| Metric | Count |
DefinitionsHasRightHomology, op, unop, op, unop, RightHomologyData, H, Q, copy, descH, descQ, g', hp, hι, hι', liftH, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofHasCokernel, ofHasCokernelOfHasKernel, ofHasKernel, ofIsColimitCokernelCofork, ofIsLimitKernelFork, ofIso, ofZeros, op, opcyclesIso, p, rightHomologyIso, unop, ι, RightHomologyMapData, comp, compatibilityOfZerosOfIsColimitCokernelCofork, compatibilityOfZerosOfIsLimitKernelFork, id, instInhabited, instUnique, ofEpiOfIsIsoOfMono, ofEpiOfIsIsoOfMono', ofIsColimitCokernelCofork, ofIsLimitKernelFork, ofZeros, op, unop, zero, φH, φQ, cyclesOpIso, descOpcycles, descRightHomology, fromOpcycles, fromOpcyclesNatTrans, isoOpcyclesOfIsColimit, leftHomologyFunctorOpNatIso, leftHomologyOpIso, opcycles, opcyclesFunctor, opcyclesIsCokernel, opcyclesIsoCokernel, opcyclesIsoRightHomology, opcyclesIsoX₂, opcyclesMap, opcyclesMap', opcyclesMapIso, opcyclesMapIso', opcyclesOpIso, pOpcycles, pOpcyclesNatTrans, rightHomology, rightHomologyData, rightHomologyFunctor, rightHomologyFunctorOpNatIso, rightHomologyIsKernel, rightHomologyIsoKernelDesc, rightHomologyMap, rightHomologyMap', rightHomologyMapData, rightHomologyMapIso, rightHomologyMapIso', rightHomologyOpIso, rightHomologyι, rightHomologyιNatTrans | 83 |
Theoremscondition, hasCokernel, hasKernel, mk', of_hasCokernel, of_hasCokernel_of_hasKernel, of_hasKernel, of_zeros, op_H, op_Q, op_g', op_p, op_ι, unop_H, unop_Q, unop_g', unop_p, unop_ι, op_φH, op_φQ, unop_φH, unop_φQ, copy_H, copy_Q, copy_p, copy_ι, instEpiP, instMonoι, isIso_p, isIso_ι, liftH_ι, liftH_ι_assoc, ofEpiOfIsIsoOfMono'_H, ofEpiOfIsIsoOfMono'_Q, ofEpiOfIsIsoOfMono'_g'_τ₃, ofEpiOfIsIsoOfMono'_p, ofEpiOfIsIsoOfMono'_ι, ofEpiOfIsIsoOfMono_H, ofEpiOfIsIsoOfMono_Q, ofEpiOfIsIsoOfMono_g', ofEpiOfIsIsoOfMono_p, ofEpiOfIsIsoOfMono_ι, ofHasCokernelOfHasKernel_H, ofHasCokernelOfHasKernel_Q, ofHasCokernelOfHasKernel_p, ofHasCokernelOfHasKernel_ι, ofHasKernel_H, ofHasKernel_Q, ofHasKernel_p, ofHasKernel_ι, ofIsColimitCokernelCofork_H, ofIsColimitCokernelCofork_Q, ofIsColimitCokernelCofork_g', ofIsColimitCokernelCofork_p, ofIsColimitCokernelCofork_ι, ofIsLimitKernelFork_H, ofIsLimitKernelFork_Q, ofIsLimitKernelFork_g', ofIsLimitKernelFork_p, ofIsLimitKernelFork_ι, ofZeros_H, ofZeros_Q, ofZeros_g', ofZeros_p, ofZeros_ι, op_H, op_K, op_f', op_i, op_π, opcyclesIso_hom_comp_descQ, opcyclesIso_inv_comp_descOpcycles, opcyclesIso_inv_comp_descOpcycles_assoc, pOpcycles_comp_opcyclesIso_hom, pOpcycles_comp_opcyclesIso_hom_assoc, p_comp_opcyclesIso_inv, p_comp_opcyclesIso_inv_assoc, p_descQ, p_descQ_assoc, p_g', p_g'_assoc, rightHomologyIso_hom_comp_ι, rightHomologyIso_hom_comp_ι_assoc, rightHomologyIso_inv_comp_rightHomologyι, rightHomologyIso_inv_comp_rightHomologyι_assoc, unop_H, unop_K, unop_f', unop_i, unop_π, wp, wp_assoc, wι, wι_assoc, ι_descQ_eq_zero_of_boundary, ι_descQ_eq_zero_of_boundary_assoc, ι_g', ι_g'_assoc, commg', commg'_assoc, commp, commp_assoc, commι, commι_assoc, comp_φH, comp_φQ, compatibilityOfZerosOfIsColimitCokernelCofork_φH, compatibilityOfZerosOfIsColimitCokernelCofork_φQ, compatibilityOfZerosOfIsLimitKernelFork_φH, compatibilityOfZerosOfIsLimitKernelFork_φQ, congr_φH, congr_φQ, id_φH, id_φQ, instSubsingleton, ofEpiOfIsIsoOfMono'_φH, ofEpiOfIsIsoOfMono'_φQ, ofEpiOfIsIsoOfMono_φH, ofEpiOfIsIsoOfMono_φQ, ofIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_φQ, ofIsLimitKernelFork_φH, ofIsLimitKernelFork_φQ, ofZeros_φH, ofZeros_φQ, op_φH, op_φK, opcyclesMap'_eq, opcyclesMap_comm, opcyclesMap_eq, rightHomologyMap'_eq, rightHomologyMap_comm, rightHomologyMap_eq, unop_φH, unop_φK, zero_φH, zero_φQ, cyclesOpIso_hom_naturality, cyclesOpIso_hom_naturality_assoc, cyclesOpIso_inv_naturality, cyclesOpIso_inv_naturality_assoc, cyclesOpIso_inv_op_iCycles, cyclesOpIso_inv_op_iCycles_assoc, descOpcycles_comp, descOpcycles_comp_assoc, f_pOpcycles, f_pOpcycles_assoc, fromOpcyclesNatTrans_app, fromOpcycles_naturality, fromOpcycles_naturality_assoc, fromOpcycles_op_cyclesOpIso_inv, fromOpcycles_op_cyclesOpIso_inv_assoc, hasLeftHomology_iff_op, hasLeftHomology_iff_unop, hasRightHomology_iff_op, hasRightHomology_iff_unop, hasRightHomology_of_epi_of_isIso_of_mono, hasRightHomology_of_epi_of_isIso_of_mono', hasRightHomology_of_iso, instEpiPOpcycles, instHasLeftHomologyOppositeOpOfHasRightHomology, instHasRightHomologyOppositeOpOfHasLeftHomology, instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, instIsIsoRightHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, instMonoRightHomologyι, isIso_opcyclesMap'_of_isIso, isIso_opcyclesMap'_of_isIso_of_epi, isIso_opcyclesMap_of_isIso_of_epi, isIso_opcyclesMap_of_isIso_of_epi', isIso_opcyclesMap_of_iso, isIso_pOpcycles, isIso_rightHomologyMap'_of_isIso, isIso_rightHomologyMap_of_iso, isIso_rightHomologyι, leftHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_inv_app, leftHomologyMap'_op, leftHomologyMap_op, op_pOpcycles_opcyclesOpIso_hom, op_pOpcycles_opcyclesOpIso_hom_assoc, opcyclesFunctor_map, opcyclesFunctor_obj, opcyclesIsoCokernel_hom, opcyclesIsoCokernel_inv, opcyclesIsoRightHomology_hom_inv_id, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv, opcyclesIsoRightHomology_inv_hom_id, opcyclesIsoRightHomology_inv_hom_id_assoc, opcyclesIsoX₂_hom_inv_id, opcyclesIsoX₂_hom_inv_id_assoc, opcyclesIsoX₂_inv, opcyclesIsoX₂_inv_hom_id, opcyclesIsoX₂_inv_hom_id_assoc, opcyclesMap'_comp, opcyclesMap'_comp_assoc, opcyclesMap'_g', opcyclesMap'_g'_assoc, opcyclesMap'_id, opcyclesMap'_zero, opcyclesMapIso'_hom, opcyclesMapIso'_inv, opcyclesMapIso_hom, opcyclesMapIso_inv, opcyclesMap_comp, opcyclesMap_comp_descOpcycles, opcyclesMap_comp_descOpcycles_assoc, opcyclesMap_id, opcyclesMap_zero, opcyclesOpIso_hom_naturality, opcyclesOpIso_hom_naturality_assoc, opcyclesOpIso_hom_toCycles_op, opcyclesOpIso_hom_toCycles_op_assoc, opcyclesOpIso_inv_naturality, opcyclesOpIso_inv_naturality_assoc, opcycles_ext, opcycles_ext_iff, pOpcyclesNatTrans_app, pOpcycles_π_isoOpcyclesOfIsColimit_inv, pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, p_descOpcycles, p_descOpcycles_assoc, p_fromOpcycles, p_fromOpcycles_assoc, p_opcyclesMap, p_opcyclesMap', p_opcyclesMap'_assoc, p_opcyclesMap_assoc, rightHomologyData_H, rightHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app, rightHomologyFunctor_map, rightHomologyFunctor_obj, rightHomologyMap'_comp, rightHomologyMap'_comp_assoc, rightHomologyMap'_id, rightHomologyMap'_op, rightHomologyMap'_zero, rightHomologyMapIso'_hom, rightHomologyMapIso'_inv, rightHomologyMapIso_hom, rightHomologyMapIso_inv, rightHomologyMap_comp, rightHomologyMap_id, rightHomologyMap_op, rightHomologyMap_zero, rightHomology_ext, rightHomology_ext_iff, rightHomologyιNatTrans_app, rightHomologyι_comp_fromOpcycles, rightHomologyι_comp_fromOpcycles_assoc, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, rightHomologyι_naturality, rightHomologyι_naturality', rightHomologyι_naturality'_assoc, rightHomologyι_naturality_assoc, π_isoOpcyclesOfIsColimit_hom, π_isoOpcyclesOfIsColimit_hom_assoc | 259 |
