Documentation Verification Report

SnakeLemma

📁 Source: Mathlib/Algebra/Homology/ShortComplex/SnakeLemma.lean

Statistics

MetricCount
DefinitionsSnakeInput, comp, f₀, f₁, f₂, f₃, id, L₀, L₀', L₀X₂ToP, L₁, L₁', L₂, L₂', L₂'OpIso, L₃, P, P', P'IsoUnopOpP, PIsoUnopOpP', composableArrows, composableArrowsFunctor, functorL₀, functorL₁, functorL₁', functorL₂, functorL₂', functorL₃, functorP, h₀, h₀τ₁, h₀τ₂, h₀τ₃, h₃, h₃τ₁, h₃τ₂, h₃τ₃, instCategory, op, v₀₁, v₁₂, v₂₃, δ, δIso, φ₁, φ₂
46
Theoremscomm₀₁, comm₀₁_assoc, comm₁₂, comm₁₂_assoc, comm₂₃, comm₂₃_assoc, comp_f₀, comp_f₁, comp_f₂, comp_f₃, ext, ext_iff, id_f₀, id_f₁, id_f₂, id_f₃, L₀'_exact, L₀X₂ToP_comp_pullback_snd, L₀X₂ToP_comp_pullback_snd_assoc, L₀X₂ToP_comp_φ₁, L₀X₂ToP_comp_φ₁_assoc, L₀_exact, L₀_g_δ, L₁'_X₁, L₁'_X₂, L₁'_X₃, L₁'_exact, L₁'_f, L₁'_g, L₁_exact, L₁_f_φ₁, L₁_f_φ₁_assoc, L₂'_X₁, L₂'_X₂, L₂'_X₃, L₂'_exact, L₂'_f, L₂'_g, L₂_exact, L₃_exact, comp_f₀, comp_f₀_assoc, comp_f₁, comp_f₁_assoc, comp_f₂, comp_f₂_assoc, comp_f₃, comp_f₃_assoc, composableArrowsFunctor_map, composableArrowsFunctor_obj, epi_L₁_g, epi_L₃_g, epi_v₂₃_τ₁, epi_v₂₃_τ₂, epi_v₂₃_τ₃, epi_δ, exact_C₁_down, exact_C₁_up, exact_C₂_down, exact_C₂_up, exact_C₃_down, exact_C₃_up, functorL₀_map, functorL₀_obj, functorL₁'_map_τ₁, functorL₁'_map_τ₂, functorL₁'_map_τ₃, functorL₁'_obj, functorL₁_map, functorL₁_obj, functorL₂'_map_τ₁, functorL₂'_map_τ₂, functorL₂'_map_τ₃, functorL₂'_obj, functorL₂_map, functorL₂_obj, functorL₃_map, functorL₃_obj, functorP_map, functorP_obj, id_f₀, id_f₁, id_f₂, id_f₃, instEpiGL₀', instMonoFL₀'OfL₁, isIso_δ, lift_φ₂, lift_φ₂_assoc, mono_L₀_f, mono_L₂_f, mono_v₀₁_τ₁, mono_v₀₁_τ₂, mono_v₀₁_τ₃, mono_δ, naturality_δ, naturality_δ_assoc, naturality_φ₁, naturality_φ₁_assoc, naturality_φ₂, naturality_φ₂_assoc, op_L₀, op_L₁, op_L₂, op_L₃, op_v₀₁, op_v₁₂, op_v₂₃, op_δ, snake_lemma, snd_δ, snd_δ_assoc, snd_δ_inr, w₀₂, w₀₂_assoc, w₀₂_τ₁, w₀₂_τ₁_assoc, w₀₂_τ₂, w₀₂_τ₂_assoc, w₀₂_τ₃, w₀₂_τ₃_assoc, w₁₃, w₁₃_assoc, w₁₃_τ₁, w₁₃_τ₁_assoc, w₁₃_τ₂, w₁₃_τ₂_assoc, w₁₃_τ₃, w₁₃_τ₃_assoc, δ_L₃_f, δ_eq, φ₁_L₂_f, φ₁_L₂_f_assoc
133
Total179

CategoryTheory.ShortComplex

Definitions

NameCategoryTheorems
SnakeInput 📖CompData
36 mathmath: SnakeInput.naturality_φ₁, SnakeInput.comp_f₃_assoc, SnakeInput.functorL₁_obj, SnakeInput.functorL₁'_map_τ₃, SnakeInput.functorL₁'_map_τ₁, SnakeInput.id_f₂, SnakeInput.comp_f₀, SnakeInput.functorP_obj, SnakeInput.naturality_φ₁_assoc, SnakeInput.functorL₀_map, SnakeInput.functorL₁'_obj, SnakeInput.functorL₁'_map_τ₂, SnakeInput.composableArrowsFunctor_map, SnakeInput.functorL₀_obj, SnakeInput.functorL₂_obj, SnakeInput.functorL₁_map, SnakeInput.comp_f₂, SnakeInput.functorP_map, SnakeInput.functorL₃_obj, SnakeInput.comp_f₀_assoc, SnakeInput.id_f₁, SnakeInput.functorL₃_map, SnakeInput.id_f₀, SnakeInput.comp_f₁_assoc, SnakeInput.comp_f₃, SnakeInput.id_f₃, SnakeInput.functorL₂'_obj, SnakeInput.composableArrowsFunctor_obj, SnakeInput.functorL₂'_map_τ₃, SnakeInput.comp_f₂_assoc, SnakeInput.naturality_φ₂, SnakeInput.functorL₂'_map_τ₂, SnakeInput.naturality_φ₂_assoc, SnakeInput.comp_f₁, SnakeInput.functorL₂'_map_τ₁, SnakeInput.functorL₂_map

