.unop
unop
Opposite.unop
H
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unop_Q 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.unop
unop
Opposite.unop
K
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unop_g' 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.g'
CategoryTheory.ShortComplex.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
K
f'
unop_p 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.p
CategoryTheory.ShortComplex.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
K
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.X₂
i
unop_ι 📖mathematicalCategoryTheory.ShortComplex.RightHomologyData.ι
CategoryTheory.ShortComplex.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
K
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
H
π

CategoryTheory.ShortComplex.LeftHomologyMapData

Definitions

NameCategoryTheorems
op 📖CompOp
3 mathmath: op_φH, op_φQ, CategoryTheory.ShortComplex.HomologyMapData.op_right
unop 📖CompOp
3 mathmath: unop_φQ, CategoryTheory.ShortComplex.HomologyMapData.unop_right, unop_φH

Theorems

NameKindAssumesProvesValidatesDepends On
op_φH 📖mathematicalCategoryTheory.ShortComplex.RightHomologyMapData.φH
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
CategoryTheory.ShortComplex.opMap
CategoryTheory.ShortComplex.LeftHomologyData.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.H
φH
op_φQ 📖mathematicalCategoryTheory.ShortComplex.RightHomologyMapData.φQ
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
CategoryTheory.ShortComplex.opMap
CategoryTheory.ShortComplex.LeftHomologyData.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.K
φK
unop_φH 📖mathematicalCategoryTheory.ShortComplex.RightHomologyMapData.φH
CategoryTheory.ShortComplex.unop
CategoryTheory.ShortComplex.unopMap
CategoryTheory.ShortComplex.LeftHomologyData.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.H
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
φH
unop_φQ 📖mathematicalCategoryTheory.ShortComplex.RightHomologyMapData.φQ
CategoryTheory.ShortComplex.unop
CategoryTheory.ShortComplex.unopMap
CategoryTheory.ShortComplex.LeftHomologyData.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.LeftHomologyData.K
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
φK

