Documentation Verification Report

Single

📁 Source: Mathlib/Algebra/Homology/Single.lean

Statistics

MetricCount
DefinitionsfromSingle₀Equiv, single₀, toSingle₀Equiv, fromSingle₀Equiv, single₀, toSingle₀Equiv, mkHomFromSingle, mkHomToSingle, single, singleCompEvalIsoSelf, singleObjXIsoOfEq, singleObjXSelf
12
TheoremsfromSingle₀Equiv_apply, fromSingle₀Equiv_symm_apply_f_succ, fromSingle₀Equiv_symm_apply_f_zero, single₀ObjXSelf, single₀_map_f_zero, single₀_obj_zero, toSingle₀Equiv_apply_coe, toSingle₀Equiv_symm_apply_f_zero, fromSingle₀Equiv_apply_coe, fromSingle₀Equiv_symm_apply_f_zero, single₀ObjXSelf, single₀_map_f_zero, single₀_obj_zero, toSingle₀Equiv_apply, toSingle₀Equiv_symm_apply_f_succ, toSingle₀Equiv_symm_apply_f_zero, from_single_hom_ext, from_single_hom_ext_iff, instFaithfulSingle, instFullSingle, instPreservesZeroMorphismsSingle, isZero_single_comp_eval, isZero_single_obj_X, mkHomFromSingle_f, mkHomToSingle_f, singleCompEvalIsoSelf_hom_app, singleCompEvalIsoSelf_inv_app, single_map_f_self, single_map_f_self_assoc, single_obj_X_self, single_obj_d, to_single_hom_ext, to_single_hom_ext_iff
33
Total45

ChainComplex

Definitions

NameCategoryTheorems
fromSingle₀Equiv 📖CompOp
3 mathmath: fromSingle₀Equiv_symm_apply_f_zero, fromSingle₀Equiv_apply, fromSingle₀Equiv_symm_apply_f_succ
single₀ 📖CompOp
42 mathmath: CategoryTheory.ProjectiveResolution.quasiIso, CategoryTheory.ProjectiveResolution.lift_commutes_zero_assoc, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π_assoc, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_succ, CategoryTheory.ProjectiveResolution.self_π, CategoryTheory.Functor.mapProjectiveResolution_π, toSingle₀Equiv_apply_coe, Rep.standardComplex.εToSingle₀_comp_eq, exactAt_succ_single_obj, CategoryTheory.ProjectiveResolution.Hom.hom_comp_π_assoc, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero'_assoc, AlgebraicTopology.AlternatingFaceMapComplex.ε_app_f_zero, CategoryTheory.ProjectiveResolution.homotopyEquiv_inv_π, CategoryTheory.ProjectiveResolution.of_def, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, CategoryTheory.ProjectiveResolution.π_f_succ, CategoryTheory.ProjectiveResolution.pOpcycles_comp_fromLeftDerivedZero', CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero_assoc, CategoryTheory.ProjectiveResolution.lift_commutes_zero, CategoryTheory.ProjectiveResolution.lift_commutes, CategoryTheory.ProjectiveResolution.homotopyEquiv_hom_π_assoc, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero, CategoryTheory.ProjectiveResolution.Hom.hom_comp_π, CategoryTheory.ProjectiveResolution.π'_f_zero, Rep.standardComplex.quasiIso_forget₂_εToSingle₀, CategoryTheory.ProjectiveResolution.self_complex, fromSingle₀Equiv_symm_apply_f_zero, CategoryTheory.ProjectiveResolution.lift_commutes_assoc, toSingle₀Equiv_symm_apply_f_zero, CategoryTheory.ProjectiveResolution.Hom.hom_f_zero_comp_π_f_zero, Rep.standardComplex.instQuasiIsoNatεToSingle₀, fromSingle₀Equiv_apply, Rep.FiniteCyclicGroup.resolution_quasiIso, CategoryTheory.ProjectiveResolution.exact₀, Rep.standardComplex.forget₂ToModuleCatHomotopyEquiv_f_0_eq, CategoryTheory.ProjectiveResolution.instEpiFNatπ, CategoryTheory.ProjectiveResolution.complex_d_comp_π_f_zero_assoc, single₀_obj_zero, fromSingle₀Equiv_symm_apply_f_succ, single₀_map_f_zero, Rep.FiniteCyclicGroup.resolution.π_f
toSingle₀Equiv 📖CompOp
3 mathmath: toSingle₀Equiv_apply_coe, CategoryTheory.ProjectiveResolution.of_def, toSingle₀Equiv_symm_apply_f_zero