CategoryTheory.ShortComplex.SnakeInput

Definitions

NameCategoryTheorems
L₀ 📖CompOp
55 mathmath: exact_C₃_up, w₀₂_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₁, op_δ, naturality_δ, mono_v₀₁_τ₂, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₂, exact_C₁_up, functorL₁'_map_τ₁, mono_v₀₁_τ₃, w₀₂_τ₁, w₀₂_τ₃_assoc, L₀X₂ToP_comp_pullback_snd, comp_f₀, δ_L₃_f, mono_L₀_f, L₁'_f, functorL₁'_map_τ₂, snd_δ, snd_δ_inr, composableArrowsFunctor_map, L₀X₂ToP_comp_φ₁, functorL₀_obj, L₀_exact, op_L₀, L₁'_X₂, L₂'_X₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_g, w₀₂_τ₂, functorP_map, exact_C₂_up, L₀_g_δ, snd_δ_assoc, w₀₂_τ₁_assoc, w₀₂, comp_f₀_assoc, naturality_δ_assoc, L₁'_X₁, op_L₃, L₀X₂ToP_comp_φ₁_assoc, id_f₀, HomologicalComplex.HomologySequence.snakeInput_L₀, op_v₂₃, Hom.id_f₀, w₀₂_τ₂_assoc, mono_v₀₁_τ₁, Hom.comm₀₁, epi_δ, L₀X₂ToP_comp_pullback_snd_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_f, Hom.comm₀₁_assoc, w₀₂_τ₃, functorL₂'_map_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₃, Hom.comp_f₀
L₀' 📖CompOp
5 mathmath: L₀'_exact, instEpiGL₀', L₁_f_φ₁_assoc, L₁_f_φ₁, instMonoFL₀'OfL₁
L₀X₂ToP 📖CompOp
4 mathmath: L₀X₂ToP_comp_pullback_snd, L₀X₂ToP_comp_φ₁, L₀X₂ToP_comp_φ₁_assoc, L₀X₂ToP_comp_pullback_snd_assoc
L₁ 📖CompOp
55 mathmath: exact_C₃_up, w₀₂_assoc, functorL₁_obj, mono_v₀₁_τ₂, exact_C₁_up, L₁_exact, mono_v₀₁_τ₃, Hom.comp_f₁, w₀₂_τ₁, w₀₂_τ₃_assoc, op_L₂, w₁₃_τ₃, L₀X₂ToP_comp_pullback_snd, op_v₁₂, w₁₃_τ₂, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_g, exact_C₂_down, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₃, w₁₃_τ₃_assoc, HomologicalComplex.HomologySequence.snakeInput_L₁, Hom.comm₁₂, w₁₃_τ₂_assoc, snd_δ, snd_δ_inr, L₁_f_φ₁_assoc, w₁₃_τ₁_assoc, Hom.comm₁₂_assoc, w₀₂_τ₂, w₁₃_assoc, functorP_map, exact_C₂_up, snd_δ_assoc, w₀₂_τ₁_assoc, w₀₂, L₁_f_φ₁, id_f₁, op_v₂₃, comp_f₁_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₂, w₀₂_τ₂_assoc, Hom.id_f₁, mono_v₀₁_τ₁, Hom.comm₀₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_f, op_L₁, L₀X₂ToP_comp_pullback_snd_assoc, exact_C₃_down, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₁, Hom.comm₀₁_assoc, w₀₂_τ₃, w₁₃_τ₁, exact_C₁_down, epi_L₁_g, comp_f₁, w₁₃
L₁' 📖CompOp
10 mathmath: functorL₁'_map_τ₃, functorL₁'_map_τ₁, functorL₁'_obj, L₁'_f, functorL₁'_map_τ₂, L₁'_g, L₁'_X₂, L₁'_exact, L₁'_X₁, L₁'_X₃
L₂ 📖CompOp
62 mathmath: exact_C₃_up, w₀₂_assoc, naturality_φ₁, Hom.comm₂₃, exact_C₁_up, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₃, w₀₂_τ₁, w₀₂_τ₃_assoc, op_L₂, w₁₃_τ₃, op_v₁₂, id_f₂, w₁₃_τ₂, exact_C₂_down, w₁₃_τ₃_assoc, Hom.comm₁₂, naturality_φ₁_assoc, w₁₃_τ₂_assoc, Hom.comm₂₃_assoc, snd_δ, lift_φ₂, snd_δ_inr, L₁_f_φ₁_assoc, φ₁_L₂_f_assoc, L₀X₂ToP_comp_φ₁, w₁₃_τ₁_assoc, Hom.comm₁₂_assoc, epi_v₂₃_τ₂, functorL₂_obj, w₀₂_τ₂, comp_f₂, w₁₃_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₂, exact_C₂_up, snd_δ_assoc, w₀₂_τ₁_assoc, w₀₂, L₁_f_φ₁, lift_φ₂_assoc, φ₁_L₂_f, L₀X₂ToP_comp_φ₁_assoc, epi_v₂₃_τ₃, op_v₀₁, HomologicalComplex.HomologySequence.snakeInput_L₂, w₀₂_τ₂_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_g, mono_L₂_f, comp_f₂_assoc, naturality_φ₂, op_L₁, exact_C₃_down, w₀₂_τ₃, naturality_φ₂_assoc, L₂_exact, Hom.comp_f₂, w₁₃_τ₁, exact_C₁_down, Hom.id_f₂, w₁₃, epi_v₂₃_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_f
L₂' 📖CompOp
10 mathmath: L₂'_g, L₂'_X₃, L₂'_X₁, L₂'_exact, functorL₂'_obj, functorL₂'_map_τ₃, L₂'_X₂, L₂'_f, functorL₂'_map_τ₂, functorL₂'_map_τ₁
L₂'OpIso 📖CompOp
L₃ 📖CompOp
53 mathmath: epi_L₃_g, op_δ, comp_f₃_assoc, naturality_δ, Hom.comm₂₃, L₃_exact, functorL₁'_map_τ₃, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_g, w₁₃_τ₃, w₁₃_τ₂, exact_C₂_down, w₁₃_τ₃_assoc, δ_L₃_f, L₂'_g, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_f, w₁₃_τ₂_assoc, Hom.comm₂₃_assoc, snd_δ, snd_δ_inr, composableArrowsFunctor_map, mono_δ, Hom.id_f₃, L₂'_X₃, w₁₃_τ₁_assoc, epi_v₂₃_τ₂, op_L₀, w₁₃_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₃, L₀_g_δ, snd_δ_assoc, functorL₃_obj, naturality_δ_assoc, op_L₃, L₁'_X₃, epi_v₂₃_τ₃, op_v₀₁, comp_f₃, δ_apply', HomologicalComplex.HomologySequence.snakeInput_L₃, id_f₃, δ_apply, functorL₂'_map_τ₃, L₂'_X₂, exact_C₃_down, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₁, functorL₂'_map_τ₂, Hom.comp_f₃, w₁₃_τ₁, exact_C₁_down, δ_eq, w₁₃, epi_v₂₃_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₂
P 📖CompOp
12 mathmath: naturality_φ₁, L₀X₂ToP_comp_pullback_snd, functorP_obj, naturality_φ₁_assoc, snd_δ, φ₁_L₂_f_assoc, L₀X₂ToP_comp_φ₁, φ₁_L₂_f, L₀X₂ToP_comp_φ₁_assoc, naturality_φ₂, L₀X₂ToP_comp_pullback_snd_assoc, naturality_φ₂_assoc
P' 📖CompOp
P'IsoUnopOpP 📖CompOp
PIsoUnopOpP' 📖CompOp
composableArrows 📖CompOp
3 mathmath: composableArrowsFunctor_map, snake_lemma, composableArrowsFunctor_obj
composableArrowsFunctor 📖CompOp
2 mathmath: composableArrowsFunctor_map, composableArrowsFunctor_obj
functorL₀ 📖CompOp
2 mathmath: functorL₀_map, functorL₀_obj
functorL₁ 📖CompOp
2 mathmath: functorL₁_obj, functorL₁_map
functorL₁' 📖CompOp
4 mathmath: functorL₁'_map_τ₃, functorL₁'_map_τ₁, functorL₁'_obj, functorL₁'_map_τ₂
functorL₂ 📖CompOp
2 mathmath: functorL₂_obj, functorL₂_map
functorL₂' 📖CompOp
4 mathmath: functorL₂'_obj, functorL₂'_map_τ₃, functorL₂'_map_τ₂, functorL₂'_map_τ₁
functorL₃ 📖CompOp
2 mathmath: functorL₃_obj, functorL₃_map
functorP 📖CompOp
6 mathmath: naturality_φ₁, functorP_obj, naturality_φ₁_assoc, functorP_map, naturality_φ₂, naturality_φ₂_assoc
h₀ 📖CompOp
h₀τ₁ 📖CompOp
h₀τ₂ 📖CompOp
h₀τ₃ 📖CompOp
h₃ 📖CompOp
h₃τ₁ 📖CompOp
h₃τ₂ 📖CompOp
h₃τ₃ 📖CompOp
instCategory 📖CompOp
36 mathmath: naturality_φ₁, comp_f₃_assoc, functorL₁_obj, functorL₁'_map_τ₃, functorL₁'_map_τ₁, id_f₂, comp_f₀, functorP_obj, naturality_φ₁_assoc, functorL₀_map, functorL₁'_obj, functorL₁'_map_τ₂, composableArrowsFunctor_map, functorL₀_obj, functorL₂_obj, functorL₁_map, comp_f₂, functorP_map, functorL₃_obj, comp_f₀_assoc, id_f₁, functorL₃_map, id_f₀, comp_f₁_assoc, comp_f₃, id_f₃, functorL₂'_obj, composableArrowsFunctor_obj, functorL₂'_map_τ₃, comp_f₂_assoc, naturality_φ₂, functorL₂'_map_τ₂, naturality_φ₂_assoc, comp_f₁, functorL₂'_map_τ₁, functorL₂_map
op 📖CompOp
8 mathmath: op_δ, op_L₂, op_v₁₂, op_L₀, op_L₃, op_v₂₃, op_v₀₁, op_L₁
v₀₁ 📖CompOp
28 mathmath: exact_C₃_up, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₂, w₀₂_assoc, mono_v₀₁_τ₂, exact_C₁_up, mono_v₀₁_τ₃, w₀₂_τ₁, w₀₂_τ₃_assoc, L₀X₂ToP_comp_pullback_snd, snd_δ, snd_δ_inr, HomologicalComplex.HomologySequence.snakeInput_v₀₁, w₀₂_τ₂, functorP_map, exact_C₂_up, snd_δ_assoc, w₀₂_τ₁_assoc, w₀₂, op_v₂₃, op_v₀₁, w₀₂_τ₂_assoc, mono_v₀₁_τ₁, Hom.comm₀₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₃, L₀X₂ToP_comp_pullback_snd_assoc, Hom.comm₀₁_assoc, w₀₂_τ₃
