Documentation Verification Report

ShortExact

📁 Source: Mathlib/Algebra/Homology/ShortComplex/ShortExact.lean

Statistics

MetricCount
DefinitionsShortExact, fIsKernel, gIsCokernel, splittingOfInjective, splittingOfProjective
5
TheoremsshortExact, epi_g, exact, isIso_f_iff, isIso_g_iff, map, map_of_exact, mk', mono_f, op, unop, shortExact, isIso₂_of_shortExact_of_isIso₁₃, isIso₂_of_shortExact_of_isIso₁₃', shortExact_iff_of_iso, shortExact_iff_op, shortExact_iff_unop, shortExact_of_iso
18
Total23

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
ShortExact 📖CompData
15 mathmath: shortExact_iff_op, ModuleCat.shortExact_projectiveShortComplex, CategoryTheory.InjectivePresentation.shortExact_shortComplex, CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_shortExact, LinearMap.shortExact_shortComplexKer, ShortExact.mk', Exact.shortExact, shortExact_iff_of_iso, Splitting.shortExact, HomologicalComplex.shortComplexTruncLE_shortExact, CochainComplex.shortComplexTruncLE_shortExact, shortExact_iff_unop, IsSMulRegular.smulShortComplex_shortExact, HomologicalComplex.shortExact_iff_degreewise_shortExact, Rep.coinvariantsShortComplex_shortExact

Theorems

NameKindAssumesProvesValidatesDepends On
isIso₂_of_shortExact_of_isIso₁₃ 📖mathematicalShortExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.IsIso
X₂
Hom.τ₂
ShortExact.mono_f
ShortExact.epi_g
mono_τ₂_of_exact_of_mono
ShortExact.exact
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
epi_τ₂_of_exact_of_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.isIso_of_mono_of_epi
isIso₂_of_shortExact_of_isIso₁₃' 📖mathematicalShortExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.IsIso
X₂
Hom.τ₂
isIso₂_of_shortExact_of_isIso₁₃
shortExact_iff_of_iso 📖mathematicalShortExactshortExact_of_iso
shortExact_iff_op 📖mathematicalShortExact
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
op
ShortExact.op
ShortExact.unop
shortExact_iff_unop 📖mathematicalShortExact
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
unop
shortExact_iff_op
shortExact_of_iso 📖ShortExactexact_of_iso
ShortExact.exact
ShortExact.mono_f
Hom.comm₁₂
CategoryTheory.mono_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
instIsIsoτ₁
CategoryTheory.Iso.isIso_inv
CategoryTheory.mono_of_mono
ShortExact.epi_g
Hom.comm₂₃
CategoryTheory.epi_comp
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
instIsIsoτ₃
CategoryTheory.Iso.isIso_hom
CategoryTheory.epi_of_epi

CategoryTheory.ShortComplex.Exact

Theorems

NameKindAssumesProvesValidatesDepends On
shortExact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.ShortComplex.ShortExact
CategoryTheory.ShortComplex.LeftHomologyData.K
CategoryTheory.ShortComplex.HomologyData.left
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.RightHomologyData.Q
CategoryTheory.ShortComplex.HomologyData.right
CategoryTheory.ShortComplex.LeftHomologyData.i
CategoryTheory.ShortComplex.RightHomologyData.p
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.CategoryStruct.comp
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero
CategoryTheory.ShortComplex.HomologyData.exact_iff_i_p_zero
epi_f'
mono_g'
CategoryTheory.ShortComplex.LeftHomologyData.wi
CategoryTheory.ShortComplex.LeftHomologyData.f'_i
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
CategoryTheory.ShortComplex.RightHomologyData.p_g'
CategoryTheory.ShortComplex.exact_iff_of_epi_of_isIso_of_mono
CategoryTheory.instEpiId
CategoryTheory.IsIso.id
CategoryTheory.instMonoId
CategoryTheory.ShortComplex.LeftHomologyData.instMonoI
CategoryTheory.ShortComplex.RightHomologyData.instEpiP

CategoryTheory.ShortComplex.ShortExact

Definitions

NameCategoryTheorems
fIsKernel 📖CompOp
gIsCokernel 📖CompOp
splittingOfInjective 📖CompOp
splittingOfProjective 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
epi_g 📖mathematicalCategoryTheory.ShortComplex.ShortExactCategoryTheory.Epi
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
exact 📖mathematicalCategoryTheory.ShortComplex.ShortExactCategoryTheory.ShortComplex.Exact
isIso_f_iff 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.IsIso
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.Limits.IsZero
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.Exact.hasZeroObject
exact
mono_f
epi_g
CategoryTheory.cancel_epi
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.ShortComplex.zero_assoc
CategoryTheory.Limits.zero_comp
CategoryTheory.ShortComplex.exact_iff_epi
CategoryTheory.Limits.IsZero.eq_of_tgt
CategoryTheory.isIso_of_mono_of_epi
isIso_g_iff 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.IsIso
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Limits.IsZero
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.Exact.hasZeroObject
exact
mono_f
epi_g
CategoryTheory.cancel_mono
CategoryTheory.Limits.zero_comp
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.zero
CategoryTheory.Limits.comp_zero
CategoryTheory.ShortComplex.exact_iff_mono
CategoryTheory.Limits.IsZero.eq_of_src
CategoryTheory.isIso_of_mono_of_epi
map 📖mathematicalCategoryTheory.ShortComplex.ShortExactCategoryTheory.ShortComplex.mapCategoryTheory.ShortComplex.Exact.map
exact
map_of_exact 📖mathematicalCategoryTheory.ShortComplex.ShortExactCategoryTheory.ShortComplex.mapmono_f
epi_g
map
CategoryTheory.Functor.PreservesHomology.preservesLeftHomologyOf
CategoryTheory.Functor.preservesHomologyOfExact
CategoryTheory.Functor.PreservesHomology.preservesRightHomologyOf
CategoryTheory.Functor.map_mono
CategoryTheory.preservesMonomorphisms_of_preservesLimitsOfShape
CategoryTheory.Limits.PreservesFiniteLimits.preservesFiniteLimits
CategoryTheory.Functor.map_epi
CategoryTheory.preservesEpimorphisms_of_preservesColimitsOfShape
CategoryTheory.Limits.PreservesFiniteColimits.preservesFiniteColimits
mk' 📖mathematicalCategoryTheory.ShortComplex.ExactCategoryTheory.ShortComplex.ShortExact
mono_f 📖mathematicalCategoryTheory.ShortComplex.ShortExactCategoryTheory.Mono
CategoryTheory.ShortComplex.X₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
op 📖mathematicalCategoryTheory.ShortComplex.ShortExactOpposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.op
CategoryTheory.ShortComplex.Exact.op
exact
epi_g
CategoryTheory.op_mono_of_epi
mono_f
CategoryTheory.op_epi_of_mono
unop 📖mathematicalCategoryTheory.ShortComplex.ShortExact
Opposite
CategoryTheory.Category.opposite
CategoryTheory.Limits.hasZeroMorphismsOpposite
CategoryTheory.ShortComplex.unopCategoryTheory.ShortComplex.Exact.unop
exact
epi_g
CategoryTheory.unop_mono_of_epi
mono_f
CategoryTheory.unop_epi_of_mono

CategoryTheory.ShortComplex.Splitting

Theorems

NameKindAssumesProvesValidatesDepends On
shortExact 📖mathematicalCategoryTheory.ShortComplex.ShortExact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
exact
mono_f
epi_g

---

← Back to Index