| Total | 342 |
| Name | Category | Theorems |
HasRightHomology 📖 | CompData | 16 mathmath: hasRightHomology_iff_op, hasLeftHomology_iff_op, hasLeftHomology_iff_unop, hasRightHomology_of_epi_of_isIso_of_mono', hasRightHomology_of_preserves', hasRightHomology_of_preserves, HasRightHomology.of_hasCokernel, hasRightHomology_iff_unop, HasRightHomology.mk', HasRightHomology.of_hasKernel, hasRightHomology_of_epi_of_isIso_of_mono, hasRightHomology_of_iso, hasRightHomology_of_hasHomology, HasRightHomology.of_hasCokernel_of_hasKernel, HasRightHomology.of_zeros, instHasRightHomologyOppositeOpOfHasLeftHomology
|
RightHomologyData 📖 | CompData | 1 mathmath: HasRightHomology.condition
|
RightHomologyMapData 📖 | CompData | 1 mathmath: RightHomologyMapData.instSubsingleton
|
cyclesOpIso 📖 | CompOp | 8 mathmath: cyclesOpIso_inv_op_iCycles_assoc, cyclesOpIso_hom_naturality, fromOpcycles_op_cyclesOpIso_inv_assoc, cyclesOpIso_inv_naturality, cyclesOpIso_inv_op_iCycles, cyclesOpIso_inv_naturality_assoc, fromOpcycles_op_cyclesOpIso_inv, cyclesOpIso_hom_naturality_assoc
|
descOpcycles 📖 | CompOp | 15 mathmath: opcyclesMap_comp_descOpcycles, quasiIso_iff_isIso_descOpcycles, homologyι_descOpcycles_eq_zero_of_boundary, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, opcyclesIsoCokernel_hom, descOpcycles_comp_assoc, p_descOpcycles_assoc, RightHomologyData.opcyclesIso_hom_comp_descQ, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, RightHomologyData.opcyclesIso_inv_comp_descOpcycles_assoc, RightHomologyData.opcyclesIso_inv_comp_descOpcycles, p_descOpcycles, opcyclesMap_comp_descOpcycles_assoc, descOpcycles_comp
|
descRightHomology 📖 | CompOp | — |
fromOpcycles 📖 | CompOp | 20 mathmath: fromOpcycles_naturality, HomologicalComplex.opcyclesIsoSc'_inv_fromOpcycles, HomologicalComplex.opcyclesIsoSc'_inv_fromOpcycles_assoc, p_fromOpcycles, HomologyData.ofEpiMonoFactorisation.g'_eq, homologyι_comp_fromOpcycles_assoc, fromOpcycles_naturality_assoc, fromOpcycles_op_cyclesOpIso_inv_assoc, opcyclesOpIso_hom_toCycles_op_assoc, rightHomologyι_comp_fromOpcycles_assoc, RightHomologyData.canonical_g', Exact.mono_fromOpcycles, homologyι_comp_fromOpcycles, exact_iff_mono_fromOpcycles, fromOpcyclesNatTrans_app, opcyclesOpIso_hom_toCycles_op, rightHomologyι_comp_fromOpcycles, p_fromOpcycles_assoc, fromOpcycles_op_cyclesOpIso_inv, Exact.isIso_fromOpcycles
|
fromOpcyclesNatTrans 📖 | CompOp | 1 mathmath: fromOpcyclesNatTrans_app
|
isoOpcyclesOfIsColimit 📖 | CompOp | 11 mathmath: pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι_assoc, HomologyData.ofEpiMonoFactorisation.isoImage_ι, HomologyData.ofEpiMonoFactorisation.g'_eq, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι, pOpcycles_π_isoOpcyclesOfIsColimit_inv, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι_assoc, π_isoOpcyclesOfIsColimit_hom_assoc, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι, π_isoOpcyclesOfIsColimit_hom, HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc
|
leftHomologyFunctorOpNatIso 📖 | CompOp | 2 mathmath: leftHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_inv_app
|
leftHomologyOpIso 📖 | CompOp | 3 mathmath: rightHomologyMap_op, rightHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app
|
opcycles 📖 | CompOp | 150 mathmath: opcyclesMap_smul, pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, homologyι_naturality, fromOpcycles_naturality, opcyclesIsoRightHomology_hom_inv_id, cyclesOpIso_inv_op_iCycles_assoc, pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, opcyclesMap_comp_descOpcycles, homology_π_ι_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_hom, RightHomologyData.canonical_Q, HomologicalComplex.opcyclesIsoSc'_inv_fromOpcycles, mapOpcyclesIso_hom_naturality_assoc, RightHomologyData.p_comp_opcyclesIso_inv, exact_iff_iCycles_pOpcycles_zero, opcyclesMap_sub, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, RightHomologyData.rightHomologyIso_hom_comp_ι, HomologicalComplex.opcyclesIsoSc'_inv_fromOpcycles_assoc, opcyclesIsoRightHomology_inv_hom_id_assoc, RightHomologyData.homologyIso_inv_comp_homologyι, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_inv_assoc, op_pOpcycles_opcyclesOpIso_hom, HomologyData.ofEpiMonoFactorisation.isoImage_ι, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac_assoc, RightHomologyData.homologyIso_hom_comp_ι, p_fromOpcycles, HomologicalComplex.pOpcycles_opcyclesIsoSc'_inv, mapOpcyclesIso_inv_naturality, cyclesOpIso_hom_naturality, pOpcycles_comp_moduleCatOpcyclesIso_hom, isIso_pOpcycles, homology_π_ι, homologyι_naturality_assoc, opcyclesOpIso_hom_naturality_assoc, opcyclesMap_add, HomologyData.canonical_right_Q, instEpiPOpcycles, HomologyData.ofEpiMonoFactorisation.g'_eq, RightHomologyData.mapOpcyclesIso_eq, RightHomologyMapData.opcyclesMap_comm, moduleCat_pOpcycles_eq_zero_iff, opcyclesIsoCokernel_inv, op_pOpcycles_opcyclesOpIso_hom_assoc, RightHomologyData.p_comp_opcyclesIso_inv_assoc, homologyι_comp_fromOpcycles_assoc, HomologicalComplex.homologyIsoSc'_hom_ι_assoc, quasiIso_iff_isIso_descOpcycles, HomologyData.ofEpiMonoFactorisation.isoHomology_inv_homologyι, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac_assoc, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac, fromOpcycles_naturality_assoc, opcyclesMap_neg, opcyclesMapIso_inv, fromOpcycles_op_cyclesOpIso_inv_assoc, homologyι_descOpcycles_eq_zero_of_boundary, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac, opcyclesOpIso_hom_toCycles_op_assoc, rightHomologyι_comp_fromOpcycles_assoc, opcyclesOpIso_hom_naturality, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, opcyclesIsoRightHomology_inv_hom_id, rightHomologyIso_hom_comp_homologyι, cyclesOpIso_inv_naturality, opcyclesIsoCokernel_hom, isIso_homologyι, RightHomologyData.homologyIso_hom_comp_ι_assoc, opcyclesIsoX₂_inv_hom_id_assoc, RightHomologyData.pOpcycles_comp_opcyclesIso_hom, opcyclesMapIso_hom, π_leftRightHomologyComparison_ι_assoc, RightHomologyData.homologyIso_inv_comp_homologyι_assoc, homologyι_comp_asIsoHomologyι_inv, descOpcycles_comp_assoc, opcyclesOpIso_inv_naturality, pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, Exact.mono_fromOpcycles, isIso_rightHomologyι, RightHomologyData.rightHomologyIso_hom_comp_ι_assoc, opcyclesIsoX₂_inv_hom_id, p_descOpcycles_assoc, RightHomologyData.opcyclesIso_hom_comp_descQ, opcyclesMap_zero, opcyclesMap_comp, pOpcycles_π_isoOpcyclesOfIsColimit_inv, p_opcyclesMap_assoc, isIso_opcyclesMap_of_iso, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, homologyIsoImageICyclesCompPOpcycles_ι, π_homologyMap_ι_assoc, HomologicalComplex.homologyIsoSc'_inv_ι, homologyι_comp_fromOpcycles, opcyclesIsoX₂_hom_inv_id_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_hom_assoc, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι_assoc, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι_assoc, homologyι_descOpcycles_eq_zero_of_boundary_assoc, isIso_opcyclesMap_of_isIso_of_epi', rightHomologyIso_hom_comp_homologyι_assoc, π_leftRightHomologyComparison_ι, asIsoHomologyι_hom, opcyclesFunctor_obj, mapOpcyclesIso_inv_naturality_assoc, opcyclesIsoX₂_inv, exact_iff_mono_fromOpcycles, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv, π_isoOpcyclesOfIsColimit_hom_assoc, moduleCat_pOpcycles_eq_iff, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι, HomologicalComplex.homologyIsoSc'_inv_ι_assoc, RightHomologyData.pOpcycles_comp_opcyclesIso_hom_assoc, isIso_opcyclesMap_of_isIso_of_epi, rightHomology_ext_iff, opcyclesOpIso_hom_toCycles_op, rightHomologyι_comp_fromOpcycles, RightHomologyMapData.opcyclesMap_eq, mapOpcyclesIso_hom_naturality, cyclesOpIso_inv_op_iCycles, cyclesOpIso_inv_naturality_assoc, instMonoRightHomologyι, p_fromOpcycles_assoc, opcyclesMap_id, RightHomologyData.opcyclesIso_inv_comp_descOpcycles_assoc, fromOpcycles_op_cyclesOpIso_inv, HomologicalComplex.homologyIsoSc'_hom_ι, RightHomologyData.opcyclesIso_inv_comp_descOpcycles, rightHomologyι_naturality, instMonoHomologyι, HomologyData.ofEpiMonoFactorisation.isoHomology_hom_comp_ι, opcyclesOpIso_inv_naturality_assoc, homologyι_comp_asIsoHomologyι_inv_assoc, π_isoOpcyclesOfIsColimit_hom, opcyclesIsoX₂_hom_inv_id, HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, Exact.isIso_fromOpcycles, p_opcyclesMap, p_descOpcycles, opcycles_ext_iff, asIsoHomologyι_inv_comp_homologyι_assoc, opcyclesMap_comp_descOpcycles_assoc, rightHomologyι_naturality_assoc, f_pOpcycles, descOpcycles_comp, f_pOpcycles_assoc, π_homologyMap_ι, cyclesOpIso_hom_naturality_assoc, asIsoHomologyι_inv_comp_homologyι
|
opcyclesFunctor 📖 | CompOp | 7 mathmath: rightHomologyιNatTrans_app, opcyclesFunctor_linear, opcyclesFunctor_additive, opcyclesFunctor_map, opcyclesFunctor_obj, fromOpcyclesNatTrans_app, pOpcyclesNatTrans_app
|
opcyclesIsCokernel 📖 | CompOp | — |
opcyclesIsoCokernel 📖 | CompOp | 2 mathmath: opcyclesIsoCokernel_inv, opcyclesIsoCokernel_hom
|
opcyclesIsoRightHomology 📖 | CompOp | 5 mathmath: opcyclesIsoRightHomology_hom_inv_id, opcyclesIsoRightHomology_inv_hom_id_assoc, opcyclesIsoRightHomology_inv_hom_id, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv
|
opcyclesIsoX₂ 📖 | CompOp | 5 mathmath: opcyclesIsoX₂_inv_hom_id_assoc, opcyclesIsoX₂_inv_hom_id, opcyclesIsoX₂_hom_inv_id_assoc, opcyclesIsoX₂_inv, opcyclesIsoX₂_hom_inv_id
|
opcyclesMap 📖 | CompOp | 37 mathmath: opcyclesMap_smul, homologyι_naturality, fromOpcycles_naturality, opcyclesMap_comp_descOpcycles, mapOpcyclesIso_hom_naturality_assoc, opcyclesMap_sub, mapOpcyclesIso_inv_naturality, cyclesOpIso_hom_naturality, homologyι_naturality_assoc, opcyclesOpIso_hom_naturality_assoc, opcyclesMap_add, RightHomologyMapData.opcyclesMap_comm, fromOpcycles_naturality_assoc, opcyclesMap_neg, opcyclesMapIso_inv, opcyclesOpIso_hom_naturality, cyclesOpIso_inv_naturality, opcyclesMapIso_hom, opcyclesOpIso_inv_naturality, opcyclesMap_zero, opcyclesMap_comp, p_opcyclesMap_assoc, isIso_opcyclesMap_of_iso, opcyclesFunctor_map, isIso_opcyclesMap_of_isIso_of_epi', mapOpcyclesIso_inv_naturality_assoc, isIso_opcyclesMap_of_isIso_of_epi, RightHomologyMapData.opcyclesMap_eq, mapOpcyclesIso_hom_naturality, cyclesOpIso_inv_naturality_assoc, opcyclesMap_id, rightHomologyι_naturality, opcyclesOpIso_inv_naturality_assoc, p_opcyclesMap, opcyclesMap_comp_descOpcycles_assoc, rightHomologyι_naturality_assoc, cyclesOpIso_hom_naturality_assoc
|
opcyclesMap' 📖 | CompOp | 21 mathmath: opcyclesMap'_g', opcyclesMap'_sub, opcyclesMap'_g'_assoc, rightHomologyι_naturality'_assoc, RightHomologyMapData.opcyclesMap'_eq, opcyclesMapIso'_inv, opcyclesMap'_id, isIso_opcyclesMap'_of_isIso, HomologyMapData.opcyclesMap'_eq, p_opcyclesMap', opcyclesMap'_comp_assoc, rightHomologyι_naturality', opcyclesMapIso'_hom, isIso_opcyclesMap'_of_isIso_of_epi, opcyclesMap'_add, p_opcyclesMap'_assoc, RightHomologyData.map_opcyclesMap', opcyclesMap'_comp, opcyclesMap'_neg, opcyclesMap'_smul, opcyclesMap'_zero
|
opcyclesMapIso 📖 | CompOp | 2 mathmath: opcyclesMapIso_inv, opcyclesMapIso_hom
|
opcyclesMapIso' 📖 | CompOp | 2 mathmath: opcyclesMapIso'_inv, opcyclesMapIso'_hom
|
opcyclesOpIso 📖 | CompOp | 8 mathmath: op_pOpcycles_opcyclesOpIso_hom, opcyclesOpIso_hom_naturality_assoc, op_pOpcycles_opcyclesOpIso_hom_assoc, opcyclesOpIso_hom_toCycles_op_assoc, opcyclesOpIso_hom_naturality, opcyclesOpIso_inv_naturality, opcyclesOpIso_hom_toCycles_op, opcyclesOpIso_inv_naturality_assoc
|