v₁₂ 📖CompOp
34 mathmath: exact_C₃_up, w₀₂_assoc, exact_C₁_up, w₀₂_τ₁, w₀₂_τ₃_assoc, w₁₃_τ₃, op_v₁₂, w₁₃_τ₂, exact_C₂_down, w₁₃_τ₃_assoc, Hom.comm₁₂, w₁₃_τ₂_assoc, lift_φ₂, snd_δ_inr, L₁_f_φ₁_assoc, w₁₃_τ₁_assoc, Hom.comm₁₂_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₂, w₀₂_τ₂, w₁₃_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₃, exact_C₂_up, w₀₂_τ₁_assoc, w₀₂, L₁_f_φ₁, lift_φ₂_assoc, w₀₂_τ₂_assoc, HomologicalComplex.HomologySequence.snakeInput_v₁₂, exact_C₃_down, w₀₂_τ₃, w₁₃_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₁, exact_C₁_down, w₁₃
v₂₃ 📖CompOp
28 mathmath: Hom.comm₂₃, w₁₃_τ₃, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₃, w₁₃_τ₂, exact_C₂_down, w₁₃_τ₃_assoc, HomologicalComplex.HomologySequence.snakeInput_v₂₃, w₁₃_τ₂_assoc, Hom.comm₂₃_assoc, snd_δ, snd_δ_inr, w₁₃_τ₁_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₂, epi_v₂₃_τ₂, w₁₃_assoc, snd_δ_assoc, epi_v₂₃_τ₃, op_v₂₃, op_v₀₁, δ_apply', δ_apply, exact_C₃_down, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₁, w₁₃_τ₁, exact_C₁_down, δ_eq, w₁₃, epi_v₂₃_τ₁
δ 📖CompOp
16 mathmath: op_δ, naturality_δ, δ_L₃_f, snd_δ, snd_δ_inr, mono_δ, L₁'_g, isIso_δ, L₀_g_δ, snd_δ_assoc, naturality_δ_assoc, δ_apply', δ_apply, epi_δ, L₂'_f, δ_eq
δIso 📖CompOp
φ₁ 📖CompOp
10 mathmath: naturality_φ₁, naturality_φ₁_assoc, snd_δ, L₁_f_φ₁_assoc, φ₁_L₂_f_assoc, L₀X₂ToP_comp_φ₁, snd_δ_assoc, L₁_f_φ₁, φ₁_L₂_f, L₀X₂ToP_comp_φ₁_assoc
φ₂ 📖CompOp
6 mathmath: lift_φ₂, φ₁_L₂_f_assoc, lift_φ₂_assoc, φ₁_L₂_f, naturality_φ₂, naturality_φ₂_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
L₀'_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀'
CategoryTheory.ShortComplex.exact_iff_exact_up_to_refinements
CategoryTheory.ShortComplex.Exact.exact_up_to_refinements
L₁_exact
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.condition
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CategoryTheory.Limits.pullback.hom_ext
CategoryTheory.Limits.limit.lift_π
CategoryTheory.Limits.comp_zero
L₀X₂ToP_comp_pullback_snd 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
P
CategoryTheory.ShortComplex.X₃
L₀X₂ToP
CategoryTheory.Limits.pullback.snd
L₁
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.Limits.limit.lift_π
L₀X₂ToP_comp_pullback_snd_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
P
L₀X₂ToP
CategoryTheory.ShortComplex.X₃
CategoryTheory.Limits.pullback.snd
L₁
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
L₀X₂ToP_comp_pullback_snd
L₀X₂ToP_comp_φ₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
P
CategoryTheory.ShortComplex.X₁
L₂
L₀X₂ToP
φ₁
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.cancel_mono
mono_L₂_f
CategoryTheory.Category.assoc
φ₁_L₂_f
CategoryTheory.Limits.pullback.lift_fst_assoc
w₀₂_τ₂
CategoryTheory.Limits.zero_comp
L₀X₂ToP_comp_φ₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
P
L₀X₂ToP
CategoryTheory.ShortComplex.X₁
L₂
φ₁
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
L₀X₂ToP_comp_φ₁
L₀_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
CategoryTheory.ShortComplex.exact_iff_exact_up_to_refinements
CategoryTheory.ShortComplex.Exact.exact_up_to_refinements
L₁_exact
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.Hom.comm₂₃
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.zero_comp
CategoryTheory.cancel_mono
mono_L₂_f
CategoryTheory.ShortComplex.Hom.comm₁₂
w₀₂_τ₂
CategoryTheory.Limits.comp_zero
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
exact_C₁_up
mono_v₀₁_τ₁
CategoryTheory.ShortComplex.Exact.lift_f
mono_v₀₁_τ₂
L₀_g_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
L₃
CategoryTheory.ShortComplex.g
δ
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
L₀X₂ToP_comp_pullback_snd
CategoryTheory.Category.assoc
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
L₀'_exact
instEpiGL₀'
CategoryTheory.ShortComplex.Exact.g_desc
L₀X₂ToP_comp_φ₁_assoc
CategoryTheory.Limits.zero_comp
L₁'_X₁ 📖mathematicalCategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
CategoryTheory.ShortComplex.X₂
L₀
L₁'_X₂ 📖mathematicalCategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
CategoryTheory.ShortComplex.X₃
L₀
L₁'_X₃ 📖mathematicalCategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
CategoryTheory.ShortComplex.X₁
L₃
L₁'_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
CategoryTheory.ShortComplex.exact_iff_exact_up_to_refinements
CategoryTheory.surjective_up_to_refinements_of_epi
instEpiGL₀'
CategoryTheory.Category.assoc
snd_δ
Mathlib.Tactic.Reassoc.eq_whisker'
CategoryTheory.Limits.comp_zero
CategoryTheory.ShortComplex.Exact.exact_up_to_refinements
exact_C₁_down
CategoryTheory.Preadditive.sub_comp
CategoryTheory.ShortComplex.Hom.comm₁₂
φ₁_L₂_f
sub_self
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
exact_C₂_up
mono_v₀₁_τ₂
CategoryTheory.ShortComplex.Exact.lift_f
CategoryTheory.cancel_mono
mono_v₀₁_τ₃
CategoryTheory.ShortComplex.Hom.comm₂₃
CategoryTheory.Limits.pullback.condition
CategoryTheory.ShortComplex.zero
sub_zero
CategoryTheory.epi_comp
L₁'_f 📖mathematicalCategoryTheory.ShortComplex.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
CategoryTheory.ShortComplex.g
L₀
L₁'_g 📖mathematicalCategoryTheory.ShortComplex.g
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
δ
L₁_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
L₁_f_φ₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀'
CategoryTheory.ShortComplex.X₂
L₂
CategoryTheory.ShortComplex.f
φ₁
CategoryTheory.ShortComplex.Hom.τ₁
L₁
v₁₂
CategoryTheory.cancel_mono
mono_L₂_f
CategoryTheory.Category.assoc
φ₁_L₂_f
CategoryTheory.Limits.pullback.lift_fst_assoc
CategoryTheory.ShortComplex.Hom.comm₁₂
L₁_f_φ₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀'
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
L₂
φ₁
CategoryTheory.ShortComplex.Hom.τ₁
L₁
v₁₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
L₁_f_φ₁
L₂'_X₁ 📖mathematicalCategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
CategoryTheory.ShortComplex.X₃
L₀
L₂'_X₂ 📖mathematicalCategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
CategoryTheory.ShortComplex.X₁
L₃
L₂'_X₃ 📖mathematicalCategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
CategoryTheory.ShortComplex.X₂
L₃
L₂'_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
CategoryTheory.ShortComplex.exact_op_iff
CategoryTheory.ShortComplex.exact_iff_of_iso
L₁'_exact
L₂'_f 📖mathematicalCategoryTheory.ShortComplex.f
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
δ
L₂'_g 📖mathematicalCategoryTheory.ShortComplex.g
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
CategoryTheory.ShortComplex.f
L₃
L₂_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
