| Metric | Count |
DefinitionsSnakeInput, comp, f₀, f₁, f₂, f₃, id, L₀, L₀', L₀X₂ToP, L₁, L₁', L₂, L₂', L₂'OpIso, L₃, P, P', P'IsoUnopOpP, PIsoUnopOpP', composableArrows, composableArrowsFunctor, functorL₀, functorL₁, functorL₁', functorL₂, functorL₂', functorL₃, functorP, h₀, h₀τ₁, h₀τ₂, h₀τ₃, h₃, h₃τ₁, h₃τ₂, h₃τ₃, instCategory, op, v₀₁, v₁₂, v₂₃, δ, δIso, φ₁, φ₂ | 46 |
Theoremscomm₀₁, comm₀₁_assoc, comm₁₂, comm₁₂_assoc, comm₂₃, comm₂₃_assoc, comp_f₀, comp_f₁, comp_f₂, comp_f₃, ext, ext_iff, id_f₀, id_f₁, id_f₂, id_f₃, L₀'_exact, L₀X₂ToP_comp_pullback_snd, L₀X₂ToP_comp_pullback_snd_assoc, L₀X₂ToP_comp_φ₁, L₀X₂ToP_comp_φ₁_assoc, L₀_exact, L₀_g_δ, L₁'_X₁, L₁'_X₂, L₁'_X₃, L₁'_exact, L₁'_f, L₁'_g, L₁_exact, L₁_f_φ₁, L₁_f_φ₁_assoc, L₂'_X₁, L₂'_X₂, L₂'_X₃, L₂'_exact, L₂'_f, L₂'_g, L₂_exact, L₃_exact, comp_f₀, comp_f₀_assoc, comp_f₁, comp_f₁_assoc, comp_f₂, comp_f₂_assoc, comp_f₃, comp_f₃_assoc, composableArrowsFunctor_map, composableArrowsFunctor_obj, epi_L₁_g, epi_L₃_g, epi_v₂₃_τ₁, epi_v₂₃_τ₂, epi_v₂₃_τ₃, epi_δ, exact_C₁_down, exact_C₁_up, exact_C₂_down, exact_C₂_up, exact_C₃_down, exact_C₃_up, functorL₀_map, functorL₀_obj, functorL₁'_map_τ₁, functorL₁'_map_τ₂, functorL₁'_map_τ₃, functorL₁'_obj, functorL₁_map, functorL₁_obj, functorL₂'_map_τ₁, functorL₂'_map_τ₂, functorL₂'_map_τ₃, functorL₂'_obj, functorL₂_map, functorL₂_obj, functorL₃_map, functorL₃_obj, functorP_map, functorP_obj, id_f₀, id_f₁, id_f₂, id_f₃, instEpiGL₀', instMonoFL₀'OfL₁, isIso_δ, lift_φ₂, lift_φ₂_assoc, mono_L₀_f, mono_L₂_f, mono_v₀₁_τ₁, mono_v₀₁_τ₂, mono_v₀₁_τ₃, mono_δ, naturality_δ, naturality_δ_assoc, naturality_φ₁, naturality_φ₁_assoc, naturality_φ₂, naturality_φ₂_assoc, op_L₀, op_L₁, op_L₂, op_L₃, op_v₀₁, op_v₁₂, op_v₂₃, op_δ, snake_lemma, snd_δ, snd_δ_assoc, snd_δ_inr, w₀₂, w₀₂_assoc, w₀₂_τ₁, w₀₂_τ₁_assoc, w₀₂_τ₂, w₀₂_τ₂_assoc, w₀₂_τ₃, w₀₂_τ₃_assoc, w₁₃, w₁₃_assoc, w₁₃_τ₁, w₁₃_τ₁_assoc, w₁₃_τ₂, w₁₃_τ₂_assoc, w₁₃_τ₃, w₁₃_τ₃_assoc, δ_L₃_f, δ_eq, φ₁_L₂_f, φ₁_L₂_f_assoc | 133 |
| Total | 179 |
| Name | Category | Theorems |
L₀ 📖 | CompOp | 55 mathmath: exact_C₃_up, w₀₂_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₁, op_δ, naturality_δ, mono_v₀₁_τ₂, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₂, exact_C₁_up, functorL₁'_map_τ₁, mono_v₀₁_τ₃, w₀₂_τ₁, w₀₂_τ₃_assoc, L₀X₂ToP_comp_pullback_snd, comp_f₀, δ_L₃_f, mono_L₀_f, L₁'_f, functorL₁'_map_τ₂, snd_δ, snd_δ_inr, composableArrowsFunctor_map, L₀X₂ToP_comp_φ₁, functorL₀_obj, L₀_exact, op_L₀, L₁'_X₂, L₂'_X₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_g, w₀₂_τ₂, functorP_map, exact_C₂_up, L₀_g_δ, snd_δ_assoc, w₀₂_τ₁_assoc, w₀₂, comp_f₀_assoc, naturality_δ_assoc, L₁'_X₁, op_L₃, L₀X₂ToP_comp_φ₁_assoc, id_f₀, HomologicalComplex.HomologySequence.snakeInput_L₀, op_v₂₃, Hom.id_f₀, w₀₂_τ₂_assoc, mono_v₀₁_τ₁, Hom.comm₀₁, epi_δ, L₀X₂ToP_comp_pullback_snd_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_f, Hom.comm₀₁_assoc, w₀₂_τ₃, functorL₂'_map_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₀_X₃, Hom.comp_f₀