pOpcycles 📖 | CompOp | 57 mathmath: pOpcycles_comp_moduleCatOpcyclesIso_hom_apply, cyclesOpIso_inv_op_iCycles_assoc, pOpcycles_π_isoOpcyclesOfIsColimit_inv_assoc, homology_π_ι_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_hom, RightHomologyData.p_comp_opcyclesIso_inv, exact_iff_iCycles_pOpcycles_zero, groupHomology.comap_coinvariantsKer_pOpcycles_range_subtype_pOpcycles_eq_top, HomologicalComplex.pOpcycles_opcyclesIsoSc'_inv_assoc, op_pOpcycles_opcyclesOpIso_hom, HomologyData.ofEpiMonoFactorisation.isoImage_ι, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac_assoc, p_fromOpcycles, HomologicalComplex.pOpcycles_opcyclesIsoSc'_inv, pOpcycles_comp_moduleCatOpcyclesIso_hom, isIso_pOpcycles, homology_π_ι, instEpiPOpcycles, moduleCat_pOpcycles_eq_zero_iff, opcyclesIsoCokernel_inv, op_pOpcycles_opcyclesOpIso_hom_assoc, RightHomologyData.p_comp_opcyclesIso_inv_assoc, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac_assoc, CategoryTheory.ComposableArrows.Exact.opcyclesIsoCycles_hom_fac, CategoryTheory.ComposableArrows.IsComplex.opcyclesToCycles_fac, HomologyData.canonical_right_p, opcyclesIsoX₂_inv_hom_id_assoc, RightHomologyData.pOpcycles_comp_opcyclesIso_hom, π_leftRightHomologyComparison_ι_assoc, pOpcycles_comp_moduleCatOpcyclesIso_hom_assoc, opcyclesIsoX₂_inv_hom_id, p_descOpcycles_assoc, RightHomologyData.canonical_p, pOpcycles_π_isoOpcyclesOfIsColimit_inv, p_opcyclesMap_assoc, homologyIsoImageICyclesCompPOpcycles_ι, π_homologyMap_ι_assoc, opcyclesIsoX₂_hom_inv_id_assoc, HomologicalComplex.pOpcycles_opcyclesIsoSc'_hom_assoc, π_leftRightHomologyComparison_ι, opcyclesIsoX₂_inv, π_isoOpcyclesOfIsColimit_hom_assoc, moduleCat_pOpcycles_eq_iff, RightHomologyData.pOpcycles_comp_opcyclesIso_hom_assoc, cyclesOpIso_inv_op_iCycles, p_fromOpcycles_assoc, pOpcyclesNatTrans_app, π_isoOpcyclesOfIsColimit_hom, opcyclesIsoX₂_hom_inv_id, HomologyData.ofEpiMonoFactorisation.isoImage_ι_assoc, homologyIsoImageICyclesCompPOpcycles_ι_assoc, p_opcyclesMap, p_descOpcycles, opcycles_ext_iff, f_pOpcycles, f_pOpcycles_assoc, π_homologyMap_ι
|
pOpcyclesNatTrans 📖 | CompOp | 1 mathmath: pOpcyclesNatTrans_app
|
rightHomology 📖 | CompOp | 63 mathmath: rightHomologyMap_id, opcyclesIsoRightHomology_hom_inv_id, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv, RightHomologyData.rightHomologyIso_hom_comp_ι, opcyclesIsoRightHomology_inv_hom_id_assoc, isIso_leftRightHomologyComparison, leftRightHomologyComparison_fac, leftHomologyMap_op, rightHomologyMapIso_inv, rightHomologyFunctor_obj, mapRightHomologyIso_inv_naturality, RightHomologyData.homologyIso_hom_comp_rightHomologyIso_inv_assoc, RightHomologyMapData.rightHomologyMap_eq, rightHomologyMap_comp, rightHomologyι_comp_fromOpcycles_assoc, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, rightHomologyIso_inv_naturality_assoc, opcyclesIsoRightHomology_inv_hom_id, rightHomologyIso_hom_comp_homologyι, mapRightHomologyIso_hom_naturality, RightHomologyMapData.rightHomologyMap_comm, mapRightHomologyIso_inv_naturality_assoc, leftRightHomologyComparison_eq, rightHomologyMap_zero, π_leftRightHomologyComparison_ι_assoc, rightHomologyMapIso_hom, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv_assoc, isIso_rightHomologyMap_of_iso, isIso_rightHomologyι, RightHomologyData.rightHomologyIso_hom_comp_ι_assoc, rightHomologyMap_sub, rightHomologyMap_op, rightHomologyFunctorOpNatIso_hom_app, RightHomologyData.mapRightHomologyIso_eq, rightHomologyMap_nullHomotopic, rightHomologyIso_hom_naturality_assoc, rightHomologyMap_add, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, leftHomologyFunctorOpNatIso_hom_app, rightHomologyData_H, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι_assoc, rightHomologyIso_hom_comp_homologyι_assoc, π_leftRightHomologyComparison_ι, rightHomologyMap_neg, rightHomologyIso_inv_naturality, rightHomologyFunctorOpNatIso_inv_app, mapRightHomologyIso_hom_naturality_assoc, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv, exact_iff_isZero_rightHomology, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι, rightHomology_ext_iff, rightHomologyι_comp_fromOpcycles, rightHomologyIso_hom_naturality, leftHomologyFunctorOpNatIso_inv_app, RightHomologyData.rightHomologyIso_hom_comp_homologyIso_inv, rightHomologyMap_smul, instMonoRightHomologyι, instIsIsoRightHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, rightHomologyι_naturality, leftRightHomologyComparison_fac_assoc, RightHomologyData.homologyIso_rightHomologyData, rightHomologyι_naturality_assoc
|
rightHomologyData 📖 | CompOp | 2 mathmath: rightHomologyData_H, RightHomologyData.homologyIso_rightHomologyData
|
rightHomologyFunctor 📖 | CompOp | 9 mathmath: rightHomologyιNatTrans_app, rightHomologyFunctor_linear, rightHomologyFunctor_obj, rightHomologyFunctor_additive, rightHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app, leftHomologyFunctorOpNatIso_inv_app, rightHomologyFunctor_map
|
rightHomologyFunctorOpNatIso 📖 | CompOp | 2 mathmath: rightHomologyFunctorOpNatIso_hom_app, rightHomologyFunctorOpNatIso_inv_app
|
rightHomologyIsKernel 📖 | CompOp | — |
rightHomologyIsoKernelDesc 📖 | CompOp | — |
rightHomologyMap 📖 | CompOp | 28 mathmath: rightHomologyMap_id, leftHomologyMap_op, rightHomologyMapIso_inv, mapRightHomologyIso_inv_naturality, RightHomologyMapData.rightHomologyMap_eq, rightHomologyMap_comp, rightHomologyIso_inv_naturality_assoc, mapRightHomologyIso_hom_naturality, RightHomologyMapData.rightHomologyMap_comm, mapRightHomologyIso_inv_naturality_assoc, rightHomologyMap_zero, rightHomologyMapIso_hom, isIso_rightHomologyMap_of_iso, rightHomologyMap_sub, rightHomologyMap_op, rightHomologyMap_nullHomotopic, rightHomologyIso_hom_naturality_assoc, rightHomologyMap_add, rightHomologyMap_neg, rightHomologyIso_inv_naturality, mapRightHomologyIso_hom_naturality_assoc, Homotopy.rightHomologyMap_congr, rightHomologyIso_hom_naturality, rightHomologyMap_smul, instIsIsoRightHomologyMapOfEpiτ₁Ofτ₂OfMonoτ₃, rightHomologyFunctor_map, rightHomologyι_naturality, rightHomologyι_naturality_assoc
|