L₃_exact 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₃
CategoryTheory.ShortComplex.Exact.unop
L₀_exact
comp_f₀ 📖mathematicalHom.f₀
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex.SnakeInput
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
L₀
comp_f₀_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
L₀
Hom.f₀
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_f₀
comp_f₁ 📖mathematicalHom.f₁
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex.SnakeInput
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
L₁
comp_f₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
L₁
Hom.f₁
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_f₁
comp_f₂ 📖mathematicalHom.f₂
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex.SnakeInput
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
L₂
comp_f₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
L₂
Hom.f₂
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_f₂
comp_f₃ 📖mathematicalHom.f₃
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex.SnakeInput
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
L₃
comp_f₃_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
L₃
Hom.f₃
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comp_f₃
composableArrowsFunctor_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrowsFunctor
CategoryTheory.ComposableArrows.homMk₅
composableArrows
CategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
Hom.f₀
CategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.ShortComplex.Hom.τ₃
L₃
Hom.f₃
naturality_δ
composableArrowsFunctor_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ComposableArrows
CategoryTheory.Functor.category
Preorder.smallCategory
PartialOrder.toPreorder
Fin.instPartialOrder
composableArrowsFunctor
composableArrows
epi_L₁_g 📖mathematicalCategoryTheory.Epi
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
epi_L₃_g 📖mathematicalCategoryTheory.Epi
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₃
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Hom.comm₂₃
CategoryTheory.epi_comp
epi_v₂₃_τ₃
CategoryTheory.epi_of_epi
epi_v₂₃_τ₁ 📖mathematicalCategoryTheory.Epi
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₁
v₂₃
CategoryTheory.Limits.epi_of_isColimit_cofork
w₁₃_τ₁
epi_v₂₃_τ₂ 📖mathematicalCategoryTheory.Epi
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₂
v₂₃
CategoryTheory.Limits.epi_of_isColimit_cofork
w₁₃_τ₂
epi_v₂₃_τ₃ 📖mathematicalCategoryTheory.Epi
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₃
v₂₃
CategoryTheory.Limits.epi_of_isColimit_cofork
w₁₃_τ₃
epi_δ 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₃
CategoryTheory.Epi
CategoryTheory.ShortComplex.X₃
L₀
CategoryTheory.ShortComplex.X₁
δ
CategoryTheory.ShortComplex.exact_iff_epi
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.IsZero.eq_zero_of_tgt
L₂'_exact
exact_C₁_down 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₁
L₁
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₁
v₁₂
v₂₃
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
exact_C₁_up 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₁
L₀
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₁
v₀₁
v₁₂
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
exact_C₂_down 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₂
L₁
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
v₂₃
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
exact_C₂_up 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₂
L₀
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₂
v₀₁
v₁₂
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
exact_C₃_down 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₃
L₁
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₃
v₁₂
v₂₃
CategoryTheory.ShortComplex.exact_of_g_is_cokernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
exact_C₃_up 📖mathematicalCategoryTheory.ShortComplex.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.X₃
L₀
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
v₁₂
CategoryTheory.ShortComplex.exact_of_f_is_kernel
CategoryTheory.CategoryWithHomology.hasHomology
CategoryTheory.categoryWithHomology_of_abelian
functorL₀_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₀
Hom.f₀
functorL₀_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₀
L₀
functorL₁'_map_τ₁ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
functorL₁'
CategoryTheory.ShortComplex.Hom.τ₂
L₀
Hom.f₀
functorL₁'_map_τ₂ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
functorL₁'
CategoryTheory.ShortComplex.Hom.τ₃
L₀
Hom.f₀
functorL₁'_map_τ₃ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁'
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
functorL₁'
CategoryTheory.ShortComplex.Hom.τ₁
L₃
Hom.f₃
functorL₁'_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₁'
L₁'
functorL₁_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₁
Hom.f₁
functorL₁_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₁
L₁
functorL₂'_map_τ₁ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
functorL₂'
CategoryTheory.ShortComplex.Hom.τ₃
L₀
Hom.f₀
functorL₂'_map_τ₂ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
functorL₂'
CategoryTheory.ShortComplex.Hom.τ₁
L₃
Hom.f₃
functorL₂'_map_τ₃ 📖mathematicalCategoryTheory.ShortComplex.Hom.τ₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂'
CategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.ShortComplex.instCategory
functorL₂'
CategoryTheory.ShortComplex.Hom.τ₂
L₃
Hom.f₃
functorL₂'_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₂'
L₂'
functorL₂_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₂
Hom.f₂
functorL₂_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₂
L₂
functorL₃_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₃
Hom.f₃
functorL₃_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
functorL₃
L₃
functorP_map 📖mathematicalCategoryTheory.Functor.map
CategoryTheory.ShortComplex.SnakeInput
instCategory
functorP
CategoryTheory.Limits.pullback.map
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
L₀
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.ShortComplex.Hom.τ₂
Hom.f₁
Hom.f₀
functorP_obj 📖mathematicalCategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
functorP
P
id_f₀ 📖mathematicalHom.f₀
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex.SnakeInput
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
L₀
id_f₁ 📖mathematicalHom.f₁
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex.SnakeInput
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
L₁
id_f₂ 📖mathematicalHom.f₂
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex.SnakeInput
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
L₂
id_f₃ 📖mathematicalHom.f₃