Theorems

NameKindAssumesProvesValidatesDepends On
fromSingle₀Equiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
ChainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
single₀
HomologicalComplex.X
EquivLike.toFunLike
Equiv.instEquivLike
fromSingle₀Equiv
HomologicalComplex.Hom.f
AddRightCancelSemigroup.toIsRightCancelAdd
fromSingle₀Equiv_symm_apply_f_succ 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
single₀
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
fromSingle₀Equiv
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
fromSingle₀Equiv_symm_apply_f_zero 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
single₀
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
fromSingle₀Equiv
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.mkHomFromSingle_f
CategoryTheory.Category.id_comp
single₀ObjXSelf 📖mathematicalHomologicalComplex.singleObjXSelf
ComplexShape.down
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Iso.refl
HomologicalComplex.X
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.single
AddRightCancelSemigroup.toIsRightCancelAdd
single₀_map_f_zero 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
single₀
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.single_map_f_self
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
single₀_obj_zero 📖mathematicalHomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
single₀
AddRightCancelSemigroup.toIsRightCancelAdd
toSingle₀Equiv_apply_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
CategoryTheory.Limits.HasZeroMorphisms.zero
DFunLike.coe
Equiv
ChainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
single₀
EquivLike.toFunLike
Equiv.instEquivLike
toSingle₀Equiv
HomologicalComplex.Hom.f
AddRightCancelSemigroup.toIsRightCancelAdd
toSingle₀Equiv_symm_apply_f_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.down
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
ChainComplex
HomologicalComplex.instCategory
single₀
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toSingle₀Equiv
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.mkHomToSingle_f
CategoryTheory.Category.comp_id

CochainComplex

Definitions

NameCategoryTheorems
fromSingle₀Equiv 📖CompOp
3 mathmath: CategoryTheory.InjectiveResolution.of_def, fromSingle₀Equiv_apply_coe, fromSingle₀Equiv_symm_apply_f_zero
single₀ 📖CompOp
33 mathmath: CategoryTheory.InjectiveResolution.homotopyEquiv_inv_ι, CategoryTheory.InjectiveResolution.ι'_f_zero, CategoryTheory.InjectiveResolution.self_ι, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles, CategoryTheory.InjectiveResolution.of_def, CategoryTheory.InjectiveResolution.desc_commutes_zero_assoc, fromSingle₀Equiv_apply_coe, CategoryTheory.InjectiveResolution.Hom.ι_comp_hom_assoc, CategoryTheory.InjectiveResolution.ι_f_succ, CategoryTheory.InjectiveResolution.ι_f_zero_comp_complex_d_assoc, exactAt_succ_single_obj, single₀_map_f_zero, CategoryTheory.InjectiveResolution.ι_f_zero_comp_complex_d, CategoryTheory.InjectiveResolution.self_cocomplex, CategoryTheory.InjectiveResolution.desc_commutes, CategoryTheory.InjectiveResolution.desc_commutes_assoc, CategoryTheory.InjectiveResolution.Hom.ι_f_zero_comp_hom_f_zero, CategoryTheory.InjectiveResolution.ι'_f_zero_assoc, toSingle₀Equiv_symm_apply_f_succ, CategoryTheory.InjectiveResolution.desc_commutes_zero, fromSingle₀Equiv_symm_apply_f_zero, toSingle₀Equiv_apply, CategoryTheory.InjectiveResolution.Hom.ι_f_zero_comp_hom_f_zero_assoc, CategoryTheory.InjectiveResolution.instMonoFNatι, CategoryTheory.InjectiveResolution.toRightDerivedZero'_comp_iCycles_assoc, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_ι_assoc, CategoryTheory.InjectiveResolution.homotopyEquiv_hom_ι, CategoryTheory.InjectiveResolution.exact₀, CategoryTheory.InjectiveResolution.homotopyEquiv_inv_ι_assoc, single₀_obj_zero, toSingle₀Equiv_symm_apply_f_zero, CategoryTheory.InjectiveResolution.quasiIso, CategoryTheory.InjectiveResolution.Hom.ι_comp_hom
toSingle₀Equiv 📖CompOp
3 mathmath: toSingle₀Equiv_symm_apply_f_succ, toSingle₀Equiv_apply, toSingle₀Equiv_symm_apply_f_zero

