| Name | Category | Theorems |
mkHomFromSingle 📖 | CompOp | 2 mathmath: evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, mkHomFromSingle_f
|
mkHomToSingle 📖 | CompOp | 1 mathmath: mkHomToSingle_f
|
single 📖 | CompOp | 92 mathmath: extendSingleIso_inv_f, singleMapHomologicalComplex_hom_app_ne, instPreservesLimitsOfShapeSingle, rightUnitor'_inv, isZero_single_obj_X, singleMapHomologicalComplex_hom_app_self, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom_assoc, instPreservesColimitsOfShapeSingle, pOpcycles_singleObjOpcyclesSelfIso_inv, isZero_single_obj_homology, singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_iCycles, CategoryTheory.InjectiveResolution.ι'_f_zero, homologyι_singleObjOpcyclesSelfIso_inv_assoc, CochainComplex.instIsStrictlyLEObjHomologicalComplexIntUpSingle, to_single_hom_ext_iff, singleObjCyclesSelfIso_inv_homologyπ, CochainComplex.HomComplex.Cochain.toSingleMk_v, single_obj_d, CategoryTheory.Functor.mapProjectiveResolution_π, CochainComplex.instIsStrictlyGEObjHomologicalComplexIntUpSingle, homologyι_singleObjOpcyclesSelfIso_inv, extendSingleIso_inv_f_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁, ChainComplex.single₀ObjXSelf, singleObjHomologySelfIso_hom_singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_hom_naturality, singleObjCyclesSelfIso_inv_naturality_assoc, Rep.standardComplex.εToSingle₀_comp_eq, from_single_hom_ext_iff, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv_assoc, homologyπ_singleObjHomologySelfIso_hom_assoc, single_obj_X_self, singleMapHomologicalComplex_inv_app_self, extendSingleIso_hom_f_assoc, instHasHomologyObjSingle, CochainComplex.HomComplex.Cochain.fromSingleMk_v, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂, singleObjCyclesSelfIso_hom_singleObjOpcyclesSelfIso_hom, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, extend_single_d, singleObjHomologySelfIso_inv_homologyι_assoc, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃, singleObjCyclesSelfIso_inv_homologyπ_assoc, singleObjOpcyclesSelfIso_inv_naturality, mkHomToSingle_f, CategoryTheory.ProjectiveResolution.π'_f_zero, leftUnitor'_inv, single_map_f_self_assoc, CochainComplex.exists_iso_single, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁, homologyπ_singleObjHomologySelfIso_hom, singleObjCyclesSelfIso_inv_iCycles_assoc, singleObjOpcyclesSelfIso_hom_naturality_assoc, CategoryTheory.InjectiveResolution.ι'_f_zero_assoc, singleMapHomologicalComplex_inv_app_ne, single_map_f_self, singleCompEvalIsoSelf_inv_app, homologyFunctorSingleIso_inv_app, singleObjHomologySelfIso_hom_naturality, singleObjHomologySelfIso_hom_naturality_assoc, singleObjHomologySelfIso_inv_naturality_assoc, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, singleObjCyclesSelfIso_hom_assoc, singleObjCyclesSelfIso_inv_naturality, singleCompEvalIsoSelf_hom_app, singleObjOpcyclesSelfIso_inv_naturality_assoc, instPreservesFiniteColimitsSingle, singleObjHomologySelfIso_inv_naturality, evalCompCoyonedaCorepresentableBySingle_homEquiv_symm_apply, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, singleObjCyclesSelfIso_hom_naturality_assoc, mkHomFromSingle_f, CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂, exactAt_single_obj, instPreservesFiniteLimitsSingle, instAdditiveSingle, instPreservesZeroMorphismsSingle, singleObjCyclesSelfIso_hom, extendSingleIso_hom_f, instFullSingle, instFaithfulSingle, singleObjHomologySelfIso_inv_homologyι, homologyFunctorSingleIso_hom_app, singleObjOpcyclesSelfIso_hom_assoc, singleObjHomologySelfIso_hom_singleObjHomologySelfIso_inv, isZero_single_comp_eval, singleObjOpcyclesSelfIso_hom_naturality, Rep.FiniteCyclicGroup.resolution.π_f, CochainComplex.single₀ObjXSelf
|
singleCompEvalIsoSelf 📖 | CompOp | 2 mathmath: singleCompEvalIsoSelf_inv_app, singleCompEvalIsoSelf_hom_app
|
singleObjXIsoOfEq 📖 | CompOp | 1 mathmath: Rep.FiniteCyclicGroup.resolution.π_f
|
singleObjXSelf 📖 | CompOp | 31 mathmath: extendSingleIso_inv_f, rightUnitor'_inv, singleMapHomologicalComplex_hom_app_self, pOpcycles_singleObjOpcyclesSelfIso_inv, singleObjOpcyclesSelfIso_hom, singleObjCyclesSelfIso_inv_iCycles, CategoryTheory.InjectiveResolution.ι'_f_zero, CochainComplex.HomComplex.Cochain.toSingleMk_v, extendSingleIso_inv_f_assoc, ChainComplex.single₀ObjXSelf, singleMapHomologicalComplex_inv_app_self, extendSingleIso_hom_f_assoc, CochainComplex.HomComplex.Cochain.fromSingleMk_v, CategoryTheory.ProjectiveResolution.π'_f_zero_assoc, mkHomToSingle_f, CategoryTheory.ProjectiveResolution.π'_f_zero, leftUnitor'_inv, single_map_f_self_assoc, singleObjCyclesSelfIso_inv_iCycles_assoc, CategoryTheory.InjectiveResolution.ι'_f_zero_assoc, single_map_f_self, singleCompEvalIsoSelf_inv_app, pOpcycles_singleObjOpcyclesSelfIso_inv_assoc, singleObjCyclesSelfIso_hom_assoc, singleCompEvalIsoSelf_hom_app, evalCompCoyonedaCorepresentableBySingle_homEquiv_apply, mkHomFromSingle_f, singleObjCyclesSelfIso_hom, extendSingleIso_hom_f, singleObjOpcyclesSelfIso_hom_assoc, CochainComplex.single₀ObjXSelf
|