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex.SnakeInput
CategoryTheory.Category.toCategoryStruct
instCategory
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.ShortComplex.instCategory
L₃
instEpiGL₀' 📖mathematicalCategoryTheory.Epi
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀'
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
CategoryTheory.Abelian.epi_pullback_of_epi_f
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
epi_L₁_g
instMonoFL₀'OfL₁ 📖mathematicalCategoryTheory.Mono
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀'
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.mono_of_mono_fac
CategoryTheory.Limits.limit.lift_π
isIso_δ 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₃
CategoryTheory.IsIso
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
δ
CategoryTheory.Balanced.isIso_of_mono_of_epi
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
mono_δ
epi_δ
lift_φ₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
L₀
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.Limits.cospan
L₂
CategoryTheory.Limits.pullback.lift
φ₂
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.Limits.limit.lift_π_assoc
lift_φ₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
L₀
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.Limits.pullback
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.WalkingCospan
CategoryTheory.Limits.WidePullbackShape.category
CategoryTheory.Limits.WalkingPair
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.fintypeWalkingPair
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.Limits.cospan
CategoryTheory.Limits.pullback.lift
L₂
φ₂
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
lift_φ₂
mono_L₀_f 📖mathematicalCategoryTheory.Mono
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.Hom.comm₁₂
CategoryTheory.mono_comp
mono_v₀₁_τ₁
CategoryTheory.mono_of_mono
mono_L₂_f 📖mathematicalCategoryTheory.Mono
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
mono_v₀₁_τ₁ 📖mathematicalCategoryTheory.Mono
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
CategoryTheory.ShortComplex.Hom.τ₁
v₀₁
CategoryTheory.Limits.mono_of_isLimit_fork
w₀₂_τ₁
mono_v₀₁_τ₂ 📖mathematicalCategoryTheory.Mono
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
CategoryTheory.ShortComplex.Hom.τ₂
v₀₁
CategoryTheory.Limits.mono_of_isLimit_fork
w₀₂_τ₂
mono_v₀₁_τ₃ 📖mathematicalCategoryTheory.Mono
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.Limits.mono_of_isLimit_fork
w₀₂_τ₃
mono_δ 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
CategoryTheory.Mono
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.X₁
L₃
δ
CategoryTheory.ShortComplex.exact_iff_mono
CategoryTheory.Abelian.hasZeroObject
CategoryTheory.Limits.IsZero.eq_zero_of_src
L₁'_exact
naturality_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
CategoryTheory.ShortComplex.X₁
L₃
δ
CategoryTheory.ShortComplex.Hom.τ₁
Hom.f₃
CategoryTheory.ShortComplex.Hom.τ₃
Hom.f₀
CategoryTheory.cancel_epi
CategoryTheory.Abelian.epi_pullback_of_epi_f
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
epi_L₁_g
snd_δ_assoc
CategoryTheory.ShortComplex.comp_τ₁
Hom.comm₂₃
naturality_φ₁_assoc
snd_δ
functorP_map
CategoryTheory.Limits.pullback.lift_snd_assoc
CategoryTheory.Category.assoc
naturality_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
CategoryTheory.ShortComplex.X₁
L₃
δ
CategoryTheory.ShortComplex.Hom.τ₁
Hom.f₃
CategoryTheory.ShortComplex.Hom.τ₃
Hom.f₀
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
naturality_δ
naturality_φ₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
φ₁
CategoryTheory.ShortComplex.Hom.τ₁
Hom.f₂
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
functorP
CategoryTheory.Functor.map
CategoryTheory.cancel_mono
mono_L₂_f
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.Hom.comm₁₂
φ₁_L₂_f_assoc
φ₁_L₂_f
naturality_φ₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
φ₁
CategoryTheory.ShortComplex.Hom.τ₁
Hom.f₂
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
functorP
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
naturality_φ₁
naturality_φ₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
φ₂
CategoryTheory.ShortComplex.Hom.τ₂
Hom.f₂
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
functorP
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
CategoryTheory.Limits.pullback.lift_fst_assoc
Hom.comm₁₂
naturality_φ₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
φ₂
CategoryTheory.ShortComplex.Hom.τ₂
Hom.f₂
CategoryTheory.Functor.obj
CategoryTheory.ShortComplex.SnakeInput
instCategory
functorP
CategoryTheory.Functor.map
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
naturality_φ₂
op_L₀ 📖mathematicalL₀
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instAbelianOpposite
op
CategoryTheory.ShortComplex.op
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₃
op_L₁ 📖mathematicalL₁
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instAbelianOpposite
op
CategoryTheory.ShortComplex.op
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
op_L₂ 📖mathematicalL₂
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instAbelianOpposite
op
CategoryTheory.ShortComplex.op
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
op_L₃ 📖mathematicalL₃
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instAbelianOpposite
op
CategoryTheory.ShortComplex.op
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
op_v₀₁ 📖mathematicalv₀₁
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instAbelianOpposite
op
CategoryTheory.ShortComplex.opMap
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
L₃
v₂₃
op_v₁₂ 📖mathematicalv₁₂
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instAbelianOpposite
op
CategoryTheory.ShortComplex.opMap
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
L₂
op_v₂₃ 📖mathematicalv₂₃
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instAbelianOpposite
op
CategoryTheory.ShortComplex.opMap
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
v₀₁
op_δ 📖mathematicalδ
Opposite
CategoryTheory.Category.opposite
CategoryTheory.instAbelianOpposite
op
Quiver.Hom.op
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
CategoryTheory.ShortComplex.X₁
L₃
Quiver.Hom.unop_op
CategoryTheory.cancel_mono
CategoryTheory.Abelian.mono_pushout_of_mono_f
CategoryTheory.Limits.hasColimitsOfShape_widePushoutShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePushouts_of_has_finite_limits
CategoryTheory.Abelian.hasFiniteColimits
mono_L₂_f
CategoryTheory.cancel_epi
CategoryTheory.Abelian.epi_pullback_of_epi_f
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
epi_L₁_g
snd_δ_inr
CategoryTheory.mono_of_strongMono
CategoryTheory.instStrongMonoOfIsRegularMono
CategoryTheory.instIsRegularMonoOfIsSplitMono
CategoryTheory.IsSplitMono.of_iso
CategoryTheory.Iso.isIso_hom
CategoryTheory.epi_of_effectiveEpi
CategoryTheory.instEffectiveEpiOfIsIso
CategoryTheory.Iso.isIso_inv
P'IsoUnopOpP.eq_1
PIsoUnopOpP'.eq_1
CategoryTheory.Category.assoc
CategoryTheory.Limits.pushoutIsoUnopPullback_inr_hom
CategoryTheory.Limits.pullbackIsoUnopPushout_inv_snd_assoc
CategoryTheory.Limits.pushoutIsoUnopPullback_inl_hom
CategoryTheory.Limits.pullbackIsoUnopPushout_inv_fst_assoc
snake_lemma 📖mathematicalCategoryTheory.ComposableArrows.Exact
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
composableArrows
CategoryTheory.ComposableArrows.exact_of_δ₀
CategoryTheory.ShortComplex.Exact.exact_toComposableArrows
L₀_exact
L₁'_exact
L₂'_exact
L₃_exact
snd_δ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
L₀
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.ShortComplex.X₁
L₃
CategoryTheory.Limits.pullback.snd
δ
P
L₂
φ₁
CategoryTheory.ShortComplex.Hom.τ₁
v₂₃
CategoryTheory.ShortComplex.Exact.g_desc
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
L₀'_exact
instEpiGL₀'
snd_δ_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
L₀
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.Limits.pullback.snd
CategoryTheory.ShortComplex.X₁
L₃
δ
L₂
φ₁
CategoryTheory.ShortComplex.Hom.τ₁
v₂₃
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
snd_δ
snd_δ_inr 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.Limits.pullback
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
L₀
CategoryTheory.ShortComplex.g
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.Limits.pushout
CategoryTheory.ShortComplex.X₁
L₂
L₃
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.Hom.τ₁
v₂₃
CategoryTheory.Limits.pullback.snd
δ
CategoryTheory.Limits.pushout.inr
CategoryTheory.Limits.pullback.fst
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
CategoryTheory.Limits.pushout.inl
snd_δ_assoc
φ₁_L₂_f_assoc
CategoryTheory.Category.assoc
w₀₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
L₀
L₁
L₂
v₀₁
v₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.ShortComplex.instZeroHom
w₀₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
L₀
L₁
v₀₁
L₂
v₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.ShortComplex.instZeroHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₀₂
w₀₂_τ₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₁
v₀₁
v₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.comp_τ₁
w₀₂
CategoryTheory.ShortComplex.zero_τ₁
w₀₂_τ₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
CategoryTheory.ShortComplex.Hom.τ₁
v₀₁
L₂
v₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₀₂_τ₁
w₀₂_τ₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₂
v₀₁
v₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.comp_τ₂
w₀₂
CategoryTheory.ShortComplex.zero_τ₂
w₀₂_τ₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
CategoryTheory.ShortComplex.Hom.τ₂
v₀₁
L₂
v₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₀₂_τ₂
w₀₂_τ₃ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
v₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.comp_τ₃
w₀₂
CategoryTheory.ShortComplex.zero_τ₃
w₀₂_τ₃_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
L₁
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
L₂
v₁₂
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₀₂_τ₃
w₁₃ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
L₁
L₂
L₃
v₁₂
v₂₃
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.ShortComplex.instZeroHom
w₁₃_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
L₁
L₂
v₁₂
L₃
v₂₃
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.ShortComplex.instZeroHom
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₁₃
w₁₃_τ₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₁
v₁₂
v₂₃
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.comp_τ₁
w₁₃
CategoryTheory.ShortComplex.zero_τ₁
w₁₃_τ₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₁
v₁₂
L₃
v₂₃
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₁₃_τ₁
w₁₃_τ₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
v₂₃
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.comp_τ₂
w₁₃
CategoryTheory.ShortComplex.zero_τ₂
w₁₃_τ₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
L₃
v₂₃
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₁₃_τ₂
w₁₃_τ₃ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
L₂
L₃
CategoryTheory.ShortComplex.Hom.τ₃
v₁₂
v₂₃
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.ShortComplex.comp_τ₃
w₁₃
CategoryTheory.ShortComplex.zero_τ₃
w₁₃_τ₃_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
L₂
CategoryTheory.ShortComplex.Hom.τ₃
v₁₂
L₃
v₂₃
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
w₁₃_τ₃
δ_L₃_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₃
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₀
CategoryTheory.ShortComplex.X₁
L₃
CategoryTheory.ShortComplex.X₂
δ
CategoryTheory.ShortComplex.f
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
CategoryTheory.cancel_epi
instEpiGL₀'
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
L₀'_exact
CategoryTheory.ShortComplex.Exact.g_desc_assoc
CategoryTheory.Category.assoc
CategoryTheory.ShortComplex.Hom.comm₁₂
φ₁_L₂_f_assoc
w₁₃_τ₂
CategoryTheory.Limits.comp_zero
δ_eq 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.X₂
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₁
CategoryTheory.ShortComplex.X₃
CategoryTheory.ShortComplex.g
L₀
CategoryTheory.ShortComplex.Hom.τ₃
v₀₁
CategoryTheory.ShortComplex.X₁
L₂
CategoryTheory.ShortComplex.f
CategoryTheory.ShortComplex.Hom.τ₂
v₁₂
L₃
δ
CategoryTheory.ShortComplex.Hom.τ₁
v₂₃
CategoryTheory.Limits.hasLimitOfHasLimitsOfShape
CategoryTheory.Limits.hasLimitsOfShape_widePullbackShape
Finite.of_fintype
CategoryTheory.Limits.hasFiniteWidePullbacks_of_hasFiniteLimits
CategoryTheory.Abelian.hasFiniteLimits
CategoryTheory.whisker_eq
snd_δ
CategoryTheory.Limits.pullback.lift_snd_assoc
CategoryTheory.Category.assoc
CategoryTheory.cancel_mono
mono_L₂_f
φ₁_L₂_f
lift_φ₂
φ₁_L₂_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
CategoryTheory.ShortComplex.X₂
φ₁
CategoryTheory.ShortComplex.f
φ₂
CategoryTheory.ShortComplex.Exact.lift_f
CategoryTheory.balanced_of_strongMonoCategory
CategoryTheory.strongMonoCategory_of_regularMonoCategory
CategoryTheory.regularMonoCategoryOfNormalMonoCategory
CategoryTheory.Abelian.toIsNormalMonoCategory
L₂_exact
mono_L₂_f
φ₁_L₂_f_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
P
CategoryTheory.ShortComplex.X₁
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
L₂
φ₁
CategoryTheory.ShortComplex.X₂
CategoryTheory.ShortComplex.f
φ₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
φ₁_L₂_f