Theorems

NameKindAssumesProvesValidatesDepends On
fromSingle₀Equiv_apply_coe 📖mathematicalQuiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.comp
HomologicalComplex.d
CategoryTheory.Limits.HasZeroMorphisms.zero
DFunLike.coe
Equiv
CochainComplex
HomologicalComplex.instCategory
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
single₀
EquivLike.toFunLike
Equiv.instEquivLike
fromSingle₀Equiv
HomologicalComplex.Hom.f
AddRightCancelSemigroup.toIsRightCancelAdd
fromSingle₀Equiv_symm_apply_f_zero 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
HomologicalComplex.d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
HomologicalComplex.Hom.f
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
single₀
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
fromSingle₀Equiv
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.mkHomFromSingle_f
CategoryTheory.Category.id_comp
single₀ObjXSelf 📖mathematicalHomologicalComplex.singleObjXSelf
ComplexShape.up
AddRightCancelSemigroup.toIsRightCancelAdd
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.Iso.refl
HomologicalComplex.X
CategoryTheory.Functor.obj
HomologicalComplex
HomologicalComplex.instCategory
HomologicalComplex.single
AddRightCancelSemigroup.toIsRightCancelAdd
single₀_map_f_zero 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
single₀
CategoryTheory.Functor.map
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.single_map_f_self
CategoryTheory.Category.comp_id
CategoryTheory.Category.id_comp
single₀_obj_zero 📖mathematicalHomologicalComplex.X
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
single₀
AddRightCancelSemigroup.toIsRightCancelAdd
toSingle₀Equiv_apply 📖mathematicalDFunLike.coe
Equiv
Quiver.Hom
CochainComplex
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
Nat.instOne
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.instCategory
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelSemigroup.toIsRightCancelAdd
CategoryTheory.Functor.obj
single₀
HomologicalComplex.X
EquivLike.toFunLike
Equiv.instEquivLike
toSingle₀Equiv
HomologicalComplex.Hom.f
AddRightCancelSemigroup.toIsRightCancelAdd
toSingle₀Equiv_symm_apply_f_succ 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
single₀
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toSingle₀Equiv
CategoryTheory.Limits.HasZeroMorphisms.zero
AddRightCancelSemigroup.toIsRightCancelAdd
toSingle₀Equiv_symm_apply_f_zero 📖mathematicalHomologicalComplex.Hom.f
ComplexShape.up
AddSemigroup.toAdd
AddRightCancelSemigroup.toAddSemigroup
AddRightCancelMonoid.toAddRightCancelSemigroup
AddCancelMonoid.toAddRightCancelMonoid
AddCancelCommMonoid.toAddCancelMonoid
Nat.instAddCancelCommMonoid
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.instOne
CategoryTheory.Functor.obj
CochainComplex
HomologicalComplex.instCategory
single₀
DFunLike.coe
Equiv
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
HomologicalComplex.X
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toSingle₀Equiv
AddRightCancelSemigroup.toIsRightCancelAdd
HomologicalComplex.mkHomToSingle_f
CategoryTheory.Category.comp_id