CategoryTheory.ShortComplex.RightHomologyData

Definitions

NameCategoryTheorems
H 📖CompOp
124 mathmath: map_ι, ι_g', CategoryTheory.ShortComplex.HomologyData.ofIso_right_H, CategoryTheory.ShortComplex.quasiIso_iff_isIso_rightHomologyMap', CategoryTheory.ShortComplex.RightHomologyMapData.neg_φH, ofAbelian_H, homologyIso_hom_comp_rightHomologyIso_inv, CategoryTheory.ShortComplex.RightHomologyMapData.op_φH, CategoryTheory.ShortComplex.RightHomologyMapData.homologyMap_eq, rightHomologyIso_hom_comp_ι, rightHomologyIso_inv_naturality_assoc, CategoryTheory.ShortComplex.rightHomologyι_naturality'_assoc, homologyIso_inv_comp_homologyι, liftH_ι, CategoryTheory.ShortComplex.HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.RightHomologyMapData.id_φH, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, map_H, CategoryTheory.ShortComplex.rightHomologyMap'_id, homologyIso_hom_comp_ι, CategoryTheory.ShortComplex.RightHomologyMapData.quasiIso_map_iff, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison', rightHomologyIso_hom_naturality, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.rightHomologyData_H, CategoryTheory.ShortComplex.HomologyData.canonical_right_H, exact_iff, CategoryTheory.ShortComplex.LeftHomologyData.op_H, CategoryTheory.ShortComplex.RightHomologyMapData.homologyMap_comm, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, rightHomologyIso_inv_naturality, wι_assoc, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_H, ofZeros_H, CategoryTheory.ShortComplex.homologyMap'_op, map_rightHomologyMap', ofIsColimitCokernelCofork_H, copy_ι, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono'_φH, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φH, homologyIso_hom_comp_rightHomologyIso_inv_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap_eq, CategoryTheory.ShortComplex.HomologyData.comm_assoc, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison'_of_homologyData, CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_φH, CategoryTheory.ShortComplex.rightHomologyMap'_op, CategoryTheory.ShortComplex.rightHomologyMap'_add, CategoryTheory.ShortComplex.rightHomologyMapIso'_inv, CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap_comm, ofHasCokernelOfHasKernel_H, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono_φH, ι_descQ_eq_zero_of_boundary_assoc, HomologicalComplex.extend.homologyData'_right_H, homologyIso_hom_comp_ι_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison_eq, CategoryTheory.ShortComplex.rightHomologyMap'_nullHomotopic, , CategoryTheory.ShortComplex.rightHomologyι_naturality', homologyIso_inv_comp_homologyι_assoc, op_H, ofEpiOfIsIsoOfMono'_H, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, rightHomologyIso_hom_comp_homologyIso_inv_assoc, CategoryTheory.ShortComplex.HomologyData.left_homologyIso_eq_right_homologyIso_trans_iso_symm, CategoryTheory.ShortComplex.instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.comp_φH, CategoryTheory.ShortComplex.isIso_rightHomologyMap'_of_isIso, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φH, ι_g'_assoc, rightHomologyIso_hom_comp_ι_assoc, instMonoι, CategoryTheory.ShortComplex.rightHomologyMap'_comp, CategoryTheory.ShortComplex.rightHomologyMap'_sub, mapRightHomologyIso_eq, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, CategoryTheory.ShortComplex.LeftHomologyData.unop_H, isIso_ι, exact_map_iff, HomologicalComplex.extend.rightHomologyData_H, CategoryTheory.ShortComplex.rightHomologyMapIso'_hom, HomologicalComplex.truncGE.rightHomologyMapData_φH, CategoryTheory.ShortComplex.rightHomologyMap'_comp_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.commι, CategoryTheory.ShortComplex.rightHomologyData_H, rightHomologyIso_inv_comp_rightHomologyι_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_naturality_assoc, rightHomologyIso_hom_naturality_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.add_φH, CategoryTheory.ShortComplex.map_leftRightHomologyComparison', canonical_H, CategoryTheory.ShortComplex.HomologyData.unop_iso, CategoryTheory.ShortComplex.rightHomologyMap'_neg, CategoryTheory.ShortComplex.HomologyData.op_iso, liftH_ι_assoc, ofHasKernel_H, CategoryTheory.ShortComplex.HomologyData.map_iso, ι_descQ_eq_zero_of_boundary, CategoryTheory.ShortComplex.leftRightHomologyComparison'_naturality, rightHomologyIso_inv_comp_rightHomologyι, CategoryTheory.ShortComplex.RightHomologyMapData.map_φH, unop_π, CategoryTheory.ShortComplex.rightHomologyMap'_smul, rightHomologyIso_hom_comp_homologyIso_inv, unop_H, ofIsLimitKernelFork_H, CategoryTheory.ShortComplex.Splitting.rightHomologyData_H, CategoryTheory.ShortComplex.HomologyData.ofIsIsoLeftRightHomologyComparison'_iso, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.leftRightHomologyComparison'_compatibility, CategoryTheory.ShortComplex.rightHomologyMap'_zero, CategoryTheory.ShortComplex.HomologyData.exact_iff', CategoryTheory.ShortComplex.HomologyData.leftRightHomologyComparison'_eq, ofEpiOfIsIsoOfMono_H, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.commι_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φH, copy_H, op_π, mapHomologyIso'_eq, CategoryTheory.ShortComplex.RightHomologyMapData.quasiIso_iff
Q 📖CompOp
131 mathmath: map_ι, CategoryTheory.ShortComplex.HomologyData.ofIso_right_p, ι_g', canonical_Q, IsPreservedBy.hg', ofZeros_Q, wp, p_comp_opcyclesIso_inv, wp_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_φQ, CategoryTheory.ShortComplex.opcyclesMap'_g', CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.rightHomologyData_Q, CategoryTheory.ShortComplex.opcyclesMap'_sub, CategoryTheory.ShortComplex.RightHomologyMapData.neg_φQ, rightHomologyIso_hom_comp_ι, CategoryTheory.ShortComplex.opcyclesMap'_g'_assoc, CategoryTheory.ShortComplex.rightHomologyι_naturality'_assoc, ofEpiOfIsIsoOfMono'_Q, homologyIso_inv_comp_homologyι, CategoryTheory.ShortComplex.opcyclesMapIso'_inv, unop_i, p_g'_assoc, copy_p, map_g', CategoryTheory.ShortComplex.opcyclesMap'_id, CategoryTheory.ShortComplex.isIso_opcyclesMap'_of_isIso, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, CategoryTheory.ShortComplex.RightHomologyMapData.op_φK, homologyIso_hom_comp_ι, CategoryTheory.ShortComplex.HomologyData.ofIso_right_Q, CategoryTheory.ShortComplex.RightHomologyMapData.commg'_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, wι_assoc, copy_Q, ofEpiOfIsIsoOfMono_Q, ofEpiOfIsIsoOfMono'_g'_τ₃, CategoryTheory.ShortComplex.HomologyData.canonical_right_Q, mapOpcyclesIso_eq, instEpiP, ofIsColimitCokernelCofork_Q, CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap_comm, copy_ι, p_comp_opcyclesIso_inv_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φK, ofAbelian_Q, CategoryTheory.ShortComplex.HomologyData.comm_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono'_φQ, CategoryTheory.ShortComplex.Splitting.rightHomologyData_Q, op_K, ofIsLimitKernelFork_Q, CategoryTheory.ShortComplex.RightHomologyMapData.comp_φQ, CategoryTheory.ShortComplex.p_opcyclesMap', CategoryTheory.ShortComplex.RightHomologyMapData.commg', map_Q, unop_f', CategoryTheory.ShortComplex.LeftHomologyData.op_Q, p_descQ_assoc, p_descQ, CategoryTheory.ShortComplex.Exact.shortExact, CategoryTheory.ShortComplex.opcyclesMap'_comp_assoc, IsPreservedBy.g', ofEpiOfIsIsoOfMono_g', CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, ι_descQ_eq_zero_of_boundary_assoc, homologyIso_hom_comp_ι_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.id_φQ, HomologicalComplex.extend.rightHomologyData_p, , CategoryTheory.ShortComplex.exact_iff_i_p_zero, pOpcycles_comp_opcyclesIso_hom, CategoryTheory.ShortComplex.rightHomologyι_naturality', homologyIso_inv_comp_homologyι_assoc, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, HomologicalComplex.extend.rightHomologyData_g', HomologicalComplex.extend.homologyData'_right_p, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, ofEpiOfIsIsoOfMono_p, exact_iff_mono_g', CategoryTheory.ShortComplex.opcyclesMapIso'_hom, ι_g'_assoc, map_p, rightHomologyIso_hom_comp_ι_assoc, instMonoι, CategoryTheory.ShortComplex.Exact.isIso_g', CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, opcyclesIso_hom_comp_descQ, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, unop_K, ofHasKernel_Q, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φQ, isIso_ι, op_f', CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φQ, isIso_p, CategoryTheory.ShortComplex.RightHomologyMapData.commι, CategoryTheory.ShortComplex.isIso_opcyclesMap'_of_isIso_of_epi, rightHomologyIso_inv_comp_rightHomologyι_assoc, ofHasCokernelOfHasKernel_Q, CategoryTheory.ShortComplex.LeftHomologyData.unop_Q, HomologicalComplex.extend.homologyData'_right_Q, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φQ, op_i, CategoryTheory.ShortComplex.RightHomologyMapData.commp_assoc, ι_descQ_eq_zero_of_boundary, rightHomologyIso_inv_comp_rightHomologyι, pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap_eq, unop_π, CategoryTheory.ShortComplex.opcyclesMap'_add, CategoryTheory.ShortComplex.Exact.mono_g', CategoryTheory.ShortComplex.p_opcyclesMap'_assoc, ofZeros_g', CategoryTheory.ShortComplex.comp_homologyMap_comp, map_opcyclesMap', CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.opcyclesMap'_comp, opcyclesIso_inv_comp_descOpcycles_assoc, ofIsColimitCokernelCofork_g', opcyclesIso_inv_comp_descOpcycles, CategoryTheory.ShortComplex.RightHomologyMapData.map_φQ, HomologicalComplex.extend.rightHomologyData_Q, CategoryTheory.ShortComplex.opcyclesMap'_neg, ofEpiOfIsIsoOfMono'_p, CategoryTheory.ShortComplex.RightHomologyMapData.commι_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.add_φQ, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono_φQ, CategoryTheory.ShortComplex.opcyclesMap'_smul, CategoryTheory.ShortComplex.RightHomologyMapData.commp, op_π, CategoryTheory.ShortComplex.opcyclesMap'_zero, p_g'
copy 📖CompOp
4 mathmath: copy_p, copy_Q, copy_ι, copy_H
descH 📖CompOp
descQ 📖CompOp
7 mathmath: p_descQ_assoc, p_descQ, ι_descQ_eq_zero_of_boundary_assoc, opcyclesIso_hom_comp_descQ, ι_descQ_eq_zero_of_boundary, opcyclesIso_inv_comp_descOpcycles_assoc, opcyclesIso_inv_comp_descOpcycles
g' 📖CompOp
26 mathmath: CategoryTheory.ShortComplex.LeftHomologyData.op_g', ι_g', IsPreservedBy.hg', CategoryTheory.ShortComplex.opcyclesMap'_g', CategoryTheory.ShortComplex.opcyclesMap'_g'_assoc, p_g'_assoc, map_g', CategoryTheory.ShortComplex.RightHomologyMapData.commg'_assoc, ofEpiOfIsIsoOfMono'_g'_τ₃, CategoryTheory.ShortComplex.RightHomologyMapData.commg', unop_f', HomologicalComplex.truncGE'.homologyData_right_g', IsPreservedBy.g', ofEpiOfIsIsoOfMono_g', canonical_g', HomologicalComplex.extend.rightHomologyData_g', exact_iff_mono_g', ι_g'_assoc, CategoryTheory.ShortComplex.Exact.isIso_g', op_f', CategoryTheory.ShortComplex.Exact.mono_g', ofZeros_g', ofIsColimitCokernelCofork_g', CategoryTheory.ShortComplex.LeftHomologyData.unop_g', ofIsLimitKernelFork_g', p_g'
hp 📖CompOp
2 mathmath: wι_assoc,
📖CompOp
hι' 📖CompOp
liftH 📖CompOp
4 mathmath: liftH_ι, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, liftH_ι_assoc
ofEpiOfIsIsoOfMono 📖CompOp
8 mathmath: ofEpiOfIsIsoOfMono_Q, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono_φH, ofEpiOfIsIsoOfMono_g', CategoryTheory.ShortComplex.HomologyData.ofEpiOfIsIsoOfMono_right, ofEpiOfIsIsoOfMono_p, ofEpiOfIsIsoOfMono_H, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono_φQ, ofEpiOfIsIsoOfMono_ι
ofEpiOfIsIsoOfMono' 📖CompOp
8 mathmath: ofEpiOfIsIsoOfMono'_Q, ofEpiOfIsIsoOfMono'_ι, ofEpiOfIsIsoOfMono'_g'_τ₃, CategoryTheory.ShortComplex.HomologyData.ofEpiOfIsIsoOfMono'_right, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono'_φH, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono'_φQ, ofEpiOfIsIsoOfMono'_H, ofEpiOfIsIsoOfMono'_p
ofHasCokernel 📖CompOp
1 mathmath: CategoryTheory.ShortComplex.HomologyData.ofHasCokernel_right
ofHasCokernelOfHasKernel 📖CompOp
4 mathmath: ofHasCokernelOfHasKernel_p, ofHasCokernelOfHasKernel_H, ofHasCokernelOfHasKernel_ι, ofHasCokernelOfHasKernel_Q
ofHasKernel 📖CompOp
5 mathmath: ofHasKernel_p, CategoryTheory.ShortComplex.HomologyData.ofHasKernel_right, ofHasKernel_Q, ofHasKernel_ι, ofHasKernel_H
ofIsColimitCokernelCofork 📖CompOp
10 mathmath: CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_Q, ofIsColimitCokernelCofork_H, CategoryTheory.ShortComplex.HomologyData.ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_p, ofIsColimitCokernelCofork_ι, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φQ, CategoryTheory.ShortComplex.RightHomologyMapData.ofIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_g', CategoryTheory.ShortComplex.RightHomologyMapData.ofIsColimitCokernelCofork_φQ