rightHomologyMap' 📖 | CompOp | 29 mathmath: quasiIso_iff_isIso_rightHomologyMap', RightHomologyData.rightHomologyIso_inv_naturality_assoc, rightHomologyι_naturality'_assoc, rightHomologyMap'_id, RightHomologyData.rightHomologyIso_hom_naturality, Homotopy.rightHomologyMap'_congr, RightHomologyData.rightHomologyIso_inv_naturality, RightHomologyData.map_rightHomologyMap', rightHomologyMap'_op, rightHomologyMap'_add, rightHomologyMapIso'_inv, RightHomologyMapData.rightHomologyMap'_eq, rightHomologyMap'_nullHomotopic, rightHomologyι_naturality', leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, isIso_rightHomologyMap'_of_isIso, rightHomologyMap'_comp, rightHomologyMap'_sub, rightHomologyMapIso'_hom, rightHomologyMap'_comp_assoc, leftRightHomologyComparison'_naturality_assoc, RightHomologyData.rightHomologyIso_hom_naturality_assoc, rightHomologyMap'_neg, leftRightHomologyComparison'_naturality, rightHomologyMap'_smul, leftRightHomologyComparison'_compatibility, rightHomologyMap'_zero, leftHomologyMap'_op
|
rightHomologyMapData 📖 | CompOp | — |
rightHomologyMapIso 📖 | CompOp | 2 mathmath: rightHomologyMapIso_inv, rightHomologyMapIso_hom
|
rightHomologyMapIso' 📖 | CompOp | 2 mathmath: rightHomologyMapIso'_inv, rightHomologyMapIso'_hom
|
rightHomologyOpIso 📖 | CompOp | 3 mathmath: leftHomologyMap_op, leftHomologyFunctorOpNatIso_hom_app, leftHomologyFunctorOpNatIso_inv_app
|
rightHomologyι 📖 | CompOp | 23 mathmath: opcyclesIsoRightHomology_hom_inv_id, RightHomologyData.rightHomologyIso_hom_comp_ι, rightHomologyιNatTrans_app, opcyclesIsoRightHomology_inv_hom_id_assoc, rightHomologyι_comp_fromOpcycles_assoc, rightHomologyι_descOpcycles_π_eq_zero_of_boundary, opcyclesIsoRightHomology_inv_hom_id, rightHomologyIso_hom_comp_homologyι, π_leftRightHomologyComparison_ι_assoc, isIso_rightHomologyι, RightHomologyData.rightHomologyIso_hom_comp_ι_assoc, rightHomologyι_descOpcycles_π_eq_zero_of_boundary_assoc, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι_assoc, rightHomologyIso_hom_comp_homologyι_assoc, π_leftRightHomologyComparison_ι, opcyclesIsoRightHomology_hom_inv_id_assoc, opcyclesIsoRightHomology_inv, RightHomologyData.rightHomologyIso_inv_comp_rightHomologyι, rightHomology_ext_iff, rightHomologyι_comp_fromOpcycles, instMonoRightHomologyι, rightHomologyι_naturality, rightHomologyι_naturality_assoc
|
rightHomologyιNatTrans 📖 | CompOp | 1 mathmath: rightHomologyιNatTrans_app
|
| Name | Category | Theorems |
H 📖 | CompOp | 124 mathmath: map_ι, ι_g', CategoryTheory.ShortComplex.HomologyData.ofIso_right_H, CategoryTheory.ShortComplex.quasiIso_iff_isIso_rightHomologyMap', CategoryTheory.ShortComplex.RightHomologyMapData.neg_φH, ofAbelian_H, homologyIso_hom_comp_rightHomologyIso_inv, CategoryTheory.ShortComplex.RightHomologyMapData.op_φH, CategoryTheory.ShortComplex.RightHomologyMapData.homologyMap_eq, rightHomologyIso_hom_comp_ι, rightHomologyIso_inv_naturality_assoc, CategoryTheory.ShortComplex.rightHomologyι_naturality'_assoc, homologyIso_inv_comp_homologyι, liftH_ι, CategoryTheory.ShortComplex.HomologyData.right_homologyIso_eq_left_homologyIso_trans_iso, CategoryTheory.ShortComplex.RightHomologyMapData.id_φH, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, map_H, CategoryTheory.ShortComplex.rightHomologyMap'_id, homologyIso_hom_comp_ι, CategoryTheory.ShortComplex.RightHomologyMapData.quasiIso_map_iff, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison', rightHomologyIso_hom_naturality, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.rightHomologyData_H, CategoryTheory.ShortComplex.HomologyData.canonical_right_H, exact_iff, CategoryTheory.ShortComplex.LeftHomologyData.op_H, CategoryTheory.ShortComplex.RightHomologyMapData.homologyMap_comm, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, rightHomologyIso_inv_naturality, wι_assoc, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_H, ofZeros_H, CategoryTheory.ShortComplex.homologyMap'_op, map_rightHomologyMap', ofIsColimitCokernelCofork_H, copy_ι, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono'_φH, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φH, homologyIso_hom_comp_rightHomologyIso_inv_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap_eq, CategoryTheory.ShortComplex.HomologyData.comm_assoc, CategoryTheory.ShortComplex.isIso_leftRightHomologyComparison'_of_homologyData, CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_φH, CategoryTheory.ShortComplex.rightHomologyMap'_op, CategoryTheory.ShortComplex.rightHomologyMap'_add, CategoryTheory.ShortComplex.rightHomologyMapIso'_inv, CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap_comm, ofHasCokernelOfHasKernel_H, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono_φH, ι_descQ_eq_zero_of_boundary_assoc, HomologicalComplex.extend.homologyData'_right_H, homologyIso_hom_comp_ι_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison_eq, CategoryTheory.ShortComplex.rightHomologyMap'_nullHomotopic, wι, CategoryTheory.ShortComplex.rightHomologyι_naturality', homologyIso_inv_comp_homologyι_assoc, op_H, ofEpiOfIsIsoOfMono'_H, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_leftHomologpMap'_comp_iso_hom_comp_rightHomologyMap', CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, rightHomologyIso_hom_comp_homologyIso_inv_assoc, CategoryTheory.ShortComplex.HomologyData.left_homologyIso_eq_right_homologyIso_trans_iso_symm, CategoryTheory.ShortComplex.instIsIsoRightHomologyMap'OfEpiτ₁Ofτ₂OfMonoτ₃, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.comp_φH, CategoryTheory.ShortComplex.isIso_rightHomologyMap'_of_isIso, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φH, ι_g'_assoc, rightHomologyIso_hom_comp_ι_assoc, instMonoι, CategoryTheory.ShortComplex.rightHomologyMap'_comp, CategoryTheory.ShortComplex.rightHomologyMap'_sub, mapRightHomologyIso_eq, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, CategoryTheory.ShortComplex.LeftHomologyData.unop_H, isIso_ι, exact_map_iff, HomologicalComplex.extend.rightHomologyData_H, CategoryTheory.ShortComplex.rightHomologyMapIso'_hom, HomologicalComplex.truncGE.rightHomologyMapData_φH, CategoryTheory.ShortComplex.rightHomologyMap'_comp_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.commι, CategoryTheory.ShortComplex.rightHomologyData_H, rightHomologyIso_inv_comp_rightHomologyι_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_naturality_assoc, rightHomologyIso_hom_naturality_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.add_φH, CategoryTheory.ShortComplex.map_leftRightHomologyComparison', canonical_H, CategoryTheory.ShortComplex.HomologyData.unop_iso, CategoryTheory.ShortComplex.rightHomologyMap'_neg, CategoryTheory.ShortComplex.HomologyData.op_iso, liftH_ι_assoc, ofHasKernel_H, CategoryTheory.ShortComplex.HomologyData.map_iso, ι_descQ_eq_zero_of_boundary, CategoryTheory.ShortComplex.leftRightHomologyComparison'_naturality, rightHomologyIso_inv_comp_rightHomologyι, CategoryTheory.ShortComplex.RightHomologyMapData.map_φH, unop_π, CategoryTheory.ShortComplex.rightHomologyMap'_smul, rightHomologyIso_hom_comp_homologyIso_inv, unop_H, ofIsLimitKernelFork_H, CategoryTheory.ShortComplex.Splitting.rightHomologyData_H, CategoryTheory.ShortComplex.HomologyData.ofIsIsoLeftRightHomologyComparison'_iso, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.leftRightHomologyComparison'_compatibility, CategoryTheory.ShortComplex.rightHomologyMap'_zero, CategoryTheory.ShortComplex.HomologyData.exact_iff', CategoryTheory.ShortComplex.HomologyData.leftRightHomologyComparison'_eq, ofEpiOfIsIsoOfMono_H, CategoryTheory.ShortComplex.leftRightHomologyComparison'_fac_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.commι_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φH, copy_H, op_π, mapHomologyIso'_eq, CategoryTheory.ShortComplex.RightHomologyMapData.quasiIso_iff
|
Q 📖 | CompOp | 131 mathmath: map_ι, CategoryTheory.ShortComplex.HomologyData.ofIso_right_p, ι_g', canonical_Q, IsPreservedBy.hg', ofZeros_Q, wp, p_comp_opcyclesIso_inv, wp_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_φQ, CategoryTheory.ShortComplex.opcyclesMap'_g', CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.rightHomologyData_Q, CategoryTheory.ShortComplex.opcyclesMap'_sub, CategoryTheory.ShortComplex.RightHomologyMapData.neg_φQ, rightHomologyIso_hom_comp_ι, CategoryTheory.ShortComplex.opcyclesMap'_g'_assoc, CategoryTheory.ShortComplex.rightHomologyι_naturality'_assoc, ofEpiOfIsIsoOfMono'_Q, homologyIso_inv_comp_homologyι, CategoryTheory.ShortComplex.opcyclesMapIso'_inv, unop_i, p_g'_assoc, copy_p, map_g', CategoryTheory.ShortComplex.opcyclesMap'_id, CategoryTheory.ShortComplex.isIso_opcyclesMap'_of_isIso, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, CategoryTheory.ShortComplex.RightHomologyMapData.op_φK, homologyIso_hom_comp_ι, CategoryTheory.ShortComplex.HomologyData.ofIso_right_Q, CategoryTheory.ShortComplex.RightHomologyMapData.commg'_assoc, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, wι_assoc, copy_Q, ofEpiOfIsIsoOfMono_Q, ofEpiOfIsIsoOfMono'_g'_τ₃, CategoryTheory.ShortComplex.HomologyData.canonical_right_Q, mapOpcyclesIso_eq, instEpiP, ofIsColimitCokernelCofork_Q, CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap_comm, copy_ι, p_comp_opcyclesIso_inv_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φK, ofAbelian_Q, CategoryTheory.ShortComplex.HomologyData.comm_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono'_φQ, CategoryTheory.ShortComplex.Splitting.rightHomologyData_Q, op_K, ofIsLimitKernelFork_Q, CategoryTheory.ShortComplex.RightHomologyMapData.comp_φQ, CategoryTheory.ShortComplex.p_opcyclesMap', CategoryTheory.ShortComplex.RightHomologyMapData.commg', map_Q, unop_f', CategoryTheory.ShortComplex.LeftHomologyData.op_Q, p_descQ_assoc, p_descQ, CategoryTheory.ShortComplex.Exact.shortExact, CategoryTheory.ShortComplex.opcyclesMap'_comp_assoc, IsPreservedBy.g', ofEpiOfIsIsoOfMono_g', CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_Q, ι_descQ_eq_zero_of_boundary_assoc, homologyIso_hom_comp_ι_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.id_φQ, HomologicalComplex.extend.rightHomologyData_p, wι, CategoryTheory.ShortComplex.exact_iff_i_p_zero, pOpcycles_comp_opcyclesIso_hom, CategoryTheory.ShortComplex.rightHomologyι_naturality', homologyIso_inv_comp_homologyι_assoc, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, HomologicalComplex.extend.rightHomologyData_g', HomologicalComplex.extend.homologyData'_right_p, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, ofEpiOfIsIsoOfMono_p, exact_iff_mono_g', CategoryTheory.ShortComplex.opcyclesMapIso'_hom, ι_g'_assoc, map_p, rightHomologyIso_hom_comp_ι_assoc, instMonoι, CategoryTheory.ShortComplex.Exact.isIso_g', CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, opcyclesIso_hom_comp_descQ, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, unop_K, ofHasKernel_Q, CategoryTheory.ShortComplex.RightHomologyMapData.zero_φQ, isIso_ι, op_f', CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φQ, isIso_p, CategoryTheory.ShortComplex.RightHomologyMapData.commι, CategoryTheory.ShortComplex.isIso_opcyclesMap'_of_isIso_of_epi, rightHomologyIso_inv_comp_rightHomologyι_assoc, ofHasCokernelOfHasKernel_Q, CategoryTheory.ShortComplex.LeftHomologyData.unop_Q, HomologicalComplex.extend.homologyData'_right_Q, CategoryTheory.ShortComplex.RightHomologyMapData.smul_φQ, op_i, CategoryTheory.ShortComplex.RightHomologyMapData.commp_assoc, ι_descQ_eq_zero_of_boundary, rightHomologyIso_inv_comp_rightHomologyι, pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap_eq, unop_π, CategoryTheory.ShortComplex.opcyclesMap'_add, CategoryTheory.ShortComplex.Exact.mono_g', CategoryTheory.ShortComplex.p_opcyclesMap'_assoc, ofZeros_g', CategoryTheory.ShortComplex.comp_homologyMap_comp, map_opcyclesMap', CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.opcyclesMap'_comp, opcyclesIso_inv_comp_descOpcycles_assoc, ofIsColimitCokernelCofork_g', opcyclesIso_inv_comp_descOpcycles, CategoryTheory.ShortComplex.RightHomologyMapData.map_φQ, HomologicalComplex.extend.rightHomologyData_Q, CategoryTheory.ShortComplex.opcyclesMap'_neg, ofEpiOfIsIsoOfMono'_p, CategoryTheory.ShortComplex.RightHomologyMapData.commι_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.add_φQ, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono_φQ, CategoryTheory.ShortComplex.opcyclesMap'_smul, CategoryTheory.ShortComplex.RightHomologyMapData.commp, op_π, CategoryTheory.ShortComplex.opcyclesMap'_zero, p_g'
|