CategoryTheory.ShortComplex.SnakeInput.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
4 mathmath: comp_f₁, comp_f₃, comp_f₂, comp_f₀
f₀ 📖CompOp
17 mathmath: CategoryTheory.ShortComplex.SnakeInput.naturality_δ, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₁, CategoryTheory.ShortComplex.SnakeInput.comp_f₀, CategoryTheory.ShortComplex.SnakeInput.functorL₀_map, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₂, CategoryTheory.ShortComplex.SnakeInput.composableArrowsFunctor_map, CategoryTheory.ShortComplex.SnakeInput.functorP_map, CategoryTheory.ShortComplex.SnakeInput.comp_f₀_assoc, CategoryTheory.ShortComplex.SnakeInput.naturality_δ_assoc, CategoryTheory.ShortComplex.SnakeInput.id_f₀, id_f₀, comm₀₁, ext_iff, comm₀₁_assoc, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₁, comp_f₀, HomologicalComplex.HomologySequence.mapSnakeInput_f₀
f₁ 📖CompOp
13 mathmath: comp_f₁, comm₁₂, comm₁₂_assoc, CategoryTheory.ShortComplex.SnakeInput.functorL₁_map, CategoryTheory.ShortComplex.SnakeInput.functorP_map, HomologicalComplex.HomologySequence.mapSnakeInput_f₁, CategoryTheory.ShortComplex.SnakeInput.id_f₁, CategoryTheory.ShortComplex.SnakeInput.comp_f₁_assoc, id_f₁, comm₀₁, ext_iff, comm₀₁_assoc, CategoryTheory.ShortComplex.SnakeInput.comp_f₁
f₂ 📖CompOp
16 mathmath: CategoryTheory.ShortComplex.SnakeInput.naturality_φ₁, comm₂₃, CategoryTheory.ShortComplex.SnakeInput.id_f₂, comm₁₂, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₁_assoc, comm₂₃_assoc, comm₁₂_assoc, CategoryTheory.ShortComplex.SnakeInput.comp_f₂, ext_iff, CategoryTheory.ShortComplex.SnakeInput.comp_f₂_assoc, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₂, HomologicalComplex.HomologySequence.mapSnakeInput_f₂, CategoryTheory.ShortComplex.SnakeInput.naturality_φ₂_assoc, comp_f₂, id_f₂, CategoryTheory.ShortComplex.SnakeInput.functorL₂_map
f₃ 📖CompOp
16 mathmath: CategoryTheory.ShortComplex.SnakeInput.comp_f₃_assoc, CategoryTheory.ShortComplex.SnakeInput.naturality_δ, comm₂₃, CategoryTheory.ShortComplex.SnakeInput.functorL₁'_map_τ₃, HomologicalComplex.HomologySequence.mapSnakeInput_f₃, comm₂₃_assoc, CategoryTheory.ShortComplex.SnakeInput.composableArrowsFunctor_map, id_f₃, CategoryTheory.ShortComplex.SnakeInput.naturality_δ_assoc, CategoryTheory.ShortComplex.SnakeInput.functorL₃_map, CategoryTheory.ShortComplex.SnakeInput.comp_f₃, CategoryTheory.ShortComplex.SnakeInput.id_f₃, ext_iff, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₃, CategoryTheory.ShortComplex.SnakeInput.functorL₂'_map_τ₂, comp_f₃
id 📖CompOp
4 mathmath: id_f₃, id_f₀, id_f₁, id_f₂