|
L₀' 📖 | CompOp | 5 mathmath: L₀'_exact, instEpiGL₀', L₁_f_φ₁_assoc, L₁_f_φ₁, instMonoFL₀'OfL₁
|
L₀X₂ToP 📖 | CompOp | 4 mathmath: L₀X₂ToP_comp_pullback_snd, L₀X₂ToP_comp_φ₁, L₀X₂ToP_comp_φ₁_assoc, L₀X₂ToP_comp_pullback_snd_assoc
|
L₁ 📖 | CompOp | 55 mathmath: exact_C₃_up, w₀₂_assoc, functorL₁_obj, mono_v₀₁_τ₂, exact_C₁_up, L₁_exact, mono_v₀₁_τ₃, Hom.comp_f₁, w₀₂_τ₁, w₀₂_τ₃_assoc, op_L₂, w₁₃_τ₃, L₀X₂ToP_comp_pullback_snd, op_v₁₂, w₁₃_τ₂, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_g, exact_C₂_down, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₃, w₁₃_τ₃_assoc, HomologicalComplex.HomologySequence.snakeInput_L₁, Hom.comm₁₂, w₁₃_τ₂_assoc, snd_δ, snd_δ_inr, L₁_f_φ₁_assoc, w₁₃_τ₁_assoc, Hom.comm₁₂_assoc, w₀₂_τ₂, w₁₃_assoc, functorP_map, exact_C₂_up, snd_δ_assoc, w₀₂_τ₁_assoc, w₀₂, L₁_f_φ₁, id_f₁, op_v₂₃, comp_f₁_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₂, w₀₂_τ₂_assoc, Hom.id_f₁, mono_v₀₁_τ₁, Hom.comm₀₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_f, op_L₁, L₀X₂ToP_comp_pullback_snd_assoc, exact_C₃_down, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₁_X₁, Hom.comm₀₁_assoc, w₀₂_τ₃, w₁₃_τ₁, exact_C₁_down, epi_L₁_g, comp_f₁, w₁₃
|
L₁' 📖 | CompOp | 10 mathmath: functorL₁'_map_τ₃, functorL₁'_map_τ₁, functorL₁'_obj, L₁'_f, functorL₁'_map_τ₂, L₁'_g, L₁'_X₂, L₁'_exact, L₁'_X₁, L₁'_X₃
|
L₂ 📖 | CompOp | 62 mathmath: exact_C₃_up, w₀₂_assoc, naturality_φ₁, Hom.comm₂₃, exact_C₁_up, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₃, w₀₂_τ₁, w₀₂_τ₃_assoc, op_L₂, w₁₃_τ₃, op_v₁₂, id_f₂, w₁₃_τ₂, exact_C₂_down, w₁₃_τ₃_assoc, Hom.comm₁₂, naturality_φ₁_assoc, w₁₃_τ₂_assoc, Hom.comm₂₃_assoc, snd_δ, lift_φ₂, snd_δ_inr, L₁_f_φ₁_assoc, φ₁_L₂_f_assoc, L₀X₂ToP_comp_φ₁, w₁₃_τ₁_assoc, Hom.comm₁₂_assoc, epi_v₂₃_τ₂, functorL₂_obj, w₀₂_τ₂, comp_f₂, w₁₃_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₂, exact_C₂_up, snd_δ_assoc, w₀₂_τ₁_assoc, w₀₂, L₁_f_φ₁, lift_φ₂_assoc, φ₁_L₂_f, L₀X₂ToP_comp_φ₁_assoc, epi_v₂₃_τ₃, op_v₀₁, HomologicalComplex.HomologySequence.snakeInput_L₂, w₀₂_τ₂_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_g, mono_L₂_f, comp_f₂_assoc, naturality_φ₂, op_L₁, exact_C₃_down, w₀₂_τ₃, naturality_φ₂_assoc, L₂_exact, Hom.comp_f₂, w₁₃_τ₁, exact_C₁_down, Hom.id_f₂, w₁₃, epi_v₂₃_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_X₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₂_f