copy 📖 | CompOp | 4 mathmath: copy_p, copy_Q, copy_ι, copy_H
|
descH 📖 | CompOp | — |
descQ 📖 | CompOp | 7 mathmath: p_descQ_assoc, p_descQ, ι_descQ_eq_zero_of_boundary_assoc, opcyclesIso_hom_comp_descQ, ι_descQ_eq_zero_of_boundary, opcyclesIso_inv_comp_descOpcycles_assoc, opcyclesIso_inv_comp_descOpcycles
|
g' 📖 | CompOp | 26 mathmath: CategoryTheory.ShortComplex.LeftHomologyData.op_g', ι_g', IsPreservedBy.hg', CategoryTheory.ShortComplex.opcyclesMap'_g', CategoryTheory.ShortComplex.opcyclesMap'_g'_assoc, p_g'_assoc, map_g', CategoryTheory.ShortComplex.RightHomologyMapData.commg'_assoc, ofEpiOfIsIsoOfMono'_g'_τ₃, CategoryTheory.ShortComplex.RightHomologyMapData.commg', unop_f', HomologicalComplex.truncGE'.homologyData_right_g', IsPreservedBy.g', ofEpiOfIsIsoOfMono_g', canonical_g', HomologicalComplex.extend.rightHomologyData_g', exact_iff_mono_g', ι_g'_assoc, CategoryTheory.ShortComplex.Exact.isIso_g', op_f', CategoryTheory.ShortComplex.Exact.mono_g', ofZeros_g', ofIsColimitCokernelCofork_g', CategoryTheory.ShortComplex.LeftHomologyData.unop_g', ofIsLimitKernelFork_g', p_g'
|
hp 📖 | CompOp | 2 mathmath: wι_assoc, wι
|
hι 📖 | CompOp | — |
hι' 📖 | CompOp | — |
liftH 📖 | CompOp | 4 mathmath: liftH_ι, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, liftH_ι_assoc
|
ofEpiOfIsIsoOfMono 📖 | CompOp | 8 mathmath: ofEpiOfIsIsoOfMono_Q, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono_φH, ofEpiOfIsIsoOfMono_g', CategoryTheory.ShortComplex.HomologyData.ofEpiOfIsIsoOfMono_right, ofEpiOfIsIsoOfMono_p, ofEpiOfIsIsoOfMono_H, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono_φQ, ofEpiOfIsIsoOfMono_ι
|
ofEpiOfIsIsoOfMono' 📖 | CompOp | 8 mathmath: ofEpiOfIsIsoOfMono'_Q, ofEpiOfIsIsoOfMono'_ι, ofEpiOfIsIsoOfMono'_g'_τ₃, CategoryTheory.ShortComplex.HomologyData.ofEpiOfIsIsoOfMono'_right, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono'_φH, CategoryTheory.ShortComplex.RightHomologyMapData.ofEpiOfIsIsoOfMono'_φQ, ofEpiOfIsIsoOfMono'_H, ofEpiOfIsIsoOfMono'_p
|
ofHasCokernel 📖 | CompOp | 1 mathmath: CategoryTheory.ShortComplex.HomologyData.ofHasCokernel_right
|
ofHasCokernelOfHasKernel 📖 | CompOp | 4 mathmath: ofHasCokernelOfHasKernel_p, ofHasCokernelOfHasKernel_H, ofHasCokernelOfHasKernel_ι, ofHasCokernelOfHasKernel_Q
|
ofHasKernel 📖 | CompOp | 5 mathmath: ofHasKernel_p, CategoryTheory.ShortComplex.HomologyData.ofHasKernel_right, ofHasKernel_Q, ofHasKernel_ι, ofHasKernel_H
|
ofIsColimitCokernelCofork 📖 | CompOp | 10 mathmath: CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_Q, ofIsColimitCokernelCofork_H, CategoryTheory.ShortComplex.HomologyData.ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_p, ofIsColimitCokernelCofork_ι, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φQ, CategoryTheory.ShortComplex.RightHomologyMapData.ofIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_g', CategoryTheory.ShortComplex.RightHomologyMapData.ofIsColimitCokernelCofork_φQ
|
ofIsLimitKernelFork 📖 | CompOp | 10 mathmath: CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φH, CategoryTheory.ShortComplex.RightHomologyMapData.ofIsLimitKernelFork_φH, ofIsLimitKernelFork_Q, ofIsLimitKernelFork_p, CategoryTheory.ShortComplex.RightHomologyMapData.ofIsLimitKernelFork_φQ, CategoryTheory.ShortComplex.HomologyData.ofIsLimitKernelFork_right, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φQ, ofIsLimitKernelFork_ι, ofIsLimitKernelFork_H, ofIsLimitKernelFork_g'
|
ofIso 📖 | CompOp | — |
ofZeros 📖 | CompOp | 12 mathmath: ofZeros_Q, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φH, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φH, ofZeros_H, CategoryTheory.ShortComplex.RightHomologyMapData.ofZeros_φQ, ofZeros_p, ofZeros_ι, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_φQ, CategoryTheory.ShortComplex.RightHomologyMapData.ofZeros_φH, CategoryTheory.ShortComplex.HomologyData.ofZeros_right, CategoryTheory.ShortComplex.RightHomologyMapData.compatibilityOfZerosOfIsColimitCokernelCofork_φQ, ofZeros_g'
|
op 📖 | CompOp | 9 mathmath: CategoryTheory.ShortComplex.RightHomologyMapData.op_φH, CategoryTheory.ShortComplex.RightHomologyMapData.op_φK, op_K, CategoryTheory.ShortComplex.rightHomologyMap'_op, op_H, CategoryTheory.ShortComplex.HomologyData.op_left, op_f', op_i, op_π
|
opcyclesIso 📖 | CompOp | 18 mathmath: p_comp_opcyclesIso_inv, rightHomologyIso_hom_comp_ι, homologyIso_inv_comp_homologyι, homologyIso_hom_comp_ι, mapOpcyclesIso_eq, CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap_comm, p_comp_opcyclesIso_inv_assoc, homologyIso_hom_comp_ι_assoc, pOpcycles_comp_opcyclesIso_hom, homologyIso_inv_comp_homologyι_assoc, rightHomologyIso_hom_comp_ι_assoc, opcyclesIso_hom_comp_descQ, rightHomologyIso_inv_comp_rightHomologyι_assoc, rightHomologyIso_inv_comp_rightHomologyι, pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.opcyclesMap_eq, opcyclesIso_inv_comp_descOpcycles_assoc, opcyclesIso_inv_comp_descOpcycles
|
p 📖 | CompOp | 51 mathmath: ofHasCokernelOfHasKernel_p, CategoryTheory.ShortComplex.HomologyData.ofIso_right_p, CategoryTheory.ShortComplex.LeftHomologyData.unop_p, wp, p_comp_opcyclesIso_inv, wp_assoc, unop_i, p_g'_assoc, copy_p, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, ofHasKernel_p, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_descH, wι_assoc, instEpiP, CategoryTheory.ShortComplex.Splitting.rightHomologyData_p, p_comp_opcyclesIso_inv_assoc, CategoryTheory.ShortComplex.HomologyData.comm_assoc, CategoryTheory.ShortComplex.p_opcyclesMap', p_descQ_assoc, p_descQ, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.rightHomologyData_p, CategoryTheory.ShortComplex.Exact.shortExact, CategoryTheory.ShortComplex.HomologyData.canonical_right_p, ofIsColimitCokernelCofork_p, ofIsLimitKernelFork_p, HomologicalComplex.extend.rightHomologyData_p, ofZeros_p, wι, CategoryTheory.ShortComplex.exact_iff_i_p_zero, pOpcycles_comp_opcyclesIso_hom, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, ofAbelian_p, HomologicalComplex.extend.homologyData'_right_p, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, ofEpiOfIsIsoOfMono_p, map_p, CategoryTheory.ShortComplex.LeftHomologyData.op_p, CategoryTheory.ShortComplex.leftRightHomologyComparison'_eq_liftH, canonical_p, CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero, isIso_p, op_i, CategoryTheory.ShortComplex.RightHomologyMapData.commp_assoc, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_p, pOpcycles_comp_opcyclesIso_hom_assoc, CategoryTheory.ShortComplex.p_opcyclesMap'_assoc, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, ofEpiOfIsIsoOfMono'_p, CategoryTheory.ShortComplex.RightHomologyMapData.commp, p_g'