HomologicalComplex

Definitions

NameCategoryTheorems
mkHomFromSingle 📖CompOp
2 mathmath: evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, mkHomFromSingle_f
mkHomToSingle 📖CompOp
1 mathmath: mkHomToSingle_f
single 📖CompOp
92 mathmath: extendSingleIso_inv_f, singleMapHomologicalComplex_hom_app_ne, instPreservesLimitsOfShapeSingle, rightUnitor'_inv, isZero_single_obj_X, singleMapHomologicalComplex_hom_app_self, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, instPreservesColimitsOfShapeSingle, pOpcycles_singleObjOpcyclesSelfIso_inv, isZero_single_obj_homology, singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_iCycles, CategoryTheory.InjectiveResolution.ι'_f_zero, homologyι_singleObjOpcyclesSelfIso_inv_assoc, CochainComplex.instIsStrictlyLEObjHomologicalComplexIntUpSingle, to_single_hom_ext_iff, singleObjCyclesSelfIso_inv_homologyπ, CochainComplex.HomComplex.Cochain.toSingleMk_v, single_obj_d, CategoryTheory.Functor.mapProjectiveResolution_π, CochainComplex.instIsStrictlyGEObjHomologicalComplexIntUpSingle, homologyι_singleObjOpcyclesSelfIso_inv, extendSingleIso_inv_f_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, ChainComplex.single₀ObjXSelf, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_hom_naturality, singleObjCyclesSelfIso_inv_naturality_assoc, Rep.standardComplex.εToSingle₀_comp_eq, from_single_hom_ext_iff, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, homologyπ_singleObjHomologySelfIso_hom_assoc, single_obj_X_self, singleMapHomologicalComplex_inv_app_self, extendSingleIso_hom_f_assoc, instHasHomologyObjSingle, CochainComplex.HomComplex.Cochain.fromSingleMk_v, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, extend_single_d, singleObjHomologySelfIso_inv_homologyι_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, singleObjCyclesSelfIso_inv_homologyπ_assoc, singleObjOpcyclesSelfIso_inv_naturality, mkHomToSingle_f, CategoryTheory.ProjectiveResolution.π'_f_zero, leftUnitor'_inv, single_map_f_self_assoc, CochainComplex.exists_iso_single, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, homologyπ_singleObjHomologySelfIso_hom, singleObjCyclesSelfIso_inv_iCycles_assoc, singleObjOpcyclesSelfIso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.ι'_f_zero_assoc, singleMapHomologicalComplex_inv_app_ne, single_map_f_self, singleCompEvalIsoSelf_inv_app, homologyFunctorSingleIso_inv_app, singleObjHomologySelfIso_hom_naturality, singleObjHomologySelfIso_hom_naturality_assoc, singleObjHomologySelfIso_inv_naturality_assoc, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, singleObjCyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_inv_naturality, singleCompEvalIsoSelf_hom_app, singleObjOpcyclesSelfIso_inv_naturality_assoc, instPreservesFiniteColimitsSingle, singleObjHomologySelfIso_inv_naturality, evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, singleObjCyclesSelfIso_hom_naturality_assoc, mkHomFromSingle_f, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, exactAt_single_obj, instPreservesFiniteLimitsSingle, instAdditiveSingle, instPreservesZeroMorphismsSingle, singleObjCyclesSelfIso_hom, extendSingleIso_hom_f, instFullSingle, instFaithfulSingle, singleObjHomologySelfIso_inv_homologyι, homologyFunctorSingleIso_hom_app, singleObjOpcyclesSelfIso_hom_assoc, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, isZero_single_comp_eval, singleObjOpcyclesSelfIso_hom_naturality, Rep.FiniteCyclicGroup.resolution.π_f, CochainComplex.single₀ObjXSelf
singleCompEvalIsoSelf 📖CompOp
2 mathmath: singleCompEvalIsoSelf_inv_app, singleCompEvalIsoSelf_hom_app
singleObjXIsoOfEq 📖CompOp
1 mathmath: Rep.FiniteCyclicGroup.resolution.π_f
singleObjXSelf 📖CompOp
31 mathmath: extendSingleIso_inv_f, rightUnitor'_inv, singleMapHomologicalComplex_hom_app_self, pOpcycles_singleObjOpcyclesSelfIso_inv, singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_iCycles, CategoryTheory.InjectiveResolution.ι'_f_zero, CochainComplex.HomComplex.Cochain.toSingleMk_v, extendSingleIso_inv_f_assoc, ChainComplex.single₀ObjXSelf, singleMapHomologicalComplex_inv_app_self, extendSingleIso_hom_f_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_v, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, mkHomToSingle_f, CategoryTheory.ProjectiveResolution.π'_f_zero, leftUnitor'_inv, single_map_f_self_assoc, singleObjCyclesSelfIso_inv_iCycles_assoc, CategoryTheory.InjectiveResolution.ι'_f_zero_assoc, single_map_f_self, singleCompEvalIsoSelf_inv_app, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, singleObjCyclesSelfIso_hom_assoc, singleCompEvalIsoSelf_hom_app, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, mkHomFromSingle_f, singleObjCyclesSelfIso_hom, extendSingleIso_hom_f, singleObjOpcyclesSelfIso_hom_assoc, CochainComplex.single₀ObjXSelf