ofIsLimitKernelFork 📖CompOp
10 mathmath: CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φH, CategoryTheory.ShortComplex.RightHomologyMapData.ofIsLimitKernelFork_φH, ofIsLimitKernelFork_Q, ofIsLimitKernelFork_p, CategoryTheory.ShortComplex.RightHomologyMapData.ofIsLimitKernelFork_φQ, CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork_right, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φQ, ofIsLimitKernelFork_ι, ofIsLimitKernelFork_H, ofIsLimitKernelFork_g'
ofIso 📖CompOp
ofZeros 📖CompOp
12 mathmath: ofZeros_Q, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φH, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φH, ofZeros_H, CategoryTheory.ShortComplex.RightHomologyMapData.ofZeros_φQ, ofZeros_p, ofZeros_ι, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φQ, CategoryTheory.ShortComplex.RightHomologyMapData.ofZeros_φH, CategoryTheory.ShortComplex.HomologyData.ofZeros_right, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φQ, ofZeros_g'
op 📖CompOp
9 mathmath: CategoryTheory.ShortComplex.RightHomologyMapData.op_φH, CategoryTheory.ShortComplex.RightHomologyMapData.op_φK, op_K, CategoryTheory.ShortComplex.rightHomologyMap'_op, op_H, CategoryTheory.ShortComplex.HomologyData.op_left, op_f', op_i, op_π
opcyclesIso 📖CompOp
18 mathmath: p_comp_opcyclesIso_inv, rightHomologyIso_hom_comp_ι, homologyIso_inv_comp_homologyι, homologyIso_hom_comp_ι, mapOpcyclesIso_eq, CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap_comm, p_comp_opcyclesIso_inv_assoc, homologyIso_hom_comp_ι_assoc, pOpcycles_comp_opcyclesIso_hom, homologyIso_inv_comp_homologyι_assoc, rightHomologyIso_hom_comp_ι_assoc, opcyclesIso_hom_comp_descQ, rightHomologyIso_inv_comp_rightHomologyι_assoc, rightHomologyIso_inv_comp_rightHomologyι, pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap_eq, opcyclesIso_inv_comp_descOpcycles_assoc, opcyclesIso_inv_comp_descOpcycles
p 📖CompOp
51 mathmath: ofHasCokernelOfHasKernel_p, CategoryTheory.ShortComplex.HomologyData.ofIso_right_p, CategoryTheory.ShortComplex.LeftHomologyData.unop_p, wp, p_comp_opcyclesIso_inv, wp_assoc, unop_i, p_g'_assoc, copy_p, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, ofHasKernel_p, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, wι_assoc, instEpiP, CategoryTheory.ShortComplex.Splitting.rightHomologyData_p, p_comp_opcyclesIso_inv_assoc, CategoryTheory.ShortComplex.HomologyData.comm_assoc, CategoryTheory.ShortComplex.p_opcyclesMap', p_descQ_assoc, p_descQ, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.rightHomologyData_p, CategoryTheory.ShortComplex.Exact.shortExact, CategoryTheory.ShortComplex.HomologyData.canonical_right_p, ofIsColimitCokernelCofork_p, ofIsLimitKernelFork_p, HomologicalComplex.extend.rightHomologyData_p, ofZeros_p, , CategoryTheory.ShortComplex.exact_iff_i_p_zero, pOpcycles_comp_opcyclesIso_hom, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, ofAbelian_p, HomologicalComplex.extend.homologyData'_right_p, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, ofEpiOfIsIsoOfMono_p, map_p, CategoryTheory.ShortComplex.LeftHomologyData.op_p, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, canonical_p, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, isIso_p, op_i, CategoryTheory.ShortComplex.RightHomologyMapData.commp_assoc, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_p, pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.p_opcyclesMap'_assoc, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, ofEpiOfIsIsoOfMono'_p, CategoryTheory.ShortComplex.RightHomologyMapData.commp, p_g'
rightHomologyIso 📖CompOp
12 mathmath: homologyIso_hom_comp_rightHomologyIso_inv, rightHomologyIso_hom_comp_ι, homologyIso_hom_comp_rightHomologyIso_inv_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap_eq, CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap_comm, CategoryTheory.ShortComplex.leftRightHomologyComparison_eq, rightHomologyIso_hom_comp_homologyIso_inv_assoc, rightHomologyIso_hom_comp_ι_assoc, mapRightHomologyIso_eq, rightHomologyIso_inv_comp_rightHomologyι_assoc, rightHomologyIso_inv_comp_rightHomologyι, rightHomologyIso_hom_comp_homologyIso_inv
unop 📖CompOp
8 mathmath: unop_i, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φK, CategoryTheory.ShortComplex.HomologyData.unop_left, unop_f', unop_K, unop_π, unop_H, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φH
ι 📖CompOp
50 mathmath: map_ι, ι_g', rightHomologyIso_hom_comp_ι, CategoryTheory.ShortComplex.rightHomologyι_naturality'_assoc, CategoryTheory.ShortComplex.LeftHomologyData.unop_ι, homologyIso_inv_comp_homologyι, liftH_ι, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, CategoryTheory.ShortComplex.Splitting.rightHomologyData_ι, ofEpiOfIsIsoOfMono'_ι, homologyIso_hom_comp_ι, wι_assoc, canonical_ι, copy_ι, CategoryTheory.ShortComplex.HomologyData.comm_assoc, ι_descQ_eq_zero_of_boundary_assoc, homologyIso_hom_comp_ι_assoc, CategoryTheory.ShortComplex.HomologyData.ofIso_right_ι, , CategoryTheory.ShortComplex.rightHomologyι_naturality', homologyIso_inv_comp_homologyι_assoc, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, HomologicalComplex.extend.rightHomologyData_ι, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, ofAbelian_ι, CategoryTheory.ShortComplex.HomologyData.canonical_right_ι, ι_g'_assoc, rightHomologyIso_hom_comp_ι_assoc, instMonoι, ofHasCokernelOfHasKernel_ι, isIso_ι, ofZeros_ι, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, HomologicalComplex.extend.homologyData'_right_ι, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.rightHomologyData_ι, ofIsLimitKernelFork_ι, CategoryTheory.ShortComplex.RightHomologyMapData.commι, rightHomologyIso_inv_comp_rightHomologyι_assoc, ofHasKernel_ι, ofIsColimitCokernelCofork_ι, liftH_ι_assoc, ι_descQ_eq_zero_of_boundary, rightHomologyIso_inv_comp_rightHomologyι, unop_π, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.RightHomologyMapData.commι_assoc, CategoryTheory.ShortComplex.LeftHomologyData.op_ι, op_π, ofEpiOfIsIsoOfMono_ι