Theorems

NameKindAssumesProvesValidatesDepends On
comm₀₁ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₀
CategoryTheory.ShortComplex.SnakeInput.L₁
f₀
CategoryTheory.ShortComplex.SnakeInput.v₀₁
f₁
comm₀₁_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₀
f₀
CategoryTheory.ShortComplex.SnakeInput.L₁
CategoryTheory.ShortComplex.SnakeInput.v₀₁
f₁
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm₀₁
comm₁₂ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₁
CategoryTheory.ShortComplex.SnakeInput.L₂
f₁
CategoryTheory.ShortComplex.SnakeInput.v₁₂
f₂
comm₁₂_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₁
f₁
CategoryTheory.ShortComplex.SnakeInput.L₂
CategoryTheory.ShortComplex.SnakeInput.v₁₂
f₂
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm₁₂
comm₂₃ 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₂
CategoryTheory.ShortComplex.SnakeInput.L₃
f₂
CategoryTheory.ShortComplex.SnakeInput.v₂₃
f₃
comm₂₃_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₂
f₂
CategoryTheory.ShortComplex.SnakeInput.L₃
CategoryTheory.ShortComplex.SnakeInput.v₂₃
f₃
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
comm₂₃
comp_f₀ 📖mathematicalf₀
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₀
comp_f₁ 📖mathematicalf₁
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₁
comp_f₂ 📖mathematicalf₂
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₂
comp_f₃ 📖mathematicalf₃
comp
CategoryTheory.CategoryStruct.comp
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₃
ext 📖f₀
f₁
f₂
f₃
ext_iff 📖mathematicalf₀
f₁
f₂
f₃
ext
id_f₀ 📖mathematicalf₀
id
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₀
id_f₁ 📖mathematicalf₁
id
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₁
id_f₂ 📖mathematicalf₂
id
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₂
id_f₃ 📖mathematicalf₃
id
CategoryTheory.CategoryStruct.id
CategoryTheory.ShortComplex
CategoryTheory.Preadditive.preadditiveHasZeroMorphisms
CategoryTheory.Abelian.toPreadditive
CategoryTheory.Category.toCategoryStruct
CategoryTheory.ShortComplex.instCategory
CategoryTheory.ShortComplex.SnakeInput.L₃

---

← Back to Index