|
L₂' 📖 | CompOp | 10 mathmath: L₂'_g, L₂'_X₃, L₂'_X₁, L₂'_exact, functorL₂'_obj, functorL₂'_map_τ₃, L₂'_X₂, L₂'_f, functorL₂'_map_τ₂, functorL₂'_map_τ₁
|
L₂'OpIso 📖 | CompOp | — |
L₃ 📖 | CompOp | 53 mathmath: epi_L₃_g, op_δ, comp_f₃_assoc, naturality_δ, Hom.comm₂₃, L₃_exact, functorL₁'_map_τ₃, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_g, w₁₃_τ₃, w₁₃_τ₂, exact_C₂_down, w₁₃_τ₃_assoc, δ_L₃_f, L₂'_g, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_f, w₁₃_τ₂_assoc, Hom.comm₂₃_assoc, snd_δ, snd_δ_inr, composableArrowsFunctor_map, mono_δ, Hom.id_f₃, L₂'_X₃, w₁₃_τ₁_assoc, epi_v₂₃_τ₂, op_L₀, w₁₃_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₃, L₀_g_δ, snd_δ_assoc, functorL₃_obj, naturality_δ_assoc, op_L₃, L₁'_X₃, epi_v₂₃_τ₃, op_v₀₁, comp_f₃, δ_apply', HomologicalComplex.HomologySequence.snakeInput_L₃, id_f₃, δ_apply, functorL₂'_map_τ₃, L₂'_X₂, exact_C₃_down, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₁, functorL₂'_map_τ₂, Hom.comp_f₃, w₁₃_τ₁, exact_C₁_down, δ_eq, w₁₃, epi_v₂₃_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_L₃_X₂
|
P 📖 | CompOp | 12 mathmath: naturality_φ₁, L₀X₂ToP_comp_pullback_snd, functorP_obj, naturality_φ₁_assoc, snd_δ, φ₁_L₂_f_assoc, L₀X₂ToP_comp_φ₁, φ₁_L₂_f, L₀X₂ToP_comp_φ₁_assoc, naturality_φ₂, L₀X₂ToP_comp_pullback_snd_assoc, naturality_φ₂_assoc
|
P' 📖 | CompOp | — |
P'IsoUnopOpP 📖 | CompOp | — |
PIsoUnopOpP' 📖 | CompOp | — |
composableArrows 📖 | CompOp | 3 mathmath: composableArrowsFunctor_map, snake_lemma, composableArrowsFunctor_obj
|
composableArrowsFunctor 📖 | CompOp | 2 mathmath: composableArrowsFunctor_map, composableArrowsFunctor_obj
|
functorL₀ 📖 | CompOp | 2 mathmath: functorL₀_map, functorL₀_obj
|
functorL₁ 📖 | CompOp | 2 mathmath: functorL₁_obj, functorL₁_map
|
functorL₁' 📖 | CompOp | 4 mathmath: functorL₁'_map_τ₃, functorL₁'_map_τ₁, functorL₁'_obj, functorL₁'_map_τ₂
|
functorL₂ 📖 | CompOp | 2 mathmath: functorL₂_obj, functorL₂_map
|
functorL₂' 📖 | CompOp | 4 mathmath: functorL₂'_obj, functorL₂'_map_τ₃, functorL₂'_map_τ₂, functorL₂'_map_τ₁
|
functorL₃ 📖 | CompOp | 2 mathmath: functorL₃_obj, functorL₃_map
|
functorP 📖 | CompOp | 6 mathmath: naturality_φ₁, functorP_obj, naturality_φ₁_assoc, functorP_map, naturality_φ₂, naturality_φ₂_assoc
|
h₀ 📖 | CompOp | — |
h₀τ₁ 📖 | CompOp | — |
h₀τ₂ 📖 | CompOp | — |
h₀τ₃ 📖 | CompOp | — |
h₃ 📖 | CompOp | — |
h₃τ₁ 📖 | CompOp | — |
h₃τ₂ 📖 | CompOp | — |
h₃τ₃ 📖 | CompOp | — |