Theorems

NameKindAssumesProvesValidatesDepends On
copy_H 📖mathematicalH
copy
copy_Q 📖mathematicalQ
copy
copy_p 📖mathematicalp
copy
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Q
CategoryTheory.Iso.inv
copy_ι 📖mathematicalι
copy
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.Iso.hom
Q
CategoryTheory.Iso.inv
instEpiP 📖mathematicalCategoryTheory.Epi
CategoryTheory.ShortComplex.X₂
Q
p
CategoryTheory.Limits.Cofork.IsColimit.hom_ext
wp
instMonoι 📖mathematicalCategoryTheory.Mono
H
Q
ι
CategoryTheory.Limits.Fork.IsLimit.hom_ext
CategoryTheory.ShortComplex.zero
wp
isIso_p 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
Q
p
CategoryTheory.Category.comp_id
p_descQ
CategoryTheory.cancel_epi
instEpiP
p_descQ_assoc
CategoryTheory.Category.id_comp
isIso_ι 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.IsIso
H
Q
ι
ι_g'
CategoryTheory.cancel_epi
instEpiP
CategoryTheory.Category.id_comp
p_g'
CategoryTheory.Limits.comp_zero
CategoryTheory.cancel_mono
instMonoι
CategoryTheory.Category.assoc
CategoryTheory.Category.comp_id
liftH_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Q
CategoryTheory.ShortComplex.X₃
g'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
H
liftH
ι
CategoryTheory.Limits.IsLimit.fac
CategoryTheory.ShortComplex.zero
wp
liftH_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Q
CategoryTheory.ShortComplex.X₃
g'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
H
liftH
ι
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
liftH_ι
ofEpiOfIsIsoOfMono'_H 📖mathematicalH
ofEpiOfIsIsoOfMono'
ofEpiOfIsIsoOfMono'_Q 📖mathematicalQ
ofEpiOfIsIsoOfMono'
ofEpiOfIsIsoOfMono'_g'_τ₃ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Q
ofEpiOfIsIsoOfMono'
CategoryTheory.ShortComplex.X₃
g'
CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.cancel_epi
instEpiP
p_g'_assoc
ofEpiOfIsIsoOfMono'_p
CategoryTheory.Category.assoc
p_g'
CategoryTheory.ShortComplex.Hom.comm₂₃
ofEpiOfIsIsoOfMono'_p 📖mathematicalp
ofEpiOfIsIsoOfMono'
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Q
CategoryTheory.ShortComplex.Hom.τ₂
ofEpiOfIsIsoOfMono'_ι 📖mathematicalι
ofEpiOfIsIsoOfMono'
ofEpiOfIsIsoOfMono_H 📖mathematicalH
ofEpiOfIsIsoOfMono
ofEpiOfIsIsoOfMono_Q 📖mathematicalQ
ofEpiOfIsIsoOfMono
ofEpiOfIsIsoOfMono_g' 📖mathematicalg'
ofEpiOfIsIsoOfMono
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
Q
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.ShortComplex.LeftHomologyData.ofEpiOfIsIsoOfMono'_f'
ofEpiOfIsIsoOfMono_p 📖mathematicalp
ofEpiOfIsIsoOfMono
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Q
CategoryTheory.inv
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.isIso_unop
CategoryTheory.unop_inv
ofEpiOfIsIsoOfMono_ι 📖mathematicalι
ofEpiOfIsIsoOfMono
ofHasCokernelOfHasKernel_H 📖mathematicalH
ofHasCokernelOfHasKernel
CategoryTheory.Limits.kernel
CategoryTheory.Limits.cokernel
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.cokernel.desc
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.zero
ofHasCokernelOfHasKernel_Q 📖mathematicalQ
ofHasCokernelOfHasKernel
CategoryTheory.Limits.cokernel
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.zero
ofHasCokernelOfHasKernel_p 📖mathematicalp
ofHasCokernelOfHasKernel
CategoryTheory.Limits.cokernel.π
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.zero
ofHasCokernelOfHasKernel_ι 📖mathematicalι
ofHasCokernelOfHasKernel
CategoryTheory.Limits.kernel.ι
CategoryTheory.Limits.cokernel
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.cokernel.desc
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.zero
CategoryTheory.ShortComplex.zero
ofHasKernel_H 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
H
ofHasKernel
CategoryTheory.Limits.kernel
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
ofHasKernel_Q 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
Q
ofHasKernel
ofHasKernel_p 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
p
ofHasKernel
CategoryTheory.CategoryStruct.id
ofHasKernel_ι 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
ι
ofHasKernel
CategoryTheory.Limits.kernel.ι
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
ofIsColimitCokernelCofork_H 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
H
ofIsColimitCokernelCofork
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ofIsColimitCokernelCofork_Q 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
Q
ofIsColimitCokernelCofork
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ofIsColimitCokernelCofork_g' 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
g'
ofIsColimitCokernelCofork
Q
CategoryTheory.cancel_epi
instEpiP
p_g'
CategoryTheory.Limits.comp_zero
ofIsColimitCokernelCofork_p 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
p
ofIsColimitCokernelCofork
CategoryTheory.Limits.Cofork.π
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ofIsColimitCokernelCofork_ι 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
ι
ofIsColimitCokernelCofork
CategoryTheory.CategoryStruct.id
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
ofIsLimitKernelFork_H 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
H
ofIsLimitKernelFork
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
ofIsLimitKernelFork_Q 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
Q
ofIsLimitKernelFork
ofIsLimitKernelFork_g' 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
g'
ofIsLimitKernelFork
CategoryTheory.ShortComplex.g
CategoryTheory.cancel_epi
instEpiP
p_g'
ofIsLimitKernelFork_p
CategoryTheory.Category.id_comp
ofIsLimitKernelFork_p 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
p
ofIsLimitKernelFork
CategoryTheory.CategoryStruct.id
ofIsLimitKernelFork_ι 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
ι
ofIsLimitKernelFork
CategoryTheory.Limits.Fork.ι
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
ofZeros_H 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
H
ofZeros
ofZeros_Q 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
Q
ofZeros
ofZeros_g' 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
g'
ofZeros
Q
CategoryTheory.cancel_epi
instEpiP
CategoryTheory.Limits.comp_zero
p_g'
ofZeros_p 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
p
ofZeros
CategoryTheory.CategoryStruct.id
ofZeros_ι 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
ι
ofZeros
CategoryTheory.CategoryStruct.id
op_H 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.H
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Opposite.op
H
op_K 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.K
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Opposite.op