|
rightHomologyIso 📖 | CompOp | 12 mathmath: homologyIso_hom_comp_rightHomologyIso_inv, rightHomologyIso_hom_comp_ι, homologyIso_hom_comp_rightHomologyIso_inv_assoc, CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap_eq, CategoryTheory.ShortComplex.RightHomologyMapData.rightHomologyMap_comm, CategoryTheory.ShortComplex.leftRightHomologyComparison_eq, rightHomologyIso_hom_comp_homologyIso_inv_assoc, rightHomologyIso_hom_comp_ι_assoc, mapRightHomologyIso_eq, rightHomologyIso_inv_comp_rightHomologyι_assoc, rightHomologyIso_inv_comp_rightHomologyι, rightHomologyIso_hom_comp_homologyIso_inv
|
unop 📖 | CompOp | 8 mathmath: unop_i, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φK, CategoryTheory.ShortComplex.HomologyData.unop_left, unop_f', unop_K, unop_π, unop_H, CategoryTheory.ShortComplex.RightHomologyMapData.unop_φH
|
ι 📖 | CompOp | 50 mathmath: map_ι, ι_g', rightHomologyIso_hom_comp_ι, CategoryTheory.ShortComplex.rightHomologyι_naturality'_assoc, CategoryTheory.ShortComplex.LeftHomologyData.unop_ι, homologyIso_inv_comp_homologyι, liftH_ι, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι, CategoryTheory.ShortComplex.Splitting.rightHomologyData_ι, ofEpiOfIsIsoOfMono'_ι, homologyIso_hom_comp_ι, wι_assoc, canonical_ι, copy_ι, CategoryTheory.ShortComplex.HomologyData.comm_assoc, ι_descQ_eq_zero_of_boundary_assoc, homologyIso_hom_comp_ι_assoc, CategoryTheory.ShortComplex.HomologyData.ofIso_right_ι, wι, CategoryTheory.ShortComplex.rightHomologyι_naturality', homologyIso_inv_comp_homologyι_assoc, CategoryTheory.ShortComplex.comp_homologyMap_comp_assoc, HomologicalComplex.extend.rightHomologyData_ι, CategoryTheory.ShortComplex.π_leftRightHomologyComparison'_ι_assoc, ofAbelian_ι, CategoryTheory.ShortComplex.HomologyData.canonical_right_ι, ι_g'_assoc, rightHomologyIso_hom_comp_ι_assoc, instMonoι, ofHasCokernelOfHasKernel_ι, isIso_ι, ofZeros_ι, CategoryTheory.ShortComplex.Exact.rightHomologyDataOfIsColimitCokernelCofork_ι, HomologicalComplex.extend.homologyData'_right_ι, CategoryTheory.ShortComplex.HomologyData.ofEpiMonoFactorisation.rightHomologyData_ι, ofIsLimitKernelFork_ι, CategoryTheory.ShortComplex.RightHomologyMapData.commι, rightHomologyIso_inv_comp_rightHomologyι_assoc, ofHasKernel_ι, ofIsColimitCokernelCofork_ι, liftH_ι_assoc, ι_descQ_eq_zero_of_boundary, rightHomologyIso_inv_comp_rightHomologyι, unop_π, CategoryTheory.ShortComplex.comp_homologyMap_comp, CategoryTheory.ShortComplex.HomologyData.comm, CategoryTheory.ShortComplex.RightHomologyMapData.commι_assoc, CategoryTheory.ShortComplex.LeftHomologyData.op_ι, op_π, ofEpiOfIsIsoOfMono_ι
|
| Name | Category | Theorems |
comp 📖 | CompOp | 3 mathmath: CategoryTheory.ShortComplex.HomologyMapData.comp_right, comp_φQ, comp_φH
|
compatibilityOfZerosOfIsColimitCokernelCofork 📖 | CompOp | 2 mathmath: compatibilityOfZerosOfIsColimitCokernelCofork_φH, compatibilityOfZerosOfIsColimitCokernelCofork_φQ
|
compatibilityOfZerosOfIsLimitKernelFork 📖 | CompOp | 3 mathmath: compatibilityOfZerosOfIsLimitKernelFork_φH, compatibilityOfZerosOfIsLimitKernelFork_φQ, CategoryTheory.ShortComplex.HomologyMapData.compatibilityOfZerosOfIsLimitKernelFork_right
|
id 📖 | CompOp | 3 mathmath: id_φH, CategoryTheory.ShortComplex.HomologyMapData.id_right, id_φQ
|
instInhabited 📖 | CompOp | — |
instUnique 📖 | CompOp | — |
ofEpiOfIsIsoOfMono 📖 | CompOp | 2 mathmath: ofEpiOfIsIsoOfMono_φH, ofEpiOfIsIsoOfMono_φQ
|
ofEpiOfIsIsoOfMono' 📖 | CompOp | 2 mathmath: ofEpiOfIsIsoOfMono'_φH, ofEpiOfIsIsoOfMono'_φQ
|
ofIsColimitCokernelCofork 📖 | CompOp | 3 mathmath: CategoryTheory.ShortComplex.HomologyMapData.ofIsColimitCokernelCofork_right, ofIsColimitCokernelCofork_φH, ofIsColimitCokernelCofork_φQ
|
ofIsLimitKernelFork 📖 | CompOp | 3 mathmath: ofIsLimitKernelFork_φH, CategoryTheory.ShortComplex.HomologyMapData.ofIsLimitKernelFork_right, ofIsLimitKernelFork_φQ
|
ofZeros 📖 | CompOp | 3 mathmath: ofZeros_φQ, ofZeros_φH, CategoryTheory.ShortComplex.HomologyMapData.ofZeros_right
|
op 📖 | CompOp | 3 mathmath: CategoryTheory.ShortComplex.HomologyMapData.op_left, op_φH, op_φK
|
unop 📖 | CompOp | 3 mathmath: unop_φK, unop_φH, CategoryTheory.ShortComplex.HomologyMapData.unop_left
|
zero 📖 | CompOp | 3 mathmath: zero_φH, CategoryTheory.ShortComplex.HomologyMapData.zero_right, zero_φQ
|
φH 📖 | CompOp | 32 mathmath: neg_φH, op_φH, homologyMap_eq, compatibilityOfZerosOfIsColimitCokernelCofork_φH, compatibilityOfZerosOfIsLimitKernelFork_φH, id_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φH, quasiIso_map_iff, ofIsLimitKernelFork_φH, homologyMap_comm, congr_φH, ofEpiOfIsIsoOfMono'_φH, zero_φH, rightHomologyMap_eq, natTransApp_φH, rightHomologyMap_comm, ofEpiOfIsIsoOfMono_φH, rightHomologyMap'_eq, comp_φH, smul_φH, CategoryTheory.ShortComplex.HomologyMapData.comm, CategoryTheory.ShortComplex.HomologyMapData.comm_assoc, HomologicalComplex.truncGE.rightHomologyMapData_φH, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φH, commι, ofZeros_φH, add_φH, map_φH, ofIsColimitCokernelCofork_φH, commι_assoc, unop_φH, quasiIso_iff
|
φQ 📖 | CompOp | 31 mathmath: HomologicalComplex.truncGE.rightHomologyMapData_φQ, CategoryTheory.ShortComplex.LeftHomologyMapData.unop_φQ, natTransApp_φQ, neg_φQ, opcyclesMap'_eq, op_φK, CategoryTheory.ShortComplex.HomologyMapData.opcyclesMap'_eq, commg'_assoc, opcyclesMap_comm, ofZeros_φQ, CategoryTheory.ShortComplex.LeftHomologyMapData.op_φQ, unop_φK, ofEpiOfIsIsoOfMono'_φQ, comp_φQ, commg', id_φQ, ofIsLimitKernelFork_φQ, zero_φQ, congr_φQ, compatibilityOfZerosOfIsLimitKernelFork_φQ, commι, smul_φQ, compatibilityOfZerosOfIsColimitCokernelCofork_φQ, commp_assoc, opcyclesMap_eq, map_φQ, ofIsColimitCokernelCofork_φQ, commι_assoc, add_φQ, ofEpiOfIsIsoOfMono_φQ, commp
|