instCategory 📖 | CompOp | 36 mathmath: naturality_φ₁, comp_f₃_assoc, functorL₁_obj, functorL₁'_map_τ₃, functorL₁'_map_τ₁, id_f₂, comp_f₀, functorP_obj, naturality_φ₁_assoc, functorL₀_map, functorL₁'_obj, functorL₁'_map_τ₂, composableArrowsFunctor_map, functorL₀_obj, functorL₂_obj, functorL₁_map, comp_f₂, functorP_map, functorL₃_obj, comp_f₀_assoc, id_f₁, functorL₃_map, id_f₀, comp_f₁_assoc, comp_f₃, id_f₃, functorL₂'_obj, composableArrowsFunctor_obj, functorL₂'_map_τ₃, comp_f₂_assoc, naturality_φ₂, functorL₂'_map_τ₂, naturality_φ₂_assoc, comp_f₁, functorL₂'_map_τ₁, functorL₂_map
|
op 📖 | CompOp | 8 mathmath: op_δ, op_L₂, op_v₁₂, op_L₀, op_L₃, op_v₂₃, op_v₀₁, op_L₁
|
v₀₁ 📖 | CompOp | 28 mathmath: exact_C₃_up, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₂, w₀₂_assoc, mono_v₀₁_τ₂, exact_C₁_up, mono_v₀₁_τ₃, w₀₂_τ₁, w₀₂_τ₃_assoc, L₀X₂ToP_comp_pullback_snd, snd_δ, snd_δ_inr, HomologicalComplex.HomologySequence.snakeInput_v₀₁, w₀₂_τ₂, functorP_map, exact_C₂_up, snd_δ_assoc, w₀₂_τ₁_assoc, w₀₂, op_v₂₃, op_v₀₁, w₀₂_τ₂_assoc, mono_v₀₁_τ₁, Hom.comm₀₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₀₁_τ₃, L₀X₂ToP_comp_pullback_snd_assoc, Hom.comm₀₁_assoc, w₀₂_τ₃
|
v₁₂ 📖 | CompOp | 34 mathmath: exact_C₃_up, w₀₂_assoc, exact_C₁_up, w₀₂_τ₁, w₀₂_τ₃_assoc, w₁₃_τ₃, op_v₁₂, w₁₃_τ₂, exact_C₂_down, w₁₃_τ₃_assoc, Hom.comm₁₂, w₁₃_τ₂_assoc, lift_φ₂, snd_δ_inr, L₁_f_φ₁_assoc, w₁₃_τ₁_assoc, Hom.comm₁₂_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₂, w₀₂_τ₂, w₁₃_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₃, exact_C₂_up, w₀₂_τ₁_assoc, w₀₂, L₁_f_φ₁, lift_φ₂_assoc, w₀₂_τ₂_assoc, HomologicalComplex.HomologySequence.snakeInput_v₁₂, exact_C₃_down, w₀₂_τ₃, w₁₃_τ₁, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₁₂_τ₁, exact_C₁_down, w₁₃
|
v₂₃ 📖 | CompOp | 28 mathmath: Hom.comm₂₃, w₁₃_τ₃, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₃, w₁₃_τ₂, exact_C₂_down, w₁₃_τ₃_assoc, HomologicalComplex.HomologySequence.snakeInput_v₂₃, w₁₃_τ₂_assoc, Hom.comm₂₃_assoc, snd_δ, snd_δ_inr, w₁₃_τ₁_assoc, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₂, epi_v₂₃_τ₂, w₁₃_assoc, snd_δ_assoc, epi_v₂₃_τ₃, op_v₂₃, op_v₀₁, δ_apply', δ_apply, exact_C₃_down, CategoryTheory.kernelCokernelCompSequence.snakeInput_v₂₃_τ₁, w₁₃_τ₁, exact_C₁_down, δ_eq, w₁₃, epi_v₂₃_τ₁
|
δ 📖 | CompOp | 16 mathmath: op_δ, naturality_δ, δ_L₃_f, snd_δ, snd_δ_inr, mono_δ, L₁'_g, isIso_δ, L₀_g_δ, snd_δ_assoc, naturality_δ_assoc, δ_apply', δ_apply, epi_δ, L₂'_f, δ_eq
|
δIso 📖 | CompOp | — |
φ₁ 📖 | CompOp | 10 mathmath: naturality_φ₁, naturality_φ₁_assoc, snd_δ, L₁_f_φ₁_assoc, φ₁_L₂_f_assoc, L₀X₂ToP_comp_φ₁, snd_δ_assoc, L₁_f_φ₁, φ₁_L₂_f, L₀X₂ToP_comp_φ₁_assoc
|
φ₂ 📖 | CompOp | 6 mathmath: lift_φ₂, φ₁_L₂_f_assoc, lift_φ₂_assoc, φ₁_L₂_f, naturality_φ₂, naturality_φ₂_assoc
|