Q
op_f' 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.f'
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Q
CategoryTheory.ShortComplex.X₃
g'
op_i 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.i
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Q
p
op_π 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.π
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
H
Q
ι
opcyclesIso_hom_comp_descQ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.opcycles
Q
CategoryTheory.Iso.hom
opcyclesIso
descQ
CategoryTheory.ShortComplex.descOpcycles
opcyclesIso_inv_comp_descOpcycles
CategoryTheory.Iso.hom_inv_id_assoc
opcyclesIso_inv_comp_descOpcycles 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Q
CategoryTheory.ShortComplex.opcycles
CategoryTheory.Iso.inv
opcyclesIso
CategoryTheory.ShortComplex.descOpcycles
descQ
CategoryTheory.cancel_epi
instEpiP
p_comp_opcyclesIso_inv_assoc
CategoryTheory.ShortComplex.p_descOpcycles
p_descQ
opcyclesIso_inv_comp_descOpcycles_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Q
CategoryTheory.ShortComplex.opcycles
CategoryTheory.Iso.inv
opcyclesIso
CategoryTheory.ShortComplex.descOpcycles
descQ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
opcyclesIso_inv_comp_descOpcycles
pOpcycles_comp_opcyclesIso_hom 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.opcycles
Q
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.Iso.hom
opcyclesIso
p
p_comp_opcyclesIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
pOpcycles_comp_opcyclesIso_hom_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.pOpcycles
Q
CategoryTheory.Iso.hom
opcyclesIso
p
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
pOpcycles_comp_opcyclesIso_hom
p_comp_opcyclesIso_inv 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Q
CategoryTheory.ShortComplex.opcycles
p
CategoryTheory.Iso.inv
opcyclesIso
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.ShortComplex.p_opcyclesMap'
CategoryTheory.Category.id_comp
p_comp_opcyclesIso_inv_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Q
p
CategoryTheory.ShortComplex.opcycles
CategoryTheory.Iso.inv
opcyclesIso
CategoryTheory.ShortComplex.pOpcycles
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_comp_opcyclesIso_inv
p_descQ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Q
p
descQ
CategoryTheory.Limits.IsColimit.fac
wp
p_descQ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Q
p
descQ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_descQ
p_g' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Q
CategoryTheory.ShortComplex.X₃
p
g'
CategoryTheory.ShortComplex.g
p_descQ
CategoryTheory.ShortComplex.zero
p_g'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Q
p
CategoryTheory.ShortComplex.X₃
g'
CategoryTheory.ShortComplex.g
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
p_g'
rightHomologyIso_hom_comp_ι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.rightHomology
H
Q
CategoryTheory.Iso.hom
rightHomologyIso
ι
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.rightHomologyι
opcyclesIso
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.Category.assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.inv_hom_id_assoc
rightHomologyIso_inv_comp_rightHomologyι
rightHomologyIso_hom_comp_ι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.rightHomology
H
CategoryTheory.Iso.hom
rightHomologyIso
Q
ι
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.rightHomologyι
opcyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyIso_hom_comp_ι
rightHomologyIso_inv_comp_rightHomologyι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.opcycles
CategoryTheory.Iso.inv
rightHomologyIso
CategoryTheory.ShortComplex.rightHomologyι
Q
ι
opcyclesIso
CategoryTheory.ShortComplex.rightHomologyι_naturality'
rightHomologyIso_inv_comp_rightHomologyι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.Iso.inv
rightHomologyIso
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.rightHomologyι
Q
ι
opcyclesIso
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
rightHomologyIso_inv_comp_rightHomologyι
unop_H 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.H
CategoryTheory.ShortComplex.unop
unop
Opposite.unop
H
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unop_K 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.K
CategoryTheory.ShortComplex.unop
unop
Opposite.unop
Q
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unop_f' 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.f'
CategoryTheory.ShortComplex.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
Q
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.X₃
g'
unop_i 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.i
CategoryTheory.ShortComplex.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
Q
p
unop_π 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyData.π
CategoryTheory.ShortComplex.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
H
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
Q
ι
wp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
Q
CategoryTheory.ShortComplex.f
p
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
wp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
Q
p
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
wp
📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
Q
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.CokernelCofork.ofπ
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.zero
ι
CategoryTheory.Limits.IsColimit.desc
p
wp
hp
wι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
Q
ι
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Limits.CokernelCofork.ofπ
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.zero
CategoryTheory.Limits.IsColimit.desc
p
wp
hp
CategoryTheory.ShortComplex.zero
wp
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_descQ_eq_zero_of_boundary 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
H
Q
ι
descQ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
ι_g'_assoc
CategoryTheory.Limits.zero_comp
descQ.congr_simp
CategoryTheory.cancel_epi
instEpiP
p_descQ
p_g'_assoc
ι_descQ_eq_zero_of_boundary_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
H
Q
ι
descQ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_descQ_eq_zero_of_boundary
ι_g' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
Q
CategoryTheory.ShortComplex.X₃
ι
g'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
ι_g'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
H
Q
ι
CategoryTheory.ShortComplex.X₃
g'
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
ι_g'

CategoryTheory.ShortComplex.RightHomologyMapData

Definitions

NameCategoryTheorems
comp 📖CompOp
3 mathmath: CategoryTheory.ShortComplex.HomologyMapData.comp_right, comp_φQ, comp_φH
compatibilityOfZerosOfIsColimitCokernelCofork 📖CompOp
2 mathmath: compatibilityOfZerosOfIsColimitCokernelCofork_φH, compatibilityOfZerosOfIsColimitCokernelCofork_φQ
compatibilityOfZerosOfIsLimitKernelFork 📖CompOp
3 mathmath: compatibilityOfZerosOfIsLimitKernelFork_φH, compatibilityOfZerosOfIsLimitKernelFork_φQ, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_right
id 📖CompOp
3 mathmath: id_φH, CategoryTheory.ShortComplex.HomologyMapData.id_right, id_φQ
instInhabited 📖CompOp
instUnique 📖CompOp
ofEpiOfIsIsoOfMono 📖CompOp
2 mathmath: ofEpiOfIsIsoOfMono_φH, ofEpiOfIsIsoOfMono_φQ
ofEpiOfIsIsoOfMono' 📖CompOp
2 mathmath: ofEpiOfIsIsoOfMono'_φH, ofEpiOfIsIsoOfMono'_φQ
ofIsColimitCokernelCofork 📖CompOp
3 mathmath: CategoryTheory.ShortComplex.HomologyMapData.ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_φQ
ofIsLimitKernelFork 📖CompOp
3 mathmath: ofIsLimitKernelFork_φH, CategoryTheory.ShortComplex.HomologyMapData.ofIsLimitKernelFork_right, ofIsLimitKernelFork_φQ
ofZeros 📖CompOp
3 mathmath: ofZeros_φQ, ofZeros_φH, CategoryTheory.ShortComplex.HomologyMapData.ofZeros_right
op 📖CompOp
3 mathmath: CategoryTheory.ShortComplex.HomologyMapData.op_left, op_φH, op_φK
unop 📖CompOp
3 mathmath: unop_φK, unop_φH, CategoryTheory.ShortComplex.HomologyMapData.unop_left
zero 📖CompOp
3 mathmath: zero_φH, CategoryTheory.ShortComplex.HomologyMapData.zero_right, zero_φQ
φH 📖CompOp
32 mathmath: neg_φH, op_φH, homologyMap_eq, compatibilityOfZerosOfIsColimitCokernelCofork_φH, compatibilityOfZerosOfIsLimitKernelFork_φH, id_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φH, quasiIso_map_iff, ofIsLimitKernelFork_φH, homologyMap_comm, congr_φH, ofEpiOfIsIsoOfMono'_φH, zero_φH, rightHomologyMap_eq, natTransApp_φH, rightHomologyMap_comm, ofEpiOfIsIsoOfMono_φH, rightHomologyMap'_eq, comp_φH, smul_φH, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, HomologicalComplex.truncGE.rightHomologyMapData_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φH, commι, ofZeros_φH, add_φH, map_φH, ofIsColimitCokernelCofork_φH, commι_assoc, unop_φH, quasiIso_iff
φQ 📖CompOp
31 mathmath: HomologicalComplex.truncGE.rightHomologyMapData_φQ, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φQ, natTransApp_φQ, neg_φQ, opcyclesMap'_eq, op_φK, CategoryTheory.ShortComplex.HomologyMapData.opcyclesMap'_eq, commg'_assoc, opcyclesMap_comm, ofZeros_φQ, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φQ, unop_φK, ofEpiOfIsIsoOfMono'_φQ, comp_φQ, commg', id_φQ, ofIsLimitKernelFork_φQ, zero_φQ, congr_φQ, compatibilityOfZerosOfIsLimitKernelFork_φQ, commι, smul_φQ, compatibilityOfZerosOfIsColimitCokernelCofork_φQ, commp_assoc, opcyclesMap_eq, map_φQ, ofIsColimitCokernelCofork_φQ, commι_assoc, add_φQ, ofEpiOfIsIsoOfMono_φQ, commp

Theorems

NameKindAssumesProvesValidatesDepends On
commg' 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.X₃
φQ
CategoryTheory.ShortComplex.RightHomologyData.g'
CategoryTheory.ShortComplex.Hom.τ₃
commg'_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.Q
φQ
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.RightHomologyData.g'
CategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commg'
commp 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.RightHomologyData.p
φQ
CategoryTheory.ShortComplex.Hom.τ₂
commp_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.RightHomologyData.p
φQ
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commp
commι 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.ShortComplex.RightHomologyData.Q
φH
CategoryTheory.ShortComplex.RightHomologyData.ι
φQ
commι_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.H
φH
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.RightHomologyData.ι
φQ
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
commι
comp_φH 📖mathematicalφH
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
comp
CategoryTheory.ShortComplex.RightHomologyData.H
comp_φQ 📖mathematicalφQ
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
comp
CategoryTheory.ShortComplex.RightHomologyData.Q
compatibilityOfZerosOfIsColimitCokernelCofork_φH 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
φH
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.RightHomologyData.ofZeros
CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork
compatibilityOfZerosOfIsColimitCokernelCofork
CategoryTheory.Limits.Cofork.π
compatibilityOfZerosOfIsColimitCokernelCofork_φQ 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
φQ
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.RightHomologyData.ofZeros
CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork
compatibilityOfZerosOfIsColimitCokernelCofork
CategoryTheory.Limits.Cofork.π
compatibilityOfZerosOfIsLimitKernelFork_φH 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
φH
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork
CategoryTheory.ShortComplex.RightHomologyData.ofZeros
compatibilityOfZerosOfIsLimitKernelFork
CategoryTheory.Limits.Fork.ι
compatibilityOfZerosOfIsLimitKernelFork_φQ 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
φQ
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork
CategoryTheory.ShortComplex.RightHomologyData.ofZeros
compatibilityOfZerosOfIsLimitKernelFork
CategoryTheory.ShortComplex.RightHomologyData.Q
congr_φH 📖mathematicalφH
congr_φQ 📖mathematicalφQ
id_φH 📖mathematicalφH
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
id
CategoryTheory.ShortComplex.RightHomologyData.H
id_φQ 📖mathematicalφQ
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
id
CategoryTheory.ShortComplex.RightHomologyData.Q
instSubsingleton 📖mathematicalCategoryTheory.ShortComplex.RightHomologyMapDataCategoryTheory.cancel_epi
CategoryTheory.ShortComplex.RightHomologyData.instEpiP
commp
CategoryTheory.cancel_mono
CategoryTheory.ShortComplex.RightHomologyData.instMonoι
commι
ofEpiOfIsIsoOfMono'_φH 📖mathematicalφH
CategoryTheory.ShortComplex.RightHomologyData.ofEpiOfIsIsoOfMono'
ofEpiOfIsIsoOfMono'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.H
ofEpiOfIsIsoOfMono'_φQ 📖mathematicalφQ
CategoryTheory.ShortComplex.RightHomologyData.ofEpiOfIsIsoOfMono'
ofEpiOfIsIsoOfMono'
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.Q
ofEpiOfIsIsoOfMono_φH 📖mathematicalφH
CategoryTheory.ShortComplex.RightHomologyData.ofEpiOfIsIsoOfMono
ofEpiOfIsIsoOfMono
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.H
ofEpiOfIsIsoOfMono_φQ 📖mathematicalφQ
CategoryTheory.ShortComplex.RightHomologyData.ofEpiOfIsIsoOfMono
ofEpiOfIsIsoOfMono
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.Q
ofIsColimitCokernelCofork_φH 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Limits.Cofork.π
φH
CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork
ofIsColimitCokernelCofork
ofIsColimitCokernelCofork_φQ 📖mathematicalCategoryTheory.ShortComplex.g
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cocone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.WalkingParallelPair.one
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Limits.Cofork.π
φQ
CategoryTheory.ShortComplex.RightHomologyData.ofIsColimitCokernelCofork
ofIsColimitCokernelCofork
ofIsLimitKernelFork_φH 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.ShortComplex.Hom.τ₂
φH
CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork
ofIsLimitKernelFork
ofIsLimitKernelFork_φQ 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.CategoryStruct.comp
CategoryTheory.Functor.obj
CategoryTheory.Limits.WalkingParallelPair
CategoryTheory.Limits.walkingParallelPairHomCategory
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.const
CategoryTheory.Limits.Cone.pt
CategoryTheory.Limits.parallelPair
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Limits.WalkingParallelPair.zero
CategoryTheory.Limits.Fork.ι
CategoryTheory.ShortComplex.Hom.τ₂
φQ
CategoryTheory.ShortComplex.RightHomologyData.ofIsLimitKernelFork
ofIsLimitKernelFork
ofZeros_φH 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
φH
CategoryTheory.ShortComplex.RightHomologyData.ofZeros
ofZeros
CategoryTheory.ShortComplex.Hom.τ₂
ofZeros_φQ 📖mathematicalCategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.X₃
φQ
CategoryTheory.ShortComplex.RightHomologyData.ofZeros
ofZeros
CategoryTheory.ShortComplex.Hom.τ₂
op_φH 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyMapData.φH
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
CategoryTheory.ShortComplex.opMap
CategoryTheory.ShortComplex.RightHomologyData.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.H
φH
op_φK 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyMapData.φK
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
CategoryTheory.ShortComplex.opMap
CategoryTheory.ShortComplex.RightHomologyData.op
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.Q
φQ
opcyclesMap'_eq 📖mathematicalCategoryTheory.ShortComplex.opcyclesMap'
φQ
congr_φQ
instSubsingleton
opcyclesMap_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.opcyclesMap
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.RightHomologyData.opcyclesIso
φQ
opcyclesMap_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
opcyclesMap_eq 📖mathematicalCategoryTheory.ShortComplex.opcyclesMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.opcycles
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.RightHomologyData.opcyclesIso
φQ
CategoryTheory.Iso.inv
opcyclesMap'_eq
CategoryTheory.ShortComplex.opcyclesMap'_comp
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
rightHomologyMap'_eq 📖mathematicalCategoryTheory.ShortComplex.rightHomologyMap'
φH
congr_φH
instSubsingleton
rightHomologyMap_comm 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.ShortComplex.rightHomologyMap
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.RightHomologyData.rightHomologyIso
φH
rightHomologyMap_eq
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Category.comp_id
rightHomologyMap_eq 📖mathematicalCategoryTheory.ShortComplex.rightHomologyMap
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.rightHomology
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.Iso.hom
CategoryTheory.ShortComplex.RightHomologyData.rightHomologyIso
φH
CategoryTheory.Iso.inv
rightHomologyMap'_eq
CategoryTheory.ShortComplex.rightHomologyMap'_comp
CategoryTheory.Category.id_comp
CategoryTheory.Category.comp_id
unop_φH 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyMapData.φH
CategoryTheory.ShortComplex.unop
CategoryTheory.ShortComplex.unopMap
CategoryTheory.ShortComplex.RightHomologyData.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.H
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
φH
unop_φK 📖mathematicalCategoryTheory.ShortComplex.LeftHomologyMapData.φK
CategoryTheory.ShortComplex.unop
CategoryTheory.ShortComplex.unopMap
CategoryTheory.ShortComplex.RightHomologyData.unop
unop
Quiver.Hom.unop
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.RightHomologyData.Q
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
φQ
zero_φH 📖mathematicalφH
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.instZeroHom
zero
CategoryTheory.ShortComplex.RightHomologyData.H
CategoryTheory.Limits.HasZeroMorphisms.zero
zero_φQ 📖mathematicalφQ
Quiver.Hom
CategoryTheory.ShortComplex
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.instZeroHom
zero
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.Limits.HasZeroMorphisms.zero

---

← Back to Index