Theorems

NameKindAssumesProvesValidatesDepends On
from_single_hom_ext 📖Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
hom_ext
CategoryTheory.Limits.IsZero.eq_of_src
isZero_single_obj_X
from_single_hom_ext_iff 📖mathematicalHom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
from_single_hom_ext
instFaithfulSingle 📖mathematicalCategoryTheory.Functor.Faithful
HomologicalComplex
instCategory
single
CategoryTheory.cancel_mono
CategoryTheory.mono_of_strongMono
CategoryTheory.strongMono_of_isIso
CategoryTheory.Iso.isIso_inv
CategoryTheory.cancel_epi
CategoryTheory.epi_of_strongEpi
CategoryTheory.strongEpi_of_isIso
CategoryTheory.Iso.isIso_hom
single_map_f_self
instFullSingle 📖mathematicalCategoryTheory.Functor.Full
HomologicalComplex
instCategory
single
from_single_hom_ext
CategoryTheory.Functor.map_comp
single_map_f_self
CategoryTheory.Iso.hom_inv_id_assoc
CategoryTheory.Iso.hom_inv_id
CategoryTheory.Category.comp_id
CategoryTheory.Category.assoc
CategoryTheory.Iso.inv_hom_id
CategoryTheory.Iso.inv_hom_id_assoc
instPreservesZeroMorphismsSingle 📖mathematicalCategoryTheory.Functor.PreservesZeroMorphisms
HomologicalComplex
instCategory
instHasZeroMorphisms
single
CategoryTheory.Functor.map_zero
CategoryTheory.Functor.preservesZeroMorphisms_of_full
instFullSingle
isZero_single_comp_eval 📖mathematicalCategoryTheory.Limits.IsZero
CategoryTheory.Functor
CategoryTheory.Functor.category
CategoryTheory.Functor.comp
HomologicalComplex
instCategory
single
eval
CategoryTheory.Functor.isZero
isZero_single_obj_X
isZero_single_obj_X 📖mathematicalCategoryTheory.Limits.IsZero
X
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
CategoryTheory.Limits.isZero_zero
mkHomFromSingle_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
mkHomFromSingle
CategoryTheory.Iso.hom
singleObjXSelf
CategoryTheory.Category.comp_id
mkHomToSingle_f 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
d
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Limits.HasZeroMorphisms.zero
Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
mkHomToSingle
CategoryTheory.Iso.inv
singleObjXSelf
CategoryTheory.Category.id_comp
singleCompEvalIsoSelf_hom_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.comp
HomologicalComplex
instCategory
single
eval
CategoryTheory.Functor.id
CategoryTheory.Iso.hom
CategoryTheory.Functor
CategoryTheory.Functor.category
singleCompEvalIsoSelf
X
CategoryTheory.Functor.obj
singleObjXSelf
singleCompEvalIsoSelf_inv_app 📖mathematicalCategoryTheory.NatTrans.app
CategoryTheory.Functor.id
CategoryTheory.Functor.comp
HomologicalComplex
instCategory
single
eval
CategoryTheory.Iso.inv
CategoryTheory.Functor
CategoryTheory.Functor.category
singleCompEvalIsoSelf
X
CategoryTheory.Functor.obj
singleObjXSelf
single_map_f_self 📖mathematicalHom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
CategoryTheory.Functor.map
CategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Iso.hom
singleObjXSelf
CategoryTheory.Iso.inv
single_map_f_self_assoc 📖mathematicalCategoryTheory.CategoryStruct.comp
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
Hom.f
CategoryTheory.Functor.map
CategoryTheory.Iso.hom
singleObjXSelf
CategoryTheory.Iso.inv
CategoryTheory.Category.assoc
Mathlib.Tactic.Reassoc.eq_whisker'
single_map_f_self
single_obj_X_self 📖mathematicalX
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
single_obj_d 📖mathematicald
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
Quiver.Hom
CategoryTheory.CategoryStruct.toQuiver
CategoryTheory.Category.toCategoryStruct
X
CategoryTheory.Limits.HasZeroMorphisms.zero
to_single_hom_ext 📖Hom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
hom_ext
CategoryTheory.Limits.IsZero.eq_of_tgt
isZero_single_obj_X
to_single_hom_ext_iff 📖mathematicalHom.f
CategoryTheory.Functor.obj
HomologicalComplex
instCategory
single
to_single_hom_ext

---

